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Université de Corse

14 May 2014
Cargèse
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Introduction
Why, Oh Why!?

Once one has quantized the Maxwell field and still wants to play with
conformally covariant fields some roads are available:

I spinors,

I p-forms,

I (bosonic) symmetric-traceless fields.

For the latter Erdmenger and Osborn solved the problem while leaving a
gap to be filled: d = 4 (for reasons to be seen later).

J. Erdmenger, H. Osborn, Class.Quant.Grav. 14 (1997) 2061-2084, Class.Quant.Grav. 15 (1998)

273-280.



A brief reminder on conformal invariance
Weyl transformations (GR)

On the one hand consider the Weyl transformations (rescalings):

(M, g) 7→ (M, g) where gµν(x) = ω2(x)gµν(x).

Def. Eg (ϕ) = 0 is Weyl invariant, if ∃h ∈ R st:

Eg (ϕ) = ωtEg (ϕ) = 0,

where ϕ = ωhϕ and t ∈ R.

(h is the conformal weight of the field)



A brief reminder on conformal invariance
Conformal group (PΦ)

On the other hand, for (M, g) lorentzian the group leaving the causality
invariant (light cone) will be called the conformal group.

Rmk. The isometries of (M, g) obviously belong to the conformal group.

The conformal group of Minkowski is locally isomorphic to SO0(2, 4)
which is then the conformal group of all conformally flat spacetimes.

Prop. (Characterization). The generators X of the conformal group fulfill
the conformal Killing equation:

LXg = 2fX (x)g ,

LX : Lie derivative along X , fX (x): function on the spacetime.



A brief reminder on conformal invariance
Conformal group (PΦ)

Def. An equation Eg (ϕ) = 0 will be conformally invariant if one can
realize the Lie algebra g of the conformal group SO0(2, 4) such that

[Eg , g](ϕ) = ζEg (ϕ),

where ζ is a function.

Then the space of solutions of Eg (ϕ) = 0 is closed under SO0(2, 4).



From 0 to 2
0 – The scalar field

The conformal equation on the scalar ϕ reads as:(
�− 1

4

d − 2

d − 1
R
)
ϕ = 0

It could be referred to as the conformal Laplacian or Yamabe operator.

Provided its conformal weight is given by h(ϕ) = 1− d/2 it’s conformally
invariant under both Weyl rescalings and SO0(2, d).



From 0 to 2
1 – The vector field general case

Considering the vector field one can find that either:

�Aµ − 4

d
∇µ∇ · A− 2

d − 2
RµνAν −

1

4

d(d − 4)

(d − 1)(d − 2)
RAµ = 0,

or

�Aµ − 4

d
∇ν∇µAν +

2

d

d − 4

d − 2
RµνAν −

1

4

d(d − 4)

(d − 1)(d − 2)
RAµ = 0,

depending on your personal preferences, are conformally invariant.

For d = 4 these equations are that of Maxwell for the 4-potential.



From 0 to 2
1 – Maxwell field and its gauge invariance

These equations, for d = 4 admit a differential gauge invariance of the
form:

Aµ 7→ ϕAµ = Aµ +∇µϕ

which can be tamed thanks to the conformally invariant gauge fixing
equation due to Eastwood and Singer:

�∇ · A + 2∇µRµνAν − 2

3
∇µRAµ = 0

which indeed restricts the scalar ϕ while leaving a residual gauge freedom
to be talked about soon.

M.G. Eastwood, M. Singer, Phys.Lett. A107 (1985) 73-74



From 0 to 2
2 – generic case

Considering Aµν s.t. Aµν = Aνµ and gµνAµν and generalizing one can
find that

�Aµν − 4

d + 2
(∇µ∇ρAνρ +∇ν∇ρAµρ) +

8

d(d + 2)
gµν∇ρ∇σAρσ

− (d2 − 2d + 8)

4d(d − 1)
RAµν +

2

d
(Rµ

ρAνρ + Rν
ρAµρ)

− 4(d − 1)

d
Rµ

ρσ
νAρσ − 4

d
gµνRρσAρσ = 0

is conformally invariant, but is no longer unique as a natural conformally
invariant differential operator as one can add a term

+λCµ
ρσ
νAρσ

with C the Weyl tensor, conformally covariant on its own, and keep the
conformal invariance of the system ∀λ ∈ R.



From 0 to 2
2 – Restriction to CFES

Even if one restricts one self to conformally flat spacetimes (C = 0) it
remains too messy to tackle one such equation head-on1 and one is led
to consider Einstein spaces for which:

Rµνρσ =
R

d(d − 1)
(gµρgνσ − gµσgνρ),

Rµν =
R

d
gµν ,

R = Const.

Examples of such spacetimes are: Minkowski, (A)dS and static Einstein
spacetime (obviously).

1Not true actually.



From 0 to 2
2 – Content of the eq.

Then on a CFES spacetime our former equation reads as:

�Aµν − 4

d + 2
(∇µ∇ρAνρ +∇ν∇ρAµρ)

+
8

d(d + 2)
gµν∇ρ∇σAρσ − (d2 − 2d + 8)

4d(d − 1)
RAµν = 0

it admits, for d = 4, a differential gauge invariance of the form

Aµν 7→ ϕAµν = Aµν +
(
∇µ∇ν −

1

4
gµν�

)
ϕ

which can be restricted by the gauge fixing equation(
�− 1

6
R
)
∇µ∇νAµν = 0



The equation and its feature

Now on CFES we consider the following equation:

�Aµ1...µs − 4s

d + 2s − 2
∇(µ1∇ρAµ2...µs )ρ

+
4s(s − 1)

(d + 2s − 4)(d + 2s − 2)
g (µ1µ2∇ρ∇σAµ3...µs )ρσ

− d2 − 2d + 4s

4d(d − 1)
RAµ1...µs = 0

with Aµ1...µi ...µj ...µs = Aµ1...µj ...µi ...µs and gµiµj A
µ1...µi ...µj ...µs = 0.

Rmk. It’s a restriction of a conformally invariant equation due to
Wünsch.

Rmk. On (A)dS these fields are pretty much, yet not quite, maximal
depth partially massless fields.

V. Wünsch, Math. Nachr. 129 (1986) 269281.

S. Deser, A. Waldron, Phys. Rev. Lett 87 (2001) 031601; Phys. Lett. B 603 (2004) 30-34



The equation and its feature
The restricted Weyl rescalings

Since we consider CFES only the conformal factor ω(x) can no longer be
arbitrary. Not going into the details one can find that a rescaling
mapping a CFES onto a CFES needs to fulfill(

∇µ∇ν −
1

d
gµν�

) 1

ω
= 0

and also

�∇µω = (∇µω)
(

3ω−1(�ω)− R

d(d − 1)

)
−(d−4)ω3

(
∇α 1

ω

)(
∇µ∇α

1

ω

)
,

put in a, rather convenient, form for computations to be carried out later.

Rmk. The SO0(2, d) invariance remains implied, on conformally flat
spacetimes, by those restricted Weyl rescalings.

H.W. Brinkmann, Math. Ann. 94 (1925), 119–145

A.R. Gover, Math. Ann. 336 (2006), 311–334



The equation and its features
Properties

Now one can find that the equation fulfills the following:

I It is conformally invariant (of course),

I For d = 4 it admits a differential gauge invariance of the form

Aµ1...µs 7→ ϕAµ1...µs = Aµ1...µs +∇(µ1 . . .∇µs )ϕ− traces

(and that’s the only GI).

Skipping on the gory details of the computation one can show that the
gauge fixing equation:(

�− 1

6
R
)
∇µ1 . . .∇µs A

µ1...µs = 0

is conformally invariant on the space of solutions of the equation.

Rmk. It is actually not obvious due to the fact that ∇µ1 . . .∇µs A
µ1...µs

does not behave like a scalar density at all.



The gauge fixing equation and related results
Residual gauge invariance

Using the gauge fixing equation(
�− 1

6
R
)
∇µ1 . . .∇µs A

µ1...µs = 0

constrains the scalar ϕ while leaving a residual gauge invariance which
can be found by plugging a pure gauge solution into the cgfe(

�− 1

6
R
)
�
(
� +

1

3
R
)
× · · · ×

(
� +

(s − 1)(s + 2)

12
R
)
ϕ = 0.

And that is interesting at least for two reasons.



The gauge fixing equation and related results
On de Sitter

We recall that the group of isometries of the de Sitter spacetime is
SO0(1, 4), and obviously SO0(1, 4) ⊂ SO0(2, 4).

In its scalar representation the first Casimir C1(SO(1, 4)) has a
well-known spectrum, namely:

I The principal serie: 〈C1〉 ≥
(d − 1

2

)2

,

I The complementary serie: 0 < 〈C1〉 <
(d − 1

2

)2

,

I The discrete serie: 〈C1〉 = −j(j + d − 1), with j ∈ N.

Comparing that spectrum with the residual gauge invariance left by the
gauge fixing equation one views that it picks:

I one term of the complementary serie: the massless conformally
coupled,

I the s-first terms of the discrete serie: massless minimally coupled,
tachyons . . .



The gauge fixing equation and related results
Conf. Diff. Geom.

Let us rewrite the equation ruling the residual gauge invariance in the
following manner:

P2nϕ =
[ n∏
`=1

(
� +

(`+ 1)(`− 2)

12
R
)]
ϕ = 0, n = s + 1.

This differential operator is not unknown.

But before spelling out its name a little story . . .



The gauge fixing equation and related results

On flat spacetime the differential operator on scalars:

�nϕ = 0, n ∈ N∗

is known to be SO0(2, d) invariant.

Then appears the natural question: is there a conformally invariant
curved analog P2n from densities of weight −d/2 + n to densities of
weight −d/2− n whose leading term is �n?

H.P. Jakobsen, M. Vergne, J.Funct.Anal. 24:52-106(1977).



The gauge fixing equation and related results
GJMS Theorem

There is a definitive answer to that question namely

Theorem (GJMS): P2n exists on generic conformal manifolds if

I d is odd,

I the bounds 1 ≤ n ≤ 1
2 d are fulfilled for d even.

Rmk. Then for d = 4 there exists only 2 such operators:

I The conformal laplacian:
(
�− 1

6 R
)
ϕ = 0,

I The Paneitz operator
(
�2 + 2∇µRµν∇ν − 2

3∇µR∇µ
)
ϕ = 0.

C.R. Graham, R. Jenne, L.J. Mason, G.A.J Sparling, J. London Math. Soc. 46 (1992) 557–565;
C.R. Graham J. London Math. Soc. 46 (1992) 566–576
A.R. Gover, K. Hirachi, J. Amer. Math. Soc. 17 (2004) 389 – 405

S. Paneitz, preprint (1983); R.J. Riegert, Phys. Lett. B134 (1984), 56–60



The gauge fixing equation and related results
The factorization theorem

The obstruction tensor, on generic conformal manifolds, at d = 4 to the
existence is the (conformally invariant at d = 4) Bach tensor:

Bµν = CµανβPαβ +∇α(∇µPαν −∇αPµν),

Pµν ≡ Schouten tensor.

I Conformally Einstein (∃g Einstein in [g ]) are Bach flat,

I There however are Bach flat manifolds which are not conformally
Einstein.

On Einstein manifolds P2n exists and fulfills Branson’s factorization
formula:

P2nϕ =
[ n∏
`=1

(
� +

(2`− 2 + d)(2`− d)

4d(d − 1)
R
)]
ϕ.

setting d = 4 we recover the equation ruling the residual gauge
invariance.
C.R. Graham, K. Hirachi, volume 8 of IRMA Lect. Math. Theor. Phys. (2005)
H-S Liu, H L, C N Pope, J F Vázquez-Poritz, Class. Quant. Grav.30 (2013) 165015.

T.P. Branson, Trans. Amer. Math. Soc. 347 (1995) 3671–3742



The gauge fixing equation and related results
So What?

We provide a (new) proof of the factorization formula linking two
conformally invariant equations through the inpection of gauge
invariance.

It actually has a physical significant meaning: the (conformally invariant)
space of gauged solutions admits a conformally invariant subspace of
solutions.

Those make the first two spaces of a Gupta-Bleuler triplet if someone
wishes to canonicaly quantize those fields.



The field strength F
Introduction

The field A being gauge variant one needs to find a corresponding field
strength F .

Introducing the derivative D as

(F (A))α µ1...µs = (DA)α µ1...µs

= ∇αAµ1...µs −∇(µ1 Aµ2...µs )α

− (s − 1)

(d + s − 3)

[
gα(µ1∇σAµ2...µs )σ − g (µ1µ2∇σAµ3...µs )ασ

]
,

one shows that F is indeed, on CFES, a field strength namely:

F (∇(µ1 . . .∇µs )ϕ+ . . . ) = 0, ∀d .



The field strength F
Maxwell’s equation

Then the equation on the potential is recovered as the divergence of F .

Generalizing further the differential operator D one can show that these
equations can be written on F as∣∣∣∣∣DF = 0

divF = 0,
g ∈ [η] or s = 1

with
D2A = 0, g ∈ [η] or s = 1

Which are free Maxwell-like equations (and for s = 1 those are Maxwell’s
equations).

One then shows that this system is conformally invariant iff d = 4.



The field strength F
E–B duality

Working out the mixed symmetry of the F one shows:

dof(F ) =
(d + s − 4)!

(d − 3)!(s + 1)!
s(d + 2s − 2)(d + s − 2)

and in particular

dof(F )
∣∣∣
d=4

= 2s(s + 2) = 2
s∑

j=1

(2j + 1).

That is F has the right number of indep. components to be written as a
sum over 2s symmetric traceless (wrt 3–“space”). Leaving aside the
decomposition and the proof it establishes a bijection we indeed have:

F =
s⊕

j=1

(Ej ⊕ Bj).

and the system exhibits a Electric-Magnetic duality:

(Ej ,Bj)→ (−Bj ,Ej)



The field strength F
The equations on the E–B fields, SO0(2, 4) invariance

The system can be translated into first order eq. on Hj = Ej + iBj

∂tHj − i
( s + 1

j + 1

)
curlHj

−
( s − j

j + 1

)
divHj+1 +

1

j

(
1 +

2(s − j)

(j + 1)(j + 2)

)
gradHj−1 = 0,

The action of SO(2, 4) on F carries to the E–B fields and behaves
“nicely” apart from boosts and SCT, which was to be expected.

The conformal invariance remains.



The field strength F
Finally

Thanks to that construction we can build a conformally invariant (d = 4,
∀g) action

S(g ,A) =
s

2(s + 1)

∫
(F (A))2 dVolg .

out of which you can derive the symplectic product to endow the space
of solutions A with:

σ(A,A′) =

∫
[ADA′ − A′DA]dΣ

The product is conformally invariant, vanishes on pure gauges
solutions and is positive otherwise.



What’s next

Part II, of course!

Namely, we paved the way for the quantization of such fields when d = 4
which, we remind, was the missing case.

The next step is to quantize A (and F ) with the help of the gauge fixing
equation.


