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Theories with massive gravitons



Motivations for massive gravity

Modification of gravity:

Newton
1

r
→ Yukawa

1

r
e−mr

hence the gravity is weaker at large distances ⇒ the cosmic
acceleration, m ∼ 1/(cosm. horizon size).

Purely theoretical, interesting history.



Linear massive gravity of Fierz and Pauli /1939/

massless : �φ = 0 ⇒ massive : �φ = m2φ

linearized GR : gµν = ηµν + hµν ⇒ �hµν + . . . = 16πGTµν ⇒

�hµν + . . . = m2(hµν − α h ηµν) + 16πGTµν

One should have 2s + 1 = 5 Dof. Taking the divergence gives 4
constraints

m2(∂µhµν − α∂νh) = 0.

Taking the trace,

(1− α)�h +m2(4α − 1)h = 16πT .

If α = 1 one gets the fifth constraint

h =
16πT

3m2

⇒ 5 Dof= polarizations of massive graviton. For α 6= 1 there is
a sixth Dof with a negative kinetic energy.



VdVZ discontinuity /1970/

(�−m2)hµν = 16πGTµν

∂µhµν = ∂νh

h =
16πGT

3m2

The limit m→ 0 is not smooth. Let us make 5 = 2 + 2 + 1 split

hµν = γµν +
1

m
(∂µAν + ∂νAµ) +

1

m2
∂µ∂νφ

where ∂µγµν = γµµ = ∂µAµ = 0. Then for m→ 0 one gets

�γµν = 16πGTµν tensor modes

�Aµ = 0 vector modes

�φ =
16πG

3
T scalar graviton

⇒ extra attraction, different Newton’s laws for massive bodies.



Explicit VdVZ

ds2 = eν(r)dt2 − eλ(r)R ′2(r)dr2 − r2eµ(r)dΩ2

where R = reµ and ν, λ, µ≪ 1. Linearizing,

ν = − rg

r
e−mr , λ =

rg

2r
(1 +mr) e−mr

µ = rg
1 +mr + (mr)2

2m2r3
e−mr

For mr ≪ 1 one has

ν = − rg

r
, λ =

rg

2r
, µ ∼ 1

r3

One has ν = −2λ instead of ν = −λ ⇒ either the Newton law is
wrong or the bending of light is wrong, depending on choice of rg .

Is massive gravity ruled out by the Solar System observations?



Vainshtein /1972/

Non-linear corrections to the VdVZ solution are proportional to

rg

m4r5

This should be small as compared to unity, but it is ∼ 1032 at the
edge of solar system. Becomes small only for

r ≫ rV =
( rg

m4

)1/5
∼ 100Kps

For r ≪ rV one cannot use the linear theory ⇒ linearized
equations for ν, λ but non-linear for µ

ν = − rg

r
+ . . . , λ =

rg

r
+ . . . , µ =

√

arg

r
+ . . .

The GR is recovered, the scalar graviton is bound. The VdVZ
discontinuity is visible only for r ≫ rV , for r ≪ rV it is cured by
the non-linear effects. check = /Babichev, Deffayet, Ziour 2009/



Hamiltonian formulation

Boulware-Deser ghost



Non-linear Fierz-Pauli

S =
1

κ2

∫ √−g
(

1

2
R −m2 U

)

d4x ≡ 1

κ2

∫

L d4x .

The potential U is a scalar function of Hµ
ν = δµν − gµαfαν where

fµν is a flat reference metric. The potential should reproduce the
Fierz-Pauli in the weak field, therefore

U =
1

8
(Hµ

νH
ν
µ − (Hµ

µ)
2) + . . .

Higher order term can be arbitrary.



ADM decomposition

With
ds2 = −N2dt2 + γik(dx

i + N idt)(dxk + Nkdt)

the Lagrangian becomes

L =
√
γN

(

1

2
{KikK

ik − K 2 + R (3)} −m2U(Nν , γik)

)

+total derivative ,

where the second fundamental form

Kik =
1

2N
(γ̇ik −∇(3)

i Nk −∇(3)
k Ni ).



Hamiltonian

Canonical momenta for γik and Nµ = (N,Nk )

πik =
∂L
∂γ̇ik

=
1

2

√
γ (K ik − Kγik), pNµ

=
∂L
∂Ṅµ

= 0.

Hamiltonian
H = πik γ̇ik − L = NµHµ +m2V

with V =
√
γN U and

H0 =
1√
γ
(2πikπik − (πk

k )
2)− 1

2

√
γR (3), Hk = −2∇(3)

i πi
k

Nµ are non-dynamical, phase space is spanned by 12 (πik , hik).

0 = −ṗNµ
=

∂H
∂Nµ

= Hµ(π
ik , γik) +m2∂V(Nα, γik)

∂Nµ
,

This condition determines the number of Dof.



GR, m = 0

∂H
∂Nµ

= Hµ(π
ik , γik) = 0. 4 constraints

Since
{Hµ,Hν} ∼ Hα

they are first class and generate gauge symmetries ⇒ one can
impose 4 gauge conditions. There remain

12− 4− 4 = 4 = 2× (2 DoF)

independent phase space variables describing 2 graviton
polarizations.

Energy is zero on the constraint surface (up to surface terms)

H = NµHµ = 0



Boulware-Deser ghost /1972/

∂H
∂Nµ

= Hµ(π
ik , γik) +m2∂V(Nα, γik)

∂Nµ
= 0,

These are not constraints but equations for Nµ whose solution is
Nµ(πik , hik). No constraints ⇒ all 12 phase space variables are
independent ⇒ 6 = 5 + 1 DoF = 5 graviton polarizations + ghost

Inserting Nµ(πik , hik) to H gives a non-positive-definite in πik

expression. No constraints ⇒ energy is unbounded from below.

In the non-linear theory one can overcome the VdVZ problem, but
on the other hand there is the BD ghost



Pauli-Fierz theory – weak fields

The argument goes differently in this case.

N = 1 + ν, Nk = νk , γik = fik + hik

then

−1

2

√
γ R (3) =

√
f (V1 + V2) + . . .

with

V1 =
1

2
(∇k∇kh−∇i∇khik)

V2 =
1

4
hik

(

−1

2
∇s∇shik +

1

2
fik∇s∇sh −∇i∇kh +∇i∇shsk

)

,

U =
1

8

(

hikh
k
i − h2 − 2 νk ν

k − 4νh

)

+ . . .

Shifts νk appear quadratically, there are equations for them, but
the lapse ν arises linearly ⇒ constraint.



Pauli-Fierz Hamiltonian

HFP = HFP(π) +HFP(h) + ν CFP ,

where

HFP(π) =
1√
f

(

2πi
kπ

k
i − (πk

k )
2 +

4

m2
∇iπ

i
k∇jπk

j

)

,

HFP(h) =
√
f

(

1

8
∇jhik∇jh

k
i −

1

8
∇kh∇kh +

1

4
∇jh

j
k ∇kh

− 1

4
∇jh

j
k∇ihki +

m2

8

(

hikh
k
i − h2

)

)

,

CFP =
1

2

√
f

(

∇k∇kh −∇i∇khik −m2h

)

= 0 .

Poisson bracket of CFP with HFP =
∫

HFP d3x gives the secondary
constraint

SFP = {CFP,HFP} = m2πk
k + 2∇i∇kπik = 0 .



Pauli-Fierz – degrees of freedom

{C
FP

,SFP} 6= 0 ⇒ the two constraints are second class ⇒

12 − 2 = 10 = 2× (5 DoF)

⇒ 5 graviton polarizations. Preservation of SFP gives

{SFP,HFP} =
3

4
m4(h − ν) +

3

2
m2∂2

kkh+ (∂2
kk )

2h = 0,

⇒ equation with the solution

ν = h+
2

m2
∂2
kkh +

4

3m4
(∂2

kk)
2h .

⇒ all ν, νk are determined.



Pauli-Fierz energy

EFP =

∫

HFP(π)d
3x +

∫

HFP(h) d
3x

where π, h satisfy the constraints

CFP(h) = 0, SFP(π) = 0.

The energy is quadratic in fields ⇒ one can Fourier-decompose

πik(~x) =

∫

πik(~k)e
i~x~kd3k , hik(~x) =

∫

hik(~k)e
i~x~kd3k

The constraints can be resolved in the momentum space, they
relate the trace to the diagonal traceless part of the tensors. There
remains two tensor modes, two vector modes, and a scalar, for
which

EFP ≥ 0.



Ghost-free massive gravity

Energy



dRGT theory

S =
1

κ2

∫ √−g
(

1

2
R −m2 U

)

d4x ≡ 1

κ2

∫

L d4x ,

with the potential made of Hµ
ν = δµν − gµαfαν

U =
1

8
(Hµ

νH
ν
µ − (Hµ

µ)
2) + . . .

For the dRGT theory /de Rham, Gabadadze, Tolley 2010/ the
higher order terms are chosen such that

U = b0+ b1
∑

a

λa+ b2
∑

a<b

λaλb + b3
∑

a<b<c

λaλbλc + b4 λ0λ1λ2λ3

where λa are eigenvalues of γµ
ν =
√
gµαfαν and

b0 = 4c3 + c4 − 6, b1 = 3− 3c3 − c4, b2 = 2c3 + c4 − 1,

b3 = −(c3 + c4), b4 = c4



Degrees of freedom

The Hessian matrix
∂2V(Nα, γik)

∂Nµ∂Nν

has rank 3 ⇒ equations

∂H
∂Nµ

= Hµ(π
ik , γik) +m2 ∂V(Nα, γik)

∂Nµ
= 0

determine Nk = Nk(N, πik , γik) but N remains undetermined.

Inserting Nk to H gives

H = E(πik , γik) + NC(πik , γik)

Varying with respect to N gives the primary constraint C = 0 ⇒
the secondary constraint S = {C,H} = 0 ⇒ only 5 DoF. The
energy density is E(πik , γik) restricted to the constraint surface.
No explicit expressions for E , C.



Restricting to the s-sector



Spherical symmetry

ds2g = −N2dt2 +
1

∆2
(dr + β dt)2 + R2 (dϑ2 + sin2 ϑdϕ2)

ds2f = −dt2 + dr2 + r2 (dϑ2 + sin2 ϑdϕ2)

where N, β,∆,R depend on t, r . With the canonical momenta
p∆ = ∂L/∂∆̇ and pR = ∂L/∂Ṙ the Hamiltonian

H = ∆̇π∆ + ṘπR − L = NH0 + βHr +m2V

where

H0 =
∆3

4R2
p2∆ +

∆2

2R
p∆pR +∆RR ′2 + 2R(∆R ′)′ − 1

∆
,

Hr = ∆p′∆ + 2∆′p∆ + R ′pR

Phase space is spanned by 4 variables ∆,R , p∆, pR ≡ (qi , pk).



Generic case

m = 0 ⇒ varying H with respect to N, β yields 2 first class
constraints H0 = 0, Hr = 0 ⇒ there are 4− 2− 2 = 0
independent variables ⇒ no dynamics = Birkghoff theorem.

m 6= 0 and generic V ⇒

H0 +m2 ∂V
∂N

= 0, Hr +m2 ∂V
∂β

= 0.

⇒ N = N(qi , pk), β = β(qi , pk), no constraints ⇒ all 4
phase space variables are independent ⇒

2 DoF=scalar graviton+ghost

Inserting N(qi , pk), β(q
i , pk) to H, the result is unbounded

from below



dRGT theory

V =
NR2P0

∆
+

R2P1

∆

√

(∆N + 1)2 − β2 + R2P2 ,

with

Pn = bn + 2bn+1
r

R
+ bn+2

r2

R2
.

in which case

∂H
∂N

= H0 +m2R
2P0

∆
+m2R2P1

N∆+ 1
√

(N∆+ 1)2 − β2
= 0

∂H
∂β

= Hr −m2R
2P1

∆

β
√

(N∆+ 1)2 − β2
= 0.

The second of these conditions determines β,

β = (N∆+ 1)
∆Hr

Y

while the first condition gives



Constraints

C ≡ H0 + Y +m2R
2P0

∆
= 0

The Hamiltonian becomes H = E + NC where

E =
Y

∆
+m2R2P2 with Y ≡

√

(∆Hr )2 + (m2R2P1)2

Since {C(r1), C(r2)} = 0 ⇒ the secondary constraint

S = {C,H} = m4R2P2
1

2Y
(∆p∆ + RpR)− Y

(

∆Hr

Y

)

′

− ∆2p∆

2R

{

m4

2∆Y
∂R(R

4P2
1 ) +m2∂R(R

2P2)

}

− m2Hr

Y

{

∆
(

R2P2

)′

+ R2∂r (P0 −∆2P2)
}

= 0

No ghost. E =
∫

∞

0 Edr assuming that C = S = 0.



Weak fields

If N = ∆ = 1, R = r and β = p∆ = pR = 0 ⇒ C = S = E = 0.

If N = 1 + ν, ∆ = 1 + δ, R = r + ρ then

C = CFP + . . . , S = SFP + . . . , H = EFP + ν CFP + . . .

CFP = (2r(δ + ρ′))′ +m2(r2δ − 2rρ),

SFP =
m2

2
(rpR − p∆)− (p′∆ + pR)

′.

where EFP is the quadratic part of E + C,

EFP =
p2∆
4r2

+
p∆pR

2r
+

(p′∆ + pR)
2

m2r2

+ 2ρ δ′ − ρ′2 − δ2 +m2(2rδρ − ρ2).



Resolving the constraints

δ = −ρ′ + Q ′

r2
, ρ =

Q

r2
+

2Q ′

m2r3
,

pR = −p′∆ +
F ′

r
, p∆ =

F

r
− 2F ′

m2r2
,

where Q,F are arbitrary,

EFP = 3

(

Q ′2 +m2Q2 +
F 2

4

)

1

r4
+ derivative

therefore
∫

∞

0
EFPdr ≥ 0



Strong fields – kinetic energy sector

Let ∆ = 1, R = r , π∆ = π∆(r), πR = πR(r)

Setting x = mr , p∆ =

√
xz

m
, pR = −(xz + 4x4f )

(2x
√
xz)

both constraints are fulfilled if z , f fulfill two equations

z ′ = 4x2f + 2x
√
xz
√

f (f + 2) ,

f ′ =
{4 zf − 4x3f − 3z}

√

f (f + 2)

4x
√
xz

− 2

x
f (f + 2) ,

while the energy density E = x2f . One should have f (f + 2) ≥ 0
⇒ two solution branches: either f ≥ 0, positive energy, or f ≤ −2,
negative energy.

f = 0, z = z0, E = 0.
f = −2, z = 8

3 (x
3
max − x3), E =

∫ xmax

0 E dr = − 2
3m x3max.



Negative energy solutions
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Singular solutions on compact intervals, E is everywhere negative,
E =

∫

Edr = −∞. Energy is unbounded from below. However,
this does not imply that flat space is unstable, because solutions
do not describe regular initial data.



Strong fields – potential energy sector

Let p∆ = pR = 0, ∆ =
g

h
, R = rh, ⇒ S = 0,

C = −h′′ − 2

x
h′ +

h′2

2h
− (xh)′g ′

xg
+

h(1− g2)

2x2g2

+
h(2− 3h)

2g
+

h(1− 6h + 6h2)

2g2
= 0,

with h0 ← h→ 1, 1← g → 1 for 0← x →∞; the energy

E =
x2h2(3h − g − 2)

g
.

Special solutions, also fulfill the Hamilton equations

h = 1, g = 1, ds2g = ds2f , E = 0 flat space

h = 1
2 , g = 1, ds2g = 1

4 ds
2
f , E = −3x2/8 tachyon universe



Deformations of flat space – normal branch

g = 1 +
A x2

1 + (x − x0)4
,
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Figure : Profiles of h,E for several positive energy solutions.

Energy is positive.



General solution of the constraint

Setting g = qh/(xh)′, the constraint is solved with

Q = xh(1− q2) + x3h(2h − 1)(h − 1),

Q ′ = r2h(3h − 2)(q − 1)

for any Q(x). Let Q = AΘ(x − x0)(x − x0)
pe−x
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Energy is positive for smooth, asymptotically flat fields.



Tachyon branch

Solutions of the constraint with

h0 ← h→ 1

2

The energy is negative and infinite. However, this does not affect
stability of flat space, because the asymptotic condition at infinity
is different:

h0 ← h→ 1 flat space branch
h0 ← h→ 1

2 tachyon branch

Negative energies comprise a disjoint branch and so they are
harmless.



Tachyon branch vs. normal branch

There are solutions which start from the tachyon branch at the
origin and approach the flat space at infinity.
The energy is finite and negative – tachyon bubbles.
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Does this affect the stability of flat space ?



Tachyon bubbles
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The lapse N is singular. Can be proven for c3 = c4 = 0. For other
values of the parameters – numerical evidence. One does not find
negative energy solutions which would describe initial data for a
decay of flat space ⇒ negative energy decouple and are harmless.



Summary

Two constraints of the dRGT massive gravity remove one of
the 2 DoF in s-sector ⇒ only 1 DoF propagates.

It is natural to think that the removed mode is the ghost.
Then the energy should be positive, but in fact it is
unbounded from below.

However, for smooth deformations of flat space the energy is
positive – the physical sector. It seems that negative energy
states belong to disjoint sectors, so they are harmless.

⇒ The evidence that the theory is healthy in its physical sector,
where the energy is positive and the ghost is suppressed.


