Finite time singularities against observations

Tomasz Denkiewicz
Section of Cosmology and Gravitation Theory
Institute of Physics
Faculty of Mathematics and Physics
Szczecin University
Copernicus Center for Interdisciplinary Studies, Kraków, Poland

27.IV. 15 - 01.V. 15 Cargèse

Overview

Singularities

Singularities vs observations

Varying α with singularities Conclusions

Singularities

Singularities vs observations
Varying α with singularities
Conclusions

```
Singularities
* Finite time
singularities
* Finite time
singularities within
physical models
* Scale factor
parametrization
Singularities vs
observations
Varying \alpha with
singularities
```


Singularities

Finite time singularities

Singularities

* Finite time

 singularities* Finite time singularities within physical models * Scale factor parametrization

Singularities vs observations

Varying α with singularities

Conclusions

- Type I ("Big Rip"): For $t \rightarrow t_{s}, a \rightarrow \infty, \rho \rightarrow \infty$ and $|p| \rightarrow \infty \quad$ R.R. Caldwell, M. Kamionkowski, and N.N. Weinberg,
- Type II ("sudden"): For $t \rightarrow t_{s}, a \rightarrow a_{s}, \rho \rightarrow \rho_{s}$ and $|p| \rightarrow \infty \quad$ J.D. Barrow and Ch. Tsagas, Class. Quantum Grav. 22, 1563 (2005):
- Type III ("FSF") : For $t \rightarrow t_{s}, a \rightarrow a_{s}, \rho \rightarrow \infty$ and $|p| \rightarrow \infty$
- Type IV : For $t \rightarrow t_{s}, a \rightarrow a_{s}, \rho \rightarrow 0,|p| \rightarrow 0$ and higher derivatives of H diverge.
- w-singularities: For $t \rightarrow t_{s},|p| \rightarrow 0, \rho \rightarrow 0, q \rightarrow \infty$ \& $w \rightarrow \infty \quad$ M.P. D.gborowski \& TD, Physicil Review D 79, 063521 (2009);
- little-rip, pseudo-rip, quasi-rip

Here t_{s}, a_{s} and ρ_{s} are constants with $a_{s} \neq 0$.

[^0]
Finite time singularities within physical models

Scale factor parametrization

Singularities

* Finite time singularities
* Finite time singularities within physical models
- $a(t)=a_{s}\left[1+(1-\delta) y^{m}-\delta(1-y)^{n}\right], \quad y \equiv \frac{t}{t_{s}}$
with the appropriate choice of the constants $\delta, t_{s}, a_{s}, m, n$.
- $2>n>1$ - SFS pressure singularity $p \rightarrow-\infty$ occurs when the acceleration $\ddot{a} \rightarrow+\infty$, no matter that the value of the energy density ϱ and the scale factor $a(t)$ are regular.
- $1>n>0$ - Type III singularity, $\rho \rightarrow \infty$ and $|p| \rightarrow \infty$

Singularities

Singularities vs
observations

* Supernovae la
* Supernovae la -
Type II/III
* How hard is to fit
the data
* Shift parameter
* Baryon acoustic
oscillations
* Results
* Matter density
fluctuations
*
* DM \& DE
Varying α with
singularities
* Results
* Matter density
fluctuations
*
* DM \& DE
Varying α with singularities

Singularities vs observations

Supernovae la

Singularities
Singularities vs observations * Supernovae la * Supernovae la Type II/III

* How hard is to fit the data
* Shift parameter
* Baryon acoustic oscillations
* Results
* Matter density fluctuations
*
* DM \& DE

Varying α with singularities

The luminosity distance to supernova is given by

$$
\begin{equation*}
d_{L}(z)=(1+z) c t_{s} \int_{y_{1}}^{y_{0}} \frac{d y}{a(y)} \tag{1}
\end{equation*}
$$

and the distance modulus is

$$
\begin{equation*}
\mu(z)=5 \log _{10} d_{L}(z)+25 . \tag{2}
\end{equation*}
$$

The χ^{2} for the SNIa data is

$$
\begin{equation*}
\chi_{S N}^{2}=\sum_{i=1}^{N} \frac{\left(\mu_{o b s}\left(z_{i}\right)-\mu\left(z_{i}\right)\right)^{2}}{\sigma_{i}^{2}+\sigma_{\text {int }}^{2}}, \tag{3}
\end{equation*}
$$

where σ_{i} is the quoted observational error on the $i^{\text {th }}$ Union2 SNla and $\sigma_{\text {int }}$ is the SNla intrinsic scatter.

Supernovae Ia - Type II/III

Singularities
Singularities vs observations

* Supernovae la

* Supernovae la -

Type II/III

* How hard is to fit the data
* Shift parameter
* Baryon acoustic oscillations
* Results
* Matter density fluctuations
*
* DM \& DE

Varying α with singularities

Conclusions

Figure 1: The distance modulus $\mu_{L}=m-M$ for the concordance cosmology (CC) model with $H_{0}=72 \mathrm{kms}^{-1} \mathrm{Mpc}^{-1}, \Omega_{m 0}=0.26, \Omega_{\Lambda 0}=0.74$ (dashed curve) and sudden future singularity (SFS) model for $m=2 / 3, n=1.9999, \delta=-0.471, y_{0}=0.99936$ (solid curve). Also shown are the 'Gold' (open circles) and SNLS (filled circles) SN la data. Taking the age of the SFS model to be equal to that of the CC model, i.e. $t_{0}=13.6 \mathrm{Gyr}$, one finds that an SFS is possible in only 8.7 My .
M.P. Da̧browski, TD, M.A. Hendry, How far is it to a sudden future singularity of pressure?, Physical Review D75, 123524 (2007)

Supernovae Ia - Type II/III

Singularities

Singularities vs observations

Supernovae la
Supernovae la -
Type II/III
How hard is to fit
the data
Shift parameter
Baryon acoustic
oscillations
Results
Matter density
fluctuations
Dary \& DE
Vang α with

Conclusions

Figure 1: M.P. Dabrowski and T. Denkiewicz, AIP Conference Proceedings 1241, 561 (2010); arXiv: 0910.0023

How hard is to fit the data

Singularities
Singularities vs observations

* Supernovae la
* Supernovae la -

Type II/III
\star How hard is to fit

the data

* Shift parameter
* Baryon acoustic oscillations
* Results
* Matter density fluctuations
*
* DM \& DE

Varying α with singularities

Conclusions

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

John von Neumann(28 December 1903-8 February 1957) was a
Hungarian-American-German-Jewish mathematician and computer scientist, generally regarded as one of the foremost mathematicians of the 20th century.

How hard is to fit the data

Singularities
Singularities vs observations

* Supernovae la
* Supernovae la -

Type II/III
\star How hard is to fit

the data

* Shift parameter
* Baryon acoustic oscillations
* Results
* Matter density fluctuations *
*DM \& DE
Varying α with singularities

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

John von Neumann(28 December 1903-8 February 1957) was a Hungarian-American-German-Jewish mathematician and computer scientist, generally regarded as one of the foremost mathematicians of the 20th century.

Shift parameter

Singularities

Singularities vs observations

* Supernovae la * Supernovae la Type II/III
* How hard is to fit the data
* Shift parameter
* Baryon acoustic oscillations
* Results
* Matter density fluctuations
*
* DM \& DE

Varying α with singularities

The shift parameter is
TD, M. P. Dabrowski, H. Ghodsi, M. A. Hendry, Phys.Rev. D85 (2012) 083527;

$$
\begin{equation*}
\mathcal{R}=\sqrt{\Omega_{m 0}} a^{\prime}\left(y_{0}\right) \int_{y_{1}}^{y_{0}} \frac{d y}{a(y)}, \tag{4}
\end{equation*}
$$

where ' denotes derivative with respect to y. The WMAP data gives $\mathcal{R}=1.725 \pm 0.018$,

$$
\text { N. Jarosik et al., The Astroph. J. Supplement Series, 192, } 2 \text { (2011) }
$$

thus χ^{2} for the shift parameter is the following

$$
\begin{equation*}
\chi_{R}^{2}=\frac{(\mathcal{R}-1.725)^{2}}{0.018^{2}} \tag{5}
\end{equation*}
$$

Baryon acoustic oscillations

Singularities
Singularities vs observations

* Supernovae la
* Supernovae la -

Type II/III

* How hard is to fit the data
* Shift parameter
oscillations
* Results
* Matter density
fluctuations
*
* DM \& DE

Varying α with singularities
Conclusions

$$
\begin{gather*}
\mathcal{A}=\Omega_{0 m}^{1 / 2} E\left(z_{B A O}\right)^{-1 / 3}\left[\frac{1}{z_{B A O}} \int_{0}^{z_{1}} \frac{d z^{\prime}}{E\left(z^{\prime}\right)}\right]^{2 / 3} \\
\mathcal{A}=\Omega_{0 m}^{1 / 2} a^{\prime}\left(y_{0}\right)\left[\frac{a\left(y_{b a o}\right)}{a^{\prime}\left(y_{b a o}\right) a\left(y_{0}\right)}\right]^{\frac{1}{3}}\left[\frac{1}{z_{b a o}} \int_{y_{b a o}}^{y_{0}} \frac{d y}{a(y)}\right] \\
\chi_{A}^{2}=\frac{(\mathcal{A}-0.469)^{2}}{0.017^{2}} \\
\text { TD, M. p. Dabrouski, H. Ghodsi, M. A. Hendry, Phys. Rev. D85 (20012) 083527; } \\
\text { Overall } \chi^{2} \\
\chi^{2}=\chi_{S N}^{2}+\chi_{R}^{2}+\chi_{A}^{2} \tag{9}
\end{gather*}
$$

Results

Singularities

Singularities vs observations

* Supernovae la
* Supernovae la -

Type II/III

* How hard is to fit the data
* Shift parameter
* Baryon acoustic
oscillations
* Results
* Matter density fluctuations
*
* DM \& DE

Varying α with singularities

Conclusions

Marginalized contours for pairs of parameters are plotted.
There are three confidence regions 68%, 95%, 99% (from light grey to dark grey respectively) calculated from \mathcal{A}, \mathcal{R}, and SN Ia jointly.

H. Ghodsi, M.
A. Hendry, M.
P. Dabrowski,

TD, MNRAS, 414:
15171525
(2011);

TD, M. P.
Dabrowski, H. Ghodsi, M. A. Hendry, Phys.Rev. D85 (2012) 083527;

Results

Singularities
Singularities vs observations

* Supernovae la
* Supernovae la -

Type II/III

* How hard is to fit the data
* Shift parameter
* Baryon acoustic
oscillations

\& Results

* Matter density fluctuations
*
* DM \& DE

Varying α with singularities

Conclusions

Matter density fluctuations

Singularities

Singularities vs

 observations* Supernovae la * Supernovae la Type II/III
* How hard is to fit the data
* Shift parameter
* Baryon acoustic oscillations
* Results
*
* DM \& DE

Varying α with singularities

- Evolution of density perturbations in cosmological models which admit finite scale factor singularities.
- After solving the matter perturbations equations we find that there exists a set of the parameters which admit a finite scale factor singularity in future and instantaneously recover matter density evolution history which are indistinguishable from the standard Λ CDM scenario.

Matter density fluctuations

Singularities
Singularities vs observations

* Supernovae la * Supernovae la Type II/III
* How hard is to fit the data
* Shift parameter
* Baryon acoustic oscillations
* Results
* Matter density
fluctuations
*
* DM \& DE

Varying α with singularities

Conclusions

In the linear regime the equations that govern the evolution of perturbations in a Friedmann universe consisting of more than one component constitute a complicated set of coupled differential equations ${ }^{1}$. We consider the evolution of perturbations in a flat Friedmann universe made up of a dust matter with the density ρ_{m} and a dark energy with density $\rho_{d e}$, and pressure $p_{d e}$. It was shown in ${ }^{2}$ that, in similar case, neglecting perturbations in dark energy one makes some particular, unintended choice of gauge and in general that may lead to errorneous results for perturbations in the matter. Taking that into account we restrict our investigations to the cases where the proper wavelength of perturbations is much smaller than the Hubble radius and the sound velocity for the dark energy has a positive value of order of unity, while the barotropic index for the dark energy is a reasonable slowly varying function of the cosmic time.

[^1]
Matter density fluctuations

Singularities
Singularities vs observations

* Supernovae la * Supernovae la Type II/III
* How hard is to fit the data
* Shift parameter
* Baryon acoustic oscillations
* Results
* Matter density
fluctuations
*
* DM \& DE

Varying α with singularities

With these assumptions the dark matter perturbations effectively decouple from perturbations in the dark energy and the evolution of the matter density contrast δ_{m} can be described to a good approximation with the following equations:

$$
\begin{align*}
\ddot{\delta}_{m}+2 H \dot{\delta}_{m} & =4 \pi G \rho_{m} \delta_{m}, \tag{10}\\
\left(\frac{\dot{a}}{a}\right)^{2} & =\frac{8 \pi G}{3}\left(\varrho_{m}+\varrho_{d e}\right) \tag{11}\\
2 \frac{\ddot{a}}{a}+\left(\frac{\dot{a}}{a}\right)^{2} & =-8 \pi G p_{d e}, \tag{12}
\end{align*}
$$

where a dot denotes a derivative with respect to time $H=\dot{a} / a$ is the Hubble parameter.

Singularities
Singularities vs observations

* Supernovae la * Supernovae la Type II/III
* How hard is to fit the data
* Shift parameter
- Baryon acoustic oscillations
* Results
* Matter density
fluctuations
*
* DM \& DE

$$
\begin{gather*}
\ddot{\delta}+2 \frac{\dot{a}}{a} \dot{\delta}=4 \pi \rho_{m} \delta \tag{13}\\
\Omega_{m}(y)=H_{y 0}^{2} \omega_{m} \frac{a a_{y 0}^{3}}{\dot{a}^{2}} \tag{14}\\
\dot{f} \frac{a}{\dot{a}}+f^{2}+f\left(\frac{\ddot{a} a}{\dot{a}^{2}}+1\right)-\frac{3}{2} \Omega_{m}(y)=0 \tag{15}\\
f \equiv \frac{d \ln \delta}{d \ln a} \tag{16}
\end{gather*}
$$

Varying α with singularities

Singularities
Singularities vs observations

* Supernovae la
* Supernovae la -

Type II/III

* How hard is to fit the data
* Shift parameter
* Baryon acoustic oscillations

* Results

* Matter density

fluctuations

*
* DM \& DE

Varying α with singularities

z	$f_{\text {obs }}$
0.15	0.51 ± 0.11
0.35	0.7 ± 0.18
0.55	0.75 ± 0.18
1.4	0.9 ± 0.24
3.0	1.46 ± 0.29

Table 1: Observational data for the growth factor f from Lyman- α forests and galaxy redshift distortions taken from Refs:

L. Guzzo et al., Nature 451, 541 (2008); M. Colless et al., Mont. Not. R. Astron. Soc. 328, 1039 (2001); M. Tegmark el al., Phys. Rev. D 74, 123507 (2006); N.P. Ross et al., Mont. Not. R. Astron. Soc. 381, 573 (2007); J. da Angela ^ et al., Mont. Not. R. Astron. Soc. 383, 565 (2008) ; P. McDonald et al., Astrophys. J. 635, 761 (2005);

We solve the equation for density evolution numerically for a given set of the parameters using the standard Runge-Kutta method with an adaptative step size. Applying a standard Levenberg-Marquardt method, we search for the minimum of the χ^{2} function which is of the form

$$
\begin{equation*}
\chi^{2}(z ; \mathbf{p})=\sum_{i=1}^{5} \frac{\left(f_{o b s}\left(z_{i} ; \mathbf{p}\right)-f_{t h}\left(z_{i} ; \mathbf{p}\right)\right)^{2}}{\sigma_{i}^{2}} \tag{13}
\end{equation*}
$$

where: $f_{o b s}$ and σ_{i} are taken from the table $1 ; f_{t h}$ is calculated by solving the equation for $f ; \mathbf{p} \equiv\left(m, n, \delta, y_{0}, f_{0}\right)$. We find the following fit for one of the possible set of parameters:

$$
\begin{equation*}
y_{0}=0.55, \delta=0.67, m=0.49, n=0.32, f_{0}=0.53, \tag{14}
\end{equation*}
$$

with $\chi^{2}=0.99$.

Upper left panel presents the predicted growth rate plotted against redshift for an FSF model (dashed line) and a Λ CDM model (solid line). There are also shown the observed data points (dots) for the growth rate. The upper right panel shows the distance-redshift relation for both FSF and Λ CDM models. The left and right bottom panels present the corresponding relative errors.
A. Balcerzak, TD, Phys. Rev. D86 (2012) 023522, arXiv:1202.3280

$$
\left\{\begin{array}{l}
\Delta \Psi-3 \mathcal{H}\left(\mathcal{H} \Phi+\Psi^{\prime}\right)+3 \mathcal{K} \Psi=a^{2} \delta \rho \\
\mathcal{H} \Phi+\Psi^{\prime}=a(\rho+p) V \\
{\left[\Psi^{\prime \prime}+\mathcal{H} \Phi^{\prime}+\left(2 \mathcal{H}^{\prime}+\mathcal{H}^{2}\right) \Phi+2 \mathcal{H} \Psi^{\prime}-\mathcal{K} \Psi+\frac{1}{2} \Delta(\Phi-\Psi)\right] \delta_{j}^{i}-} \tag{13}\\
-\frac{1}{2} \gamma^{i k}(\Phi-\Psi)_{\mid k j}=a^{2} \delta p \delta_{j}^{i}-\sigma_{\mid j}^{\mid i}
\end{array}\right.
$$

Mukhanov V F, Feldman H A and Brandenberger R H, Theory of cosmological perturbation, 1992 Phys. Rep. 215205

$$
\left\{\begin{array}{l}
-k^{2} \Phi-3 a \mathcal{H}^{2} \dot{\Phi}-3 \mathcal{H}^{2} \Phi=a^{2} \sum_{i=1}^{N} \rho_{i} \delta_{i} \\
\mathcal{H} \Phi+a \mathcal{H} \dot{\Phi}=a \sum_{i=1}^{N}\left(\rho_{i}+p_{i}\right) V_{i} \\
(a \mathcal{H})^{2} \ddot{\Phi}+\left(4 a \mathcal{H}^{2}+a^{2} \mathcal{H} \dot{\mathcal{H}}\right) \dot{\Phi}+\left(2 a \mathcal{H} \dot{\mathcal{H}}+\mathcal{H}^{2}\right) \Phi=a^{2} \sum_{i=1}^{N} c_{\mathrm{s} i}^{2} \rho_{i} \delta_{i} \\
\ddot{\delta}_{\mathrm{m}}+\left(\frac{\dot{a}}{a}-\frac{\ddot{a}}{a}\right) \dot{\delta}_{\mathrm{m}}+\frac{k^{2}}{a^{2}} c_{s \mathrm{~m}}^{2} \delta_{\mathrm{m}}=\rho_{\mathrm{m}} \delta_{\mathrm{m}}+\rho_{\mathrm{de}} \delta_{\mathrm{de}} \tag{15}\\
\ddot{\delta}_{\mathrm{de}}+\left(\frac{\dot{a}}{a}-\frac{\ddot{a}}{a}\right) \dot{\delta}_{\mathrm{de}}+\frac{k^{2}}{a^{2}} c_{s \mathrm{de}}^{2} \delta_{\mathrm{de}}=\rho_{\mathrm{m}} \delta_{\mathrm{m}}+\rho_{\mathrm{de}} \delta_{\mathrm{de}}
\end{array}\right.
$$

V. Gorini, A.Y. Kamenshchik, U. Moschella, O.F. Piattella and A.A. Starobinsky, Gauge-invariant analysis of perturbations in Chaplygin gas unified models of dark matter and dark energy, JCAP 02 (2008) 016
T. Denkiewicz, Dark energy and dark matter perturbations in singular universes, JCAP 03 (2015) 037

Singularities

Singularities vs observations

* Supernovae la
* Supernovae la -

Type II/III

* How hard is to fit the data
* Shift parameter
* Baryon acoustic
oscillations
* Results
* Matter density
fluctuations
* DM \& DE

Varying α with singularities

Conclusions

$$
\begin{gather*}
\varrho(t)=\frac{3}{2}\left(\frac{\dot{a}}{a}\right)^{2} \tag{16}\\
p(t)=-\frac{1}{2}\left(2 \frac{\ddot{a}}{a}+\frac{\dot{a}^{2}}{a^{2}}\right) \tag{17}\\
\rho_{m}=\Omega_{m 0} \rho_{0}\left(\frac{a_{0}}{a}\right)^{3} \tag{18}\\
\rho_{d e}=\rho-\rho_{m} \tag{19}\\
\Omega_{m}=\frac{\rho_{m}}{\rho}, \quad \Omega_{d e}=\frac{\rho_{d e}}{\rho} \tag{20}\\
\Omega_{d e}=1-\Omega_{m 0} \frac{H_{0}^{2}}{H^{2}(t)}\left(\frac{a_{0}}{a(t)}\right)^{3}=1-\Omega_{m} \tag{21}\\
w_{d e}=p_{d e} / \rho_{d e} \tag{22}
\end{gather*}
$$

$D M \& D E$

* Matter density
fluctuations

Singularities

Singularities vs observations

* Supernovae la
* Supernovae la -

Type II/III

* How hard is to fit the data
* Shift parameter
- Baryon acoustic
oscillations
* Results
* Matter density
fluctuations
*

\& DM \& DE

Varying α with singularities

Conclusions

$D M \& D E$

fluctuations
*

* DM \& DE

Varying α with singularities

Conclusions

Singularities
Singularities vs
observations
Varying α with
singularities* Newmeasurements fromQAS* Quintessence

* SFS
* FSFS* Rosenband bound* Rosenband bound
FSFS
* Rosenband bound
SFS

Conclusions

* Rosenband bound SFS

Varying α with singularities

New measurements from QAS

Singularities
Singularities vs observations
Varying α with singularities

* New
measurements from QAS
* Quintessence
* SFS
* FSFS
* Rosenband bound
* Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

- significant variations in α form high redsift quasar absorption line systems

$$
\Delta \alpha / \alpha=(-0.573 \pm 0.113) \times 10^{-5}
$$

$\stackrel{+}{*}$J.K. Webb, V.V.Flambaum, C.W. Churchill, et al., Phys. Rev. Lett 82, 884 (1999) J.K. Webb, M.T. Murphy, V.V. Flambaum, et al., Phys. Rev. Lett 87, 091301 (2001) Available specific measurements of α, with one-sigma uncertainties.

Object	Redshift	$\Delta \alpha / \alpha$	Spectrograph
HE0515-4414	1.15	$(-0.1 \pm 1.8) \times 10^{-6}$	UVES
HE0515-4414	1.15	$(0.5 \pm 2.4) \times 10^{-6}$	HARPS+UVES
HE0001-2340	1.58	$(-1.5 \pm 2.6) \times 10^{-6}$	UVES
HE2217-2818	1.69	$(1.3 \pm 2.6) \times 10^{-6}$	UVES
Q1101-264	1.84	$(5.7 \pm 2.7) \times 10^{-6}$	UVES

Quintessence

Singularities

Singularities vs observations
Varying α with singularities

* New

measurements from QAS

Quintessence

* SFS
* FSFS
* Rosenband bound
- Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

$$
\begin{equation*}
S=-\frac{1}{2 \kappa} \int d^{4} x \sqrt{-g} R+\int d^{4} x \sqrt{-g}\left(\mathcal{L}_{\phi}+\mathcal{L}_{M}+\mathcal{L}_{\phi F}\right) \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}_{\phi}=\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi-V(\phi) \tag{24}
\end{equation*}
$$

Coupling between the scalar field and electromagnetism

$$
\begin{equation*}
\mathcal{L}_{\phi F}=-\frac{1}{4} B_{F}(\phi) F_{\mu \nu} F^{\mu \nu} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{F}(\phi)=1-\zeta \kappa\left(\phi-\phi_{0}\right), \tag{26}
\end{equation*}
$$

$\kappa^{2}=8 \pi G, \zeta$ - constant. The evolution of α is given by

$$
\begin{equation*}
\frac{\Delta \alpha}{\alpha} \equiv \frac{\alpha-\alpha_{0}}{\alpha_{0}}=\zeta \kappa\left(\phi-\phi_{0}\right) \tag{27}
\end{equation*}
$$

Quintessence

Singularities

Singularities vs observations
Varying α with singularities * New
measurements from QAS

* Quintessence
* SFS
* FSFS
* Rosenband bound
* Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

Evolution of the scalar field in terms of the DE $-\Omega_{\phi}$ and w :

$$
\begin{equation*}
w+1=\frac{\left(\kappa \phi^{\prime}\right)^{2}}{3 \Omega_{\phi}}, \tag{23}
\end{equation*}
$$

wherethe prime denotes the derivative with respect to $N=\ln a$. The evolution of α :

$$
\begin{equation*}
\alpha / \alpha_{0}(a)=1-\zeta \int_{a}^{a_{0}} \sqrt{3 \Omega_{\phi}(a)(1+w(a))} d \ln a \tag{24}
\end{equation*}
$$

Quintessence

Singularities
Singularities vs observations

Varying α with singularities

* New
measurements from QAS

\& Quintessence

*SFS
*FSFS

* Rosenband bound
- Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

$$
\begin{gather*}
\Omega=\frac{\rho}{\rho_{c r}}, \quad \rho_{c r}=\frac{3 H^{2}}{8 \pi G} \tag{23}\\
\Omega_{m}=\Omega_{m 0}\left(\frac{a_{0}}{a}\right)^{3} \tag{24}\\
\Omega_{\phi}=\frac{\rho-\rho_{m}}{\rho_{c r}}, \tag{25}\\
\Omega_{\phi}=1-\Omega_{m 0} \frac{H_{0}^{2}}{H}\left(\frac{a_{0}}{a}\right)^{3}=1-\Omega_{m} \tag{26}\\
\alpha / \alpha_{0}(t)=1-\zeta \int_{t}^{t_{0}} \sqrt{3 \Omega_{\phi}(t)(1+w(t))} \frac{\dot{a}(t)}{a(t)} \mathrm{dt} \tag{27}
\end{gather*}
$$

SFS

Singularities

Singularities vs observations

Varying α with singularities

* New
measurements from QAS
* Quintessence

* SFS

*FSFS

* Rosenband bound - Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

Model	\mathbf{m}	\mathbf{n}	δ	y_{0}
SFS1	$2 / 3$	1.9999	-0.43	0.99
SFS2	$2 / 3$	1.9999	0	0.99
SFS3	0.749	1.99	-0.45	0.77

M.P. Dabrowski, TD, CJAP Martins, P. E. Vielzeuf, arXiv:1406.1007, Phys. Rev. D 89, 123512 TD, M.P. Dabrowski, CJAP Martins, P. E. Vielzeuf, arXiv:1402.0520, Phys. Rev. D 89, 083514

Singularities

Singularities vs observations
Varying α with singularities * New
measurements from QAS

* Quintessence
*SFS
* FSFS
* Rosenband bound * Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

SFS

Singularities

Singularities vs observations
Varying α with singularities

* New
measurements from
QAS
* Quintessence
*SFS
*FSFS
* Rosenband bound
* Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

FSFS

Singularities
Singularities vs observations
Varying α with singularities

* New
measurements from
QAS
* Quintessence
* SFS
\& FSFS
* Rosenband bound * Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

Singularities
Singularities vs observations
Varying α with singularities

* New
measurements from
QAS
* Quintessence
* SFS
\&FSFS
* Rosenband bound * Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

Rosenband bound

Singularities
Singularities vs observations
Varying α with singularities * New
measurements from QAS

* Quintessence
* SFS
*FSFS
\otimes Rosenband bound
* Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

In particular at redshift $z=0$, for which atomic clock measurements provide a very tight limit ${ }^{1}$ on the current drift rate of α

$$
\begin{equation*}
\left(\frac{\dot{\alpha}}{\alpha}\right)_{0}=(-1.6 \pm 2.3) \times 10^{-17} \mathrm{yr}^{-1} \tag{28}
\end{equation*}
$$

With the assumptions are making for this class of models we therefore have

$$
\begin{equation*}
\left|\frac{\dot{\alpha}}{\alpha}\right|_{0}=|\xi| H_{0} \sqrt{3 \Omega_{\Phi 0}\left|1+w_{\Phi 0}\right|}, \tag{29}
\end{equation*}
$$

where the modulus signs allow for the fact that the models can be at either side of the phantom divide; this leads to the following conservative (three-sigma) bound

$$
\begin{equation*}
|\xi| \sqrt{3 \Omega_{\Phi 0}\left|1+w_{\Phi 0}\right|}<10^{-6} \tag{30}
\end{equation*}
$$

${ }^{1} \mathrm{~T}$. Rosenband et al., Science 319, 1808 (2008).

Rosenband bound

Singularities
Singularities vs observations
Varying α with singularities * New
measurements from QAS

* Quintessence
* SFS
* FSFS
\& Rosenband bound * Rosenband bound FSFS
* Rosenband bound SFS

Conclusions

Model	$\Omega_{\Phi 0}$	$w_{\Phi 0}$	$\|\xi\|_{\max } \times 10^{7}$	$\left.z\right\|_{\alpha_{\max }}$	$\|\Delta \alpha / \alpha\|_{\max } \times 10^{6}$
SFS1	0.685	-1.064	2.757	1.4	1.47
SFS2	0.685	0.0	0.698	X	X
SFS3	0.685	-0.9171	2.423	2.6	0.80

Table 1: Bounds on the coupling ξ, coming from the atomic clock measurements, for the different models under consideration. Also listed is the maximum allowed variation of α, in the redshift range $0<z<\leq 5$, when this bound is saturated.

Singularities
Singularities vs
observations
Varying α with
singularities
New
measurements from
QAS
$\%$ Quintessence
$*$ SFS
$\%$ FSFS
$\%$ Rosenband bound
$\&$ Rosenband bound
FSFS
$\%$ Rosenband bound
SFS
Conclusions

Rosenband bound FSFS

Singularities

Singularities vs observations
Varying α with singularities * New
measurements from QAS

* Quintessence
* SFS
* FSFS
* Rosenband bound - Rosenband bound FSFS

\& Rosenband bound

 SFSConclusions

Singularities vs observations
Varying α with singularities

```
Conclusions
```


Conclusions

Outlook

- include some forecasts for ELT-HIRES (high-resolution ultra-stable spectrograph for the E-ELT)
- more stringent constraints onto models parameters from future observations, like: Polarized Radiation and Imaging Spectroscopy (PRISM); Cosmic Origins Explorer (CoRE); Dark Energy Survey (DES); Euclid;
\uparrow possible discrimination between Λ CDM and varying eos models; better constraints onto dark sector perturbations; this gives the motivation for further study of dark sector perturbations;

Outlook

Thank you!

Singularities
Singularities vs observations

Varying α with singularities

Conclusions

[^0]: Nojiri, Shin'ichi, Odintsov, Sergei D., and Tsujikawa, Shinji:
 Properties of singularities in the (phantom) dark energy universe,
 Physical Review D71 063004, (2005);

[^1]: ${ }^{1}$ Mukhanov V F, Feldman H A and Brandenberger R H, Theory of cosmological perturbation, 1992 Phys. Rep. 215 205;
 ${ }^{2}$ A. J. Christopherson Phys. Rev. D82, 083515 (2010);

