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Introduction

The present model of structure formation states that classical
small inhomogeneities which gave rise to all structures in the
Universe through gravitational instability originated from
primordial quantum fluctuations. However, the transition of the
quantum regime to the classical one is still not well understood2,
mainly because of a fundamental question in quantum mechanics:
the measurement problem. The latter is even more severe in a
cosmological context.

highly symmetric state → inhomogeneous state?

2A. Perez et al, Class. Quant. Grav. 23, (2006); D. Sudarsky, Int. J. Mod.
Phys. D 20, (2011).
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Squeezing

• The commutator between the field and its conjugate
momentum becomes “irrelevant”. This happens because the
decaying mode of the perturbations become unobservable
[Polarski and Starobinsky (1996); Kiefer (1998)].

• Results in an approximately definite momentum (the classical
one!). The field configuration can take any value with
probability |Ψ|2.

• However, it is always possible to find a new set of operators in
terms of which the evolved vacuum state will look like the
standard one. We cannot claim that the system has become
classical. The state of the system is still a pure one!



Introduction Common views and shortcomings Basics of de Broglie-Bohm quantum theory The de Broglie-Bohm approach to perturbations Conclusion

Decoherence

• Interaction with the environment, leading to a diagonal
density matrix for the remaining degrees of freedom ⇒
absence of quantum interference. Is it enough to get a
classical behavior? What if we use a different basis?

• Basis selection through the interaction; ensemble
interpretation to deal with the various possibilities associated
to the diagonal elements. But if we are at a cosmological
context, none of these points are sensible.

• Besides, what would be the environment? And we still need
some sort of collapse process, in order to break the symmetry!
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Basics of dBB theory

Assumes the objective existence of positions and trajectories of
quantum objects. There’s a guiding wave that satisfies

i~
∂Ψ

∂t
= HΨ. (1)

Extra postulate3: considering a system of particles, their motion
is given by

mi
dxi

dt
=

ji (x1, x2, ..., xN , t)

|Ψ(x1, ..., xN , t)|2
. (2)

Initial positions satisfy the Born rule:

P(x1, ..., xN , 0) = |Ψ(x1, ..., xN , 0)|2.

However, Born’s rule can be deduced4!
3L. de Broglie, La Mécanique Ondulatoire et la Structure Atomique de la

Matière et du Rayonnement, 1927.
4A. Valentini, Phys. Lett. A 156, (1991).
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Solution of the measurement problem5: system + apparatus
pointer as a single system

(
∑

i ciψ
s
i (xs))ψa(xa) (before)y∑

i ciψ
s
i (xs)ψa(si ) (after) (3)

If the pointer wavefunctions have disjoint supports, that is

ψa(si )ψ
a(sj) = 0, i 6= j , (4)

then we have effective collapse: one of the branches is singled
out with respect to the others.

5D. Bohm, A suggested interpretation of the quantum theory in terms of
hidden variables I and II, Phys. Rev. 85, (1952).
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Inflationary scenario

Starting with the classical theory we write the perturbed metric, in
the longitudinal gauge, as

ds2 = a2(η)
{

[1 + 2Φ(η, x)] dη2 − [1− 2Φ(η, x)] δijdx idx j
}
. (5)

We define the variable

y ≡ a

(
δϕ(gi) +

ϕ′

H
Φ

)
, (6)

and use a Fourier transform

y(η, x) =

∫
d3k

(2π)3/2
yk(η) exp (ik · x). (7)
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The Hamiltonian function is then

H =

∫
R3+

d3k

[
pkp
∗
k + k2yky

∗
k +

z ′

z
(pky

∗
k + ykp

∗
k)

]
, (8)

where z ≡ 2
√
πaϕ′/(mPlH). The classical equation of motion then

reads

y ′′k +

(
k2 − z ′′

z

)
yk = 0, (9)

with k = |k|. In the regime kη � 1,

yk(η) ∼ e−ikη

(
1 +

Ak

η
+ . . .

)
. (10)
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In the regime kη � 1, the solution is

yk(η) ∼ Ad
kη

αd + Ag
kη

αg ≈ Ag
kη

αg , (11)

where αd > 0 and αg < 0.

⇒ quantization in de Broglie-Bohm approach6: wave
functional+actual field configuration (functional Schrödinger
picture), vacuum state given by the product of Ψk = RkeiSk , with
Rk = |Ψk|. The evolution is given by the guidance equations

y∗k
′ =

δS

δyk
+

z ′

z
y∗k , y ′k =

δS

δy∗k
+

z ′

z
yk. (12)

Or, deriving one more time wrt η, we get

6Pinto-Neto, GBS & Struyve, Phys. Rev. D 85, (2012)
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y ′′k +

(
k2 − z ′′

z

)
yk = −∂Qk

∂y∗k
, (13)

where

Qk ≡ −
1

Rk

∂2Rk

∂y∗k∂yk
(14)

is the quantum potential.
The solution to the equation (12), with the vacuum initial state, is
simply

yk(η) = yk(ηi )
|fk(η)|
|fk(ηi )|

. (15)

where fk is a solution to the classical eom and fk(ηi ) = 1/
√

2k .
For large wavelengths, the behavior of this solution is exactly
the classical one, given by the growing mode.
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Another way of seeing the classical regime is through the quantum
potential. As we have

FQ,k ≡ −
∂Qk

∂y∗k
=

yk

4|fk |4
, (16)

we can compute the ratio

FC ,k

FQ,k
= −4|fk |4

(
k2 − z ′′

z

)
, (17)

which gives, for large wavelengths, FC � FQ .
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Assuming the quantum equilibrium distribution, we compute the
spectrum

〈y(η, x)y(η, x + r)〉dBB

=

∫
Dyi |Ψ(yi , ηi )|2y(η, x; yi )y(η, x + r; yi )

=

∫
Dy |Ψ(y , η)|2y(x)y(x + r) (18)

which is the usual expression for the correlation function, and can
be calculated to yield

〈y(η, x)y(η, x + r)〉dBB =
1

2π2

∫
dk

sin kr

r
k|fk(η)|2. (19)



Introduction Common views and shortcomings Basics of de Broglie-Bohm quantum theory The de Broglie-Bohm approach to perturbations Conclusion

Bouncing scenario

Let us first consider the classical description. The perturbations
obey

v ′′k +

(
c2
s k2 − z ′′

z

)
vk = 0. (20)

The general solution of the above mode equation can be formally
expanded in powers of k2 as

vk
z = A1,k

[
1− c2

s k2

∫ η

ηi

d η̄

z2 (η̄)

∫ η̄

ηi

z2 (¯̄η) d ¯̄η + ...

]
+

A2,k

∫ η

ηi

d η̄

z2 (η̄)

[
1− c2

s k2

∫ η̄

ηi

z2 (¯̄η) d ¯̄η

∫ ¯̄η

ηi

d ¯̄̄η

z2
(

¯̄̄η
) + ...

]
, (21)
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In order to analyze the quantum-to-classical transition, we focus on
the term

A2,k

∫ η

−∞

d η̄

z̄2
, (22)

which appears in the solution (we are assuming that the
contracting phase begins at ηi → −∞, and that the bounce occurs
for η near zero). This term grows with time. We can write∫ η

−∞

d η̄

z2(η̄)
=

(
B −

∫ ∞
η

d η̄

z2(η̄)

)
, (23)

where

B =

∫ ∞
−∞

dη z−2 ≈ 4xb

3(1− wq)Ω(xb)z2(xb)
, (24)

is a constant7 and xb ≡ a0/ab.

7Vitenti and Pinto-Neto, Phys. Rev. D 85, (2012).
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We should have xb � 1010. As wq is of order 1, then B � 1010. It
follows that, near the bounce,

vk ≈ [A1,k + A2,kB]z(η)− A2,kz(η)

∫ ∞
η

d η̄

z2(η̄)

≈ A2,kz(η)

[
B −

∫ ∞
η

d η̄

z2(η̄)

]
. (25)

dBB quantization8: whenever z ′′/z is negligible with respect to
c2
s k2, vacuum initial conditions can be imposed on the wave

function (analogous to the inflationary case!). The guidance
equation gives then

vk(η) = vk(ηi )
|fk(η)|
|fk(ηi )|

. (26)

8Pinto-Neto, GBS & Struyve, Phys. Rev. D 89, (2014)
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As fk is a solution of the classical equation, around the bounce we
have that (for c2

s k2 � z ′′/z)

fk(η) ≈ A2,kz(η)

[
B −

∫ ∞
η

d η̄

z2(η̄)

]
, (27)

and thus,
fk(η) ∝ |fk(η)|.

Hence
vk(η) ∝ fk(η), (28)

which means that the perturbations (26) are evolving classically.
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Conclusion

• We have obtained the classical limit in the evolution of
cosmological perturbations in a simple and consistent way, in
the framework of the de Broglie-Bohm theory. There was no
need of appealing to decoherence phenomena neither collapse
of the wave function.

• The symmetry of the initial state was naturally broken by
the existence of a Bohmian trajectory in configuration space
and the power spectrum obtained is consistent with the usual
account. No need of “new physics”!

• The transition is also obtained in a general bouncing scenario,
as long as the bounce is short enough and GR is valid
elsewhere.
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Thank you for your attention!
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