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@ Theories with massive gravitons — history
@ Hamiltonian formulation and the Bouleware-Deser ghost

@ Energy in the ghost-free massive gravity
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Theories with massive gravitons



Motivations for massive gravity

@ Modification of gravity:
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1
Newton - —  Yukawa e

r r
hence the gravity is weaker at large distances = the cosmic
acceleration, m ~ 1/(cosm. horizon size).

@ Purely theoretical, interesting history.



Linear massive gravity of Fierz and Pauli

massless : [p=0 = massive: o= m’¢
linearized GR : g = +hp = Ohy +...=167G6T,, =
Ohpy + ... = m*(hy — ahny,) +167GT,,

One should have 2s + 1 =5 Dof. Taking the divergence gives 4
constraints
m?(9"hy,, — ad,h) = 0.

Taking the trace,
(1—a)Odh+ m*(4a — 1)h =167 T.
If &« =1 one gets the fifth constraint

_lonT
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3m

= 5 Dof= polarizations of massive graviton. For o # 1 there is
a sixth Dof with a negative kinetic energy.



VdVZ discontinuity /1970/

(O—m*h, = 167GT,,
Mhy = Oyh
. 167GT
3m?

The limit m — 0 is not smooth. Let us make 5 =24 2 4 1 split
huw = Y + (8 A, + 0, A,L)+ 5 0u0u 9

where 9#~,,, = i, = O"A, = 0. Then for m — 0 one gets

Oy, = 16wGT,, tensor modes

LA, = 0 vector modes
167G .

Lo = ;T T  scalar graviton

= extra attraction, different Newton's laws for massive bodies.



Explicit VdVZ

d52 — el/(r) dt2 _ e)\(r) R/2(r)dr2 . r2e‘u,(r) dQQ
where R = re* and v, A\, u < 1. Linearizing,

I’g —mr rg —mr
v e 5y (L+mr)e
14+ mr+ (mr)2 _
=T 2m?2r3 e

For mr < 1 one has

__Ie _ s ~
=T 2r’ r3

One has v = —2)\ instead of v = —\ => either the Newton law is

wrong or the bending of light is wrong, depending on choice of r,.

Is massive gravity ruled out by the Solar System observations?



Vainshtein /1972/

Non-linear corrections to the VdVZ solution are proportional to

Ig
m*r®

This should be small as compared to unity, but it is ~ 103 at the
edge of solar system. Becomes small only for

1/5
r>ry= (%) ~ 100 Kps

For r < ry one cannot use the linear theory = linearized
equations for v, A but non-linear for u

I, I ar,
v=—"L4 A=+ u=/E+..
r r r

The GR is recovered, the scalar graviton is bound. The VdVZ
discontinuity is visible only for r > ry, for r < ry it is cured by
the non-linear effects. check = /Babichev, Deffayet, Ziour 2009/



Hamiltonian formulation
Boulware-Deser ghost



Non-linear Fierz-Pauli

The potential I/ is a scalar function of HY, = 6/ — gh*f,,, where
fuv 1s a flat reference metric. The potential should reproduce the
Fierz-Pauli in the weak field, therefore
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(H%HY, — (HE)?) + ...

Higher order term can be arbitrary.



ADM decomposition

With
ds? = —N?dt? + i (dx’ + N'dt)(dx* + N¥dt)

the Lagrangian becomes

1 ik 12 . p(3) 2, 10 A N
L=./N 5 {KixK"™ — K+ R} — mU(N",~ik) | +total derivative,
where the second fundamental form

1. 3 3
Kix = 5 (Fik = VIN - VN,

i



Hamiltonian

Canonical momenta for v and N* = (N, N¥)

o
ONw

; oL 1 : :
wh = S = S V(KR Ky, pw,
1

Hamiltonian .
H = a4 — L= N“H, + m*Y

with ¥V = \/’_yNL{ and

1 ; 1 .
Ho = N Qr*my — (7F)?) — 5 VIR®,  Hy = —2V,(-3)7r’k

N# are non-dynamical, phase space is spanned by 12 (7r”‘, hik).
. OH
PN = PR =

This condition determines the number of Dof.

2 OV(N®, ik )

0=~ ONK

Hy (7™, i) + m



L mey

oH

S = H, (7, vi) = 0. 4 constraints

Since
{HuvHV} ~ Ha

they are first class and generate gauge symmetries = one can
impose 4 gauge conditions. There remain

12— 4—4=4=2x (2 DoF)

independent phase space variables describing 2 graviton
polarizations.

Energy is zero on the constraint surface (up to surface terms)

H=N'H, =0



Boulware-Deser ghost

OH o 8V(Na,’)/,'k) .

aNH ONE
These are not constraints but equations for N* whose solution is
N# (7% hy). No constraints = all 12 phase space variables are
independent = 6 = 5 4 1 DoF = 5 graviton polarizations 4 ghost

Hll(ﬂ-ik/)/ik) + m2 Ou

Inserting N (7™ hy) to H gives a non-positive-definite in 7'k
expression. No constraints = energy is unbounded from below.

In the non-linear theory one can overcome the VdVZ problem, but
on the other hand there is the BD ghost



Pauli-Fierz theory — weak fields

The argument goes differently in this case.

N=1+v, N<=0uK = ~yi="fu+ hi

then i
—EﬁR@):\/?(Vl—i-Vg)—l—
with
1 k ik
Vi = S (V'Vih-V'V h,-k)

1 .
Vo = Zh”‘( ~VVhjy + = f,szVh ViVih+V,;V?* sk>

1 .
U = ¢ <h'kh,.k — h? —21/k1/k—4uh> +
Shifts vy appear quadratically, there are equations for them, but
the lapse v arises linearly = constraint.



Pauli-Fierz Hamiltonian

Hrp = HFP(W) + HFp(h) + v Crp,
where

1 . 4 o
Hpp(m) = W <27T;<7T,k — (W,’f)2 + = V;ﬂLV%f) ,
1

1. 1_
Hrp(h) = \/?<§v1h'kvjh,-k—8vkhvkh+zvjhfkvkh

1 i ik m? ik 2
- ZVJlTLVhi—i—?(hkh,—h) ,

Crp = %ﬁ(vkvkh — V'V — m2h> =0.

Poisson bracket of Cpp with Hpp = f’HFp d3x gives the secondary
constraint

Spp = {CFP, HFP} = mzﬂt + 2V’V"7r,-k =0.



Pauli-Fierz — degrees of freedom

{Cpp,Srp} # 0 = the two constraints are second class =
12-2=10=2 x (5 DoF)
= b graviton polarizations. Preservation of Sgpp gives
3 4 3 200 2 \2
= equation with the solution
V= akkh T3 (6kk)2

= all v, vy are determined.



Pauli-Fierz energy

Erp = / Hyp(m)d3x + / Hrp(h) dx
where 7, h satisfy the constraints
Crp(h) =0, Srp(m) = 0.

The energy is quadratic in fields = one can Fourier-decompose
m%) = [ mu@eTFRk ) = [ bRk

The constraints can be resolved in the momentum space, they
relate the trace to the diagonal traceless part of the tensors. There
remains two tensor modes, two vector modes, and a scalar, for
which

Epp > 0.



Ghost-free massive gravity
Energy



dRGT theory
:%/\/—_g<%R—m2Z/{> d4xz%/ﬁd4x,

with the potential made of H", = 6/, — g"*f,,

1 -
U= ¢ (L HY, — (HA)%) +

For the dRGT theory /de Rham, Gabadadze, Tolley 2010/ the

higher order terms are chosen such that

u—b0+ble +b2> Xadb+bs Y AaApAc+ by AodidoAs
a<b a<b<c

where A, are eigenvalues of 4", = \/g#%f,, and

bp = 4c3+c4—6, b1=3-3c3—¢4, bh=2c3+¢c4 — 1,
b3 = —(a+a), bh=a



Degrees of freedom

The Hessian matrix
azv(Naa%'k)
ONHONY
has rank 3 = equations

oH

;i OV(N<, ~;
ONH Ho(™, i) + m27( i) =

ONH 0

determine | N¥ = Nk(N,ﬂik,yik) but N remains undetermined.

Inserting N* to H gives
H = E(™, yik) + NC(m™, i)

Varying with respect to N gives the primary constraint C =0 =
the secondary constraint S = {C, H} =0 = only 5 DoF. The
energy density is (7%, ;) restricted to the constraint surface.
No explicit expressions for £,C.



Restricting to the s-sector



Spherical symmetry

1 .
dsé = —N%dt® + E(dr + B dt)? + R?(d¥? + sin® 9d?)
dsi = —dt®+dr’ + r* (d9® + sin* 9d )

where N,ﬁ,_A, R depend on t,r. With the canonical momenta
pa = OL/OA and pgr = IL/OR the Hamiltonian

H = Anp+ Rrg — L= NHo + BH, + m*V

where

Ho = A* 2+A2 + ARR"? + 2R(AR'Y 1
0o = 4R2PA 2RPAPR A

H, = App+248'pa+ R'pr

Phase space is spanned by 4 variables A, R, pa, pr = (qi, Pk)-



Generic case

@ m = 0 = varying H with respect to N, 3 yields 2 first class
constraints Hop =0, H, =0 = thereare 4 —2—-2=0
independent variables = no dynamics = Birkghoff theorem.

@ m # 0 and generic V =

L9V

20V
aN

B

= N = N(q', px), B = B(q', px), no constraints = all 4
phase space variables are independent =

Ho+ m =0, H, + =0.

2 DoF=scalar graviton+ghost

Inserting N(q', pk), B(q', pk) to H, the result is unbounded
from below



dRGT theory

NR2P0 R2P1 > > 5
V== V(BN £ 172 — 52 4 R2p,,
with
2
P, =b,+ 2bn+1 R + bpt2 =5 B2
in which case
— = Ho+m ——+ m°R°P =0
oN 0 A 1\/(NA+1)2—52
IH _ H,—m2R2P1 B
op A /(NA +1)2 - p2

The second of these conditions determines 3,

8= (NA+1) v

while the first condition gives



A
The Hamiltonian becomes H = £ 4+ NC where

C=Ho+Y+m =0

£ = % + m’R?P, with Y = \/(AH,)2 + (m2R2Py)?

Since {C(r1),C(r2)} = 0 = the secondary constraint

m*R2 P2 AH '
S = {CH =—3 (APA+RPR)_Y< Y>
A2 m*
— 2? {maR(R”'Pf) + m2aR(R2P2)}
m>H,

{2 (R?P2)' + R20,(Po — A2Py) | = 0

No ghost. E = [;° Edr assuming that C = S = 0.



Weak fields

fFN=A=1R=randf=pa=pr=0=C=8§=€E=0.
fN=1+v, A=1+9, R=r+ pthen

C=Cpp+..., S=Spp+..., H=Epp+vCpp+...

Crp = (2r(8 + ) + m*(r*6 — 2rp),
2
m
Skp = & (rPr — pa) — (Pa + PR)"-
where Epp is the quadratic part of £ +C,

2 / 2
PA  pPapr . (PA + PR)
gp = A
Fp 4r2 + 2r + m2r2

+ 2p0 — p? — 8%+ m?(2rop — p?).




Resolving the constraints

Q Q 2¢
/ —
b=rtE PEptiam
. F Foo2F
PR =—pPp + —; PA:7—W7

where Q, F are arbitrary,

F2
Erp =3 <Q'2 + m?Q* + —

1
2 ) P + derivative

therefore
(o]
/ EFP dr > 0
0



Strong fields — kinetic energy sector

Let A=1, R=r, 7TA:7TA(I‘), 7TR:7TR(r)

. Vxz (xz + 4x*f)
Sett = = =_y= = J
€ Ing X mr? pA m Y pR (2X\/)E)

both constraints are fulfilled if z, f fulfill two equations

7 = AXPf +2xxz\/f(f +2),

—4x3f —
oo {4zf —4x°f — 3z}/f(f +2) —Ef(f+2),
Ax\/xz X

while the energy density . One should have f(f +2) >0

= two solution branches: either f > 0, positive energy, or f < —2,
negative energy.

f=0 z=2z2, E=0.
f=-22=803,—x%) E= [(" Edr=—2x3

3m “'max*



Negative energy solutions
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X =mr

Singular solutions on compact intervals, £ is everywhere negative,
E = [Edr = —co. Energy is unbounded from below. However,
this does not imply that flat space is unstable, because solutions
do not describe regular initial data.



Strong fields — potential energy sector

Let pa = pr =0, A:%,/@:m, -~ S§=0,
2 ! 52
X 2h xg 2x2g?2
M2—3m+_M1—6h+6#)_0
2g 2g2 -

with hg <~ h—1, 1+ g—1for 0+ x — o0; the energy

x?h?(3h — g — 2)
z :

E =

Special solutions, also fulfill the Hamilton equations
oh=1g=14dsy=ds}, E£=0 flat space

o h=13%,g=1ds? =3ds}, &= —3x*/8 tachyon universe



Deformations of flat space — normal branch

Figure : Profiles of h, E for several positive energy solutions.

Energy is positive.



General solution of the constraint

Setting g = gh/(xh)’, the constraint is solved with

Q = xh(l—q?)+x*h(2h—1)(h—1),
Q = r’h(3h—2)(g—1)

for any Q(x). Let @ = AO(x — xp)(x — xo)Pe™™

3
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Energy is positive for smooth, asymptotically flat fields.



Tachyon branch

Solutions of the constraint with

1
ho < h— =
0 2
The energy is negative and infinite. However, this does not affect
stability of flat space, because the asymptotic condition at infinity
is different:

hg < h — 1 flat space branch
hy < h — % tachyon branch

Negative energies comprise a disjoint branch and so they are
harmless.



Tachyon branch vs. normal branch

There are solutions which start from the tachyon branch at the
origin and approach the flat space at infinity.
The energy is finite and negative — tachyon bubbles.
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Does this affect the stability of flat space ?



Tachyon bubbles

The lapse N is singular. Can be proven for c3 = ¢4 = 0. For other
values of the parameters — numerical evidence. One does not find
negative energy solutions which would describe initial data for a

decay of flat space = negative energy decouple and are harmless.



@ Two constraints of the dRGT massive gravity remove one of
the 2 DoF in s-sector = only 1 DoF propagates.

o It is natural to think that the removed mode is the ghost.
Then the energy should be positive, but in fact it is
unbounded from below.

@ However, for smooth deformations of flat space the energy is
positive — the physical sector. It seems that negative energy
states belong to disjoint sectors, so they are harmless.

= The evidence that the theory is healthy in its physical sector,
where the energy is positive and the ghost is suppressed.



