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Black Hole thermodynamics

• Black holes are the most extremal objects in this universe

• Relation between quantities of thermodynamics ( Entropy (S), Temperature (T) and Energy (E)

) with black hole quantities (Surface Area (A) and surface gravity (κ) of the event horizon, Mass

(M) of the black hole)

T =
}κ

2πkBc
, (Hawking, 1974)

Sbh =
kBc

3

4G}
A, (Bekenstein, 1973)

• The first law of thermodynamics can be written for black holes as

d(Mc2) =
κc2

8πG
dA + ΩdJ + φdQ

• This can be related with

dE = TdS − PdV



Cosmology and thermodynamics

• Jacobson, 1995 derived the Einstein Field equations from First law of thermodynamics. He used

proportionality of the entropy and the horizon area.

• Cai et al, 2005-08. applied Jacobson’s approach to the FLRW cosmology and other modified

gravity theories

• Verlinde, 2011 defined gravity as Entropic force and do not need any field to interact.

(Gravity is not fundamental force)

• Verlinde derived gravity as an entropic force, which originated in a system by the statistical

tendency to increase its entropy. He assumed the holographic principle (t’ Hooft, 1993), which

stated that the microscopic degrees of freedom can be represented holographically on the horizons,

and this piece of information (or degrees of freedom) can be measured in terms of entropy.



Entropic comsology

• curvature of the space-time proportional to the stress energy + surface terms (entropic terms)

• gravity is still the fundamental force here (Easson et. al., PLB. 696, 273 (2011))

Rµν −
1

2
gµνR =

8πG

c4
Tµν + Entropic Terms

• The acceleration equation will be

ä

a
= −4πG

3

[
ρ +

3p

c2

]
+ CHH

2 + CḢḢ.

• This entropic force terms (boundary terms) are supposed to be responsible for the current accel-

eration as well as for an early exponential expansion of the universe



Varying constants entropic comsology

• As it has been known for the last fifteen years, varying constants cosmology was proposed as

an alternative to inflationary cosmology, because it can to solve all the cosmological problems

(horizon, flatness, and monopole). (Moffat; 1993, Albrecht, Magueijo and Barrow; 1999 )

• However, there is no any direct observational evidence of varying constanst but there are many

indirect evidences. For instance, the fine structure constant α = e2/~c is changing, (Web et al,

1999) which involves the speed of light c

• we expand entropic cosmology for the theories with varying physical constants: the gravitational

constant G and the speed of light c. We discuss possible consequences of such variability onto the

entropic force terms and the boundary terms.



Model-I: from thermodynamics perspective

Assuming homogeneous Friedmann geometry and generalize field equations which contain the entropic

force terms f (t) and g(t) onto the case of varying speed of light c and varying Newton gravitational

constant G theories. It is easy to realize that the modified Einstein equations can be written down as

follows (
ȧ

a

)2

=
8πG(t)

3
ρ− kc2(t)

a2
+ f (t) ,

ä

a
= −4πG(t)

3

[
ρ +

3p

c2(t)

]
+ g(t).

In fact, the functions f (t) and g(t) play the role analogous to bulk viscosity (we follow Komatsu et. al.

PRD 87, 043531; PRD 88, 083534 ) and this is why from above equations, one obtains the modified

continuity equation

ρ̇ + 3H

[
ρ +

p

c2(t)

]
+ ρ

˙G(t)

G(t)
− 3

kc(t)ċ(t)

4πG(t)a2(t)
=

3H

4πG(t)

[
g(t)− f (t)− ḟ (t)

2H

]
,

which will further be used in various thermodynamical scenarios of the evolution of the universe. It

is clear that generalized continuity has dissipative terms in full analogy to bulk viscosity models.



Model-I: from thermodynamics perspective

• The First law of thermodynamics for the whole universe can be written as

dE + pdV = TdS,

• Volume of the universe contained in a sphere of radius r∗ = a(t)r

V (t) =
4

3
πa3r3 .

and

V̇ (t) = 3V (t)
ȧ

a
= 3V (t)H(t)

• The internal energy E and the energy density ρ of the universe are related by

E(t) = ε(t)V (t), ε(t) = ρ(t)c2(t),



Model-I: from thermodynamics perspective

• The Hawking temperature and Bekenstein entropy for the varying canstant can be written as

T =
γ}c(t)

2πkBrh(t)
,

S =
kB
4}

[
c3(t)A(t)

G (t)

]
.

Here A(t) = 4πr2
h(t) is the horizon area, } is the Planck constant, kB is the Boltzmann constant,

and γ is an arbitrary and non-negative parameter of the order of unity O(1) which is usually taken

to be 3
2π

, 3
4π

or 1
2

. In fact, γ can be related to a corresponding screen or boundary of the universe

to define the temperature and the entropy on that preferred screen.

• by using above equations, we can write

T Ṡ =
γc4(t)

2G(t)
rh

[
3
ċ(t)

c(t)
+ 2

ṙh
rh
− Ġ(t)

G(t)

]
.



Model-I: from thermodynamics perspective

• The continuity equation can be written for non adiabatic expanding universe as

ρ̇ + 3H

[
ρ +

p

c2(t)

]
= 2

ċ

c
ρ +

3γH2

8πG(t)

[(
5
ċ(t)

c(t)
− Ġ(t)

G(t)

)
− 2

Ḣ

H

]
where we have used the explicit definition of the Hubble horizon modified to varying speed of light

models

rh(t) ≡
c(t)

H(t)
.

• If we would have to apply the entropy and the temperature of the apparent horizon which reads

rA =
c(t)√

H2 + kc2(t)

a2(t)

.

Simple calculations give that

ṙA
rA

= −Hr
2
A

c2

(
Ḣ − kc2

a2

)
+
ċ

c

(
1− k

a2
r2
A

)
,

which for k = 0 case reduces to
ṙh
rh

=
ċ(t)

c(t)
− Ḣ

H
.



Model-I: from thermodynamics perspective

• In order to constrain possible sets of varying constant models we can apply the second law of ther-

modynamics according to which the entropy of the universe remains constant (adiabatic expansion)

or increase (non-adiabatic expansion)
dS

dt
≥ 0.

gives the condition

3
ċ(t)

c(t)
− Ġ(t)

G(t)
≥ −2

ṙh
rh

= −2

(
ċ(t)

c(t)
− Ḣ

H

)
.

or

5
ċ(t)

c(t)
− Ġ(t)

G(t)
≥ 2

Ḣ

H
= 2

(
ä

ȧ
− ȧ

a

)
which for ċ = Ġ = 0 just says that the Hubble horizon must increase ṙh ≥ 0. For Ġ(t) = 0,, we

have

c (t) ≥ b1H
2
5 ,

and for ċ(t) = 0, we have

G(t) ≤ b2H
−2,



Model-I: from thermodynamics perspective

• Using the generalized continuity equation one is able to fit the functions f (t) and g(t) from a

general varying constants entropic force continuity equation as follows

f (t) = γH2

g(t) = γH2 +
γ

2

(
5
ċ(t)

c(t)
− Ġ(t)

G(t)

)
H +

4πG(t)

3H

(
Ġ(t)

G(t)
− 2

ċ(t)

c(t)

)
ρ.

• Having given f (t) and g(t) one is able to write down the modified acceleration and Friedman

equations for varying constants (
ȧ

a

)2

=
8πG(t)

3
ρ + γH2,

ä

a
= γH2 − 4πG(t)

3

(
ρ +

3p

c2(t)

)
+

(
7γ − 2

2

)
ċ(t)

c(t)
H +

(
1− 2γ

2

)
Ġ(t)

G(t)
H,

which form a consistent set together with

ρ̇ + 3H

[
ρ +

p

c2(t)

]
= 2

ċ

c
ρ +

3γH2

8πG(t)

[(
5
ċ(t)

c(t)
− Ġ(t)

G(t)

)
− 2

Ḣ

H

]

While fitting the functions f (t) and g(t) we set k = 0



Model-I: from thermodynamics perspective

• If we were to investigate k = ±1 models then the the temperature T and the entropy S should

be defined on the apparent horizon

• An alternative choice of f (t) and g(t) which is consistent with modified entropic continuity equation

is

f (t) = 0 (1)

g(t) = γḢ +
γ

2

(
5
ċ(t)

c(t)
− Ġ(t)

G(t)

)
H +

4πG(t)

3H

(
Ġ(t)

G(t)
− 2

ċ(t)

c(t)

)
ρ.

• There is a full analogy of varying constants generalized equations with the standard entropic force

equation, when one applies the specific ansätze for varying c and G: c(t) = coa
n and G(t) = Goa

q

which gives ˙c(t)/c(t) = nH or ˙G(t)/G(t) = qH .



Model-I: from thermodynamics perspective

• Cosmological Solution I: G varying models only: G(t) = Goa
q; q,Go = const., ċ(t) = 0 The scale

factor for radiation, matter and vacuum (cosmological constant) dominated eras reads as

a(t) ∝


(t− t0)

2
(4−q)+2γ(q−2) ;w = 1

3
, (radiation)

(t− t0)
2

(3−q)+(2q−3)γ ;w = 0, (dust)

(t− t0)
2

(2γ−1)q ;w = −1. (vacuum)

• The solution shows that in varying G entropic cosmology even dust (w = 0) can drive acceleration

of the universe provided

(3− q) + (2q − 3) γ ≤ 2 .

On the other hand, the solution which includes Λ−term (w = −1) drives acceleration for

(2γ − 1) q ≤ 2. Finally, we conclude that in all these cases the entropic terms and the vary-

ing constants can play the role of dark energy.

• Defining the barotropic index equation of state parameter w by using the barotropic equation of

state, p = wρc2 for varying G = Goa
q, we can integrate the modified continuity equation to get

ρ = A1a
−(2w̄+q); A1 = ρ0G

γ
γ−1

0 A
2γ
γ−1 .

where

w̄ =
1

2
[3(w + 1) (1− γ)− (1− 2γ)q] .



Model-I: from thermodynamics perspective

• Cosmological Solution II: c varying models only: c(t) = coa
n; c0, n = const., Ġ(t) = 0 the solution

for the scale factor gives

a(t) = w̃
1
w̃ (t− t0)

1
w̃ ,

where

w̃ =
1

2
[3(1 + w) (1− γ)− n (7γ − 2)] .

and t0 is a constant. For radiation, dust and vacuum we have, respectively

a(t) ∝


(t− t0)

2
(4+2n)−(4+7n)γ ;w = 1

3
, (radiation)

(t− t0)
2

(3+2n)−(3−7n)γ ;w = 0, (dust)

(t− t0)
2

(2−7γ)n ;w = −1. (vacuum)

• For these three cases, one derives inflation provided

(4 + 2n)− (4 + 7n)γ ≤ 2, (radiation)

(3 + 2n)− (3− 7n)γ ≤ 2, (dust)

(2− 7γ)n ≤ 2 (vacuum)

and again the entropic force terms and varying c play the role of dark energy which can be

responsible for the current acceleration of the universe.



Model-II: From the entropic force

• We start with the formal definition of the entropic force. We assume the Hawking temperature

and Bakenstein entropy at the Hubble horizon, we have

F = −T dS
dr
.

We calculate the entropic force on the horizon r = rh(t) by taking

dS/drh = Ṡ/ṙh

to obtain

F = −γc
4(t)

2G(t)

5 ċ(t)
c(t)
− Ġ(t)

G(t)
− 2Ḣ

H

ċ(t)

c(t)
− Ḣ

H

 .
For ċ = Ġ = 0 this formula reduces to the value F = −γ(c4/G).

• Entropic pressure pE (entropic force per unit area) for varying constants given by

pE = −γc
2(t)H2

8πG(t)

5 ċ(t)
c(t)
− Ġ(t)

G(t)
− 2Ḣ

H

ċ(t)

c(t)
− Ḣ

H

 .



Model-II: From the entropic force

• Out of the set of general modified equations (in terms of f (t) andg(t)) only two of them are

independent and Acceleration equation and Continuity equation) contain the pressure. So, we will

define the effective pressure

peff = p + pE

and then write down the continuity equation as

ρ̇ + 3H

(
ρ +

peff
c2(t)

)
+
Ġ(t)

G(t)
ρ = 0,

or

ρ̇ + 3H

(
ρ +

p

c2(t)

)
+
Ġ(t)

G(t)
ρ =

3γH3

8πG(t)

5 ċ(t)
c(t)
− Ġ(t)

G(t)
− 2Ḣ

H

ċ(t)

c(t)
− Ḣ

H

 ,
and the acceleration equation as

ä

a
= −4πG(t)

3

(
ρ +

3peff
c2(t)

)
or

ä

a
= −4πG(t)

3

(
ρ +

3p

c2(t)

)
+
γH2

2

5 ċ(t)
c(t)
− Ġ(t)

G(t)
− 2Ḣ

H

ċ(t)

c(t)
− Ḣ

H





Model-II: From the entropic force

• We then obtain the simplest form of the Friedmann equation to use(
ȧ

a

)2

=
8πG(t)

3
ρ,

The cosmological solutions are obtained below. We consider two cases.

0.1 G varying models only: Ġ(t) 6= 0 and ċ(t) = 0; q 6= 0, n = 0.

The scale factor a(t), after solving the field equations , is given by

a(t) = W
1
W (t− t0)

1
W .

where

W = ±

√(qγ
2

+
B2

1

16

)
+
B1

4

 .
Here

B1 = −3(1 + w) + 2γ

B2 = 3(1 + w)− 5γ



Model-II: From the entropic force

0.2 c varying models only: Ġ(t) = 0 and ċ(t) 6= 0; q = 0, n 6= 0

The scale factor is given by

a(t) = X
1
X (t− t0)

1
X ,

where, K2 and t0 are real constants and X is given by

X = −

±√(nB2

2
+

(B1 + 2n)2

16

)
+
B1 + 2n

4

 .
• Again for both the cases, the entropic force terms and varying constants play the role of dark

energy.



Model-III: From the laws of thermodynamics

The heat flow dQ out through the horizon is given by the change of energy dE inside the apparent

horizon and relates to the flow of entropy TdS as follows (Danielsson, Hayward and Cai et

al. (1999-07) )

dQ = TdS = −dE. (2)

If the matter inside the horizon has the form of a perfect fluid and c is not varying, then the heat flow

through the horizon over the period of time dt is

dQ

dt
= T

dS

dt
= A(% +

p

c2
) = 4πr2

A(% +
p

c2
) (3)

However, in our case c is varying in time and we have to take this into account while calculating the

flow so that bearing in mind that the mass element is dM we have the energy through the horizon as

− dE = c2dM + 2Mcdc + pdV. (4)

The mass element flow is

dM = A(vdt)% = dV %, (5)

where vdt = s is the distance travelled by the fluid element, v is the velocity of the volume element,

and dV is the volume element. The velocity of a fluid element can be related to the Hubble law of

expansion

v = HrA (6)

so that (5) can be written down as

dM = AHrA%dt. (7)



Model-III: From the laws of thermodynamics

We assume that the speed of light is the function of the volume through the scale factor i.e. c = c(V )

and since a ∝ V 1/3, then c = c(a) (Youm, 2002). We have

dc

dV
=

1

3

1

V 2/3

dc

da
(8)

and besides by putting M = V % in (4) we get

− dE = c2dV

(
% +

p

c2
+

2

3
%
a

c

dc

da

)
. (9)

Using (7) and (9), one can write (2)

4πr2
AH

(
% +

p

c2
+

2

3
%
a

c

dc

da

)
=

c2

2G

(
3
ċ

c
+ 2

ṙA
rA
− Ġ

G

)
, (10)

or after using the apparent horizon we get a generalized acceleration equation

Ḣ = −4πG(ρ +
p

c2
) +

1

2

(
5
ċ

c
− Ġ

G

)
H − 8πG

3

ċ

c

ρ

H
+

1

2

kc2

a2H

(
ċ

c
− Ġ

G
+ 2H

)
, (11)

In order to get the Friedman equation, we have to use the continuity equation for varying c but for

adiabatic expansion (dS = 0) to obtain

H

(
ρ +

p

c2

)
= −ρ̇

3
− 2

3

ċ

c
ρ. (12)



Model-III: From the laws of thermodynamics

By using Eq. (11) in (12), we have

H2 =
8π

3

∫
G(t)ρ̇dt +

∫ (
5
ċ

c
− Ġ

G

)
H2dt +

1

2

∫
kc2

a2H

(
ċ

c
− Ġ

G
+ 2H

)

For k = 0 (rA → rh = c(t)/H) by taking the the ansatz of the form, c(t) = c0H
m, c0 = const., m =

const. (or c(t) = c0(H/H0)
m, H0 = const.; for varying c only, we have the following equations

H2 =
8πG

3
ρ +

5m

2
H2 + K,

ä

a
= −4πG

3
(ρ +

3p

c2
) +

5m

2
H2 + (

3m

2
+

5m2

2
)Ḣ + K + mK

Ḣ

H2
,

ρ̇ + 3H

(
ρ +

p

c2(t)

)
+ 2m

Ḣ

H
ρ = 0,

where K is the constant of integration which can be interpreted as the cosmological constant. By

considering K=0,

H = C1a
− 3(1+w)

2(1+m) ,

and

a(t) ∝ (t− t0)
2(1+m)
3(1+w) .

ρ = C2a
−3(1+w)

1+m ,

where C2 is a constant.



Maximum Tension Principle and Varying constants

• According to an early remark by Gibbons (2002) and Schiller (2005) due to the phe-

nomenon of gravitational collapse and black hole formation, there exists a maximum force or

maximum tension limit

Fmax =
c4

4G
in general relativity (c - the velocity of light, G - Newton gravitational constant). The fact is

known as “The Principle of Maximum Tension”.

• This is unlike in Newton’s gravity, where the two point masses may approach each other arbitrarily

close and so the force between them may reach infinity. The limit can nicely be derived by the

application of the cosmic string deficit angle φ = (8πG/c4)F not to exceed 2π (Gibbons; 2002)

• It is interesting that the maximum tension limit holds also in string theory, where the tension T

is given by the Regge slope parameter α′, i.e. Fmax ∝ T = 1/2πα′. The limit is slightly modified

in the presence of the positive cosmological constant (Barrow and Gibbons; 2014).



Maximum Tension Principle and Varying constants

• It is advisable to note that the factor c4/G appears in the Einstein field equations and is of the

order of 1044 Newtons. If the field equations are presented in the form

Tµν =
1

8π

c4

G
Gµν ,

where Tµν is the stress tensor and Gµν is the (geometrical) Einstein tensor, then we can consider

their analogy with the elastic force equation:

F = kx ,

where k is an elastic constant, and x is the displacement.

• In this analogy, we can think of gravitational waves being some perturbations of spacetime and

the ratio c4/G which appears in Einstein field equation plays the role of an elastic constant. Its

large value means that the spacetime is extremely rigid or, in other words, it is extremely difficult

to make it vibrate (Poisson and Will; 2014)



Maximum Tension Principle and Varying constants

• We make an observation that similar ratio c4/G appears in the expression for the entropic force

within the framework of entropic cosmology (Easson et al.; 2011). In order to calculate this

force one has to apply the Hawking temperature

T =
γ}c

2πkBrh
,

and the Bekenstein entropy

S =
kBc

3A

4}G
=
πkBc

3

G}
r2
h,

The entropic force is defined as

Fr = −T dS
drh

and by the application of above definitions, one gets

Fr = −γc
4

G
,

where the minus sign means that the force points in the direction of increasing entropy. It emerges

that up to a numerical factor γ/4 and the sign, this is the maximum force limit in general relativity.



Abolishing the Maximum Tension Principle

0.3 Varying constants cosmology

In the varying constants theories (Moffat; 1993, Albrecht, Magueijo and Barrow; 1999 )

the entropic force is given by (Dabrowski and Gohar, 2015)

F = −T dS
drh

= −γc
4(t)

2G(t)

3 ċ(t)
c(t)
− Ġ(t)

G(t)
+ 2 ṙh

rh
ṙh
rh

 ,
where we have applied the Hubble horizon

rh =
c

H

and get

F = −γc
4(t)

2G(t)

5 ċ(t)
c(t)
− Ġ(t)

G(t)
− 2Ḣ

H

ċ(t)

c(t)
− Ḣ

H

 .
The following conclusions are in order. Namely, if the fundamental constants c and G are really

constant, then the the entropic force reduces to a constant value −γc4/G. However, the variability of

c and G modifies this claim in a way that the maximum force also varies in time. In particular, it seems

to be infinite for a constant horizon value ṙh = 0 which corresponds to a model with c(t) ∝ H(t). The

entropic force can also become infinite, if the derivatives of c and G are infinite. So the Maximum

Force/Tension Conjecture does not hold here.



Abolishing the Maximum Tension Principle

0.4 Modified entropy models

Komatsu and Kimura (2013, 2014) used nonadditive entropy (Tsallis; 1988 and Tasallis

and Cirto; 2013) or nonextensive Tsallis entropy, given by ( Komatsu et al., PRD 87,

043531; PRD 88, 083534 ).

S3 = ζ
πkBc

3

}G
r3
h,

which as applied to the entropic force definition together with the Hawking temperature gives

Fr3 = −T dS3

drh
= −3

2
γζ
c4

G
rh,

where ζ is a dimensional constant. The authors showed that this entropic force is responsible for the

current acceleration of the universe. Since rh = rh(t) according to entropic force Fr3, the entropic

force may reach infinity again, when the horizon size becomes infinitely large. Of course the same

happens, if one of the conditions c → ∞ or G → 0 holds. This is again a contradiction to the

maximum tension/force principle.



Abolishing the Maximum Tension Principle

Another example is the quartic entropy defined as ( Komatsu et al., PRD 87, 043531; PRD

88, 083534 ).

S4 = ξ
πkBc

3

}G
r4
h,

where ξ is a dimensional constant. It gives an entropic force in the form

Fr4 = −T dS4

drh
= −2γξ

c4

G
r2
h.

Here again rh = rh(t) according to Fr4, and this force may reach infinity when the horizon size becomes

infinitely large and this happens much faster than for the volume entropy entropic force Fr3. Hence

this aboslishes the maximum tension principle.



Abolishing the Maximum Tension Principle

0.5 Black Holes

Similar considerations about the entropic force can be performed for black holes whose Hawking

temperature and Bekenstein entropy are given by ( Bekenstein, PRD 7, 2333 ; PRD 12,

3077; Hawking, Nature 248, 30).

T =
}κ

2πkBc
,

Sbh =
πkBc

3

G}
r2

+,

where κ and r+ are the surface gravity and the event horizon of a black hole, respectively. In this

way, the volume entropy (Tsallis entropy) and quartic entropy for black holes can be written as

S3 = λ
πkBc

3

4G}
r3

+,

S4 = β
πkBc

3

4G}
r4

+,

where λ and β are some dimensional constants.



Abolishing the Maximum Tension Principle

Since we have defined r+ and as a general event horizon, then we start our discussion with charged

Reissner-Nordström black holes for which the surface gravity is given by

κ =
c2

r2
+

√
G2M 2

c4
− GQ2

4πε0c4
,

and the event horizon by

r+ =
GM

c2
+

√
G2M 2

c4
− GQ2

4πε0c4

where M is the mass, Q is the charge, ε0 is the permittivity of space, and we consider a non-extremal

case for which

M 2 >
Q2

4πε0G
.
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Now, we can calculate the entropic force (with constant c and G) as follows

Fr = −T dSbh
dr+

= −c
4

G

1

r+

√
G2M 2

c4
− GQ2

4πε0c4
,

and

Fr3 = −T dS3

dr+

= −3λc4

8G

√G2M 2

c4
− GQ2

4πε0c4

 ,
and

Fr4 = −T dS4

dr+

= −βc
4

2G

√G2M 2

c4
− GQ2

4πε0c4

 r+.

In the limitQ→ 0 the above formulas reduce to the Schwarzschild black hole case for which the surface

gravity is κ=c4/4GM and the event horizon is equal to the Schwarzschild radius r+ = rs = 2GM/c2.

In such a case the entropic forces read as

Fr = −T dSbh
drs

= − c4

2G
,

Fr3 = −T dS3

drs
= −λ 3c4

16G
rs,

Fr4 = −T dS4

drs
= −β c

4

4G
r2
s.



Abolishing the Maximum Tension Principle

0.6 Generalized Uncertaintity Principle

The generalized uncertainty principle (GUP) modifies the Heisenberg principle at the Planck

energies into (Tawfik and Diab, IJMPD 23 1430025 (2014); Tawfik and Diab,

arXiv:1502.04562)

∆x∆p =
}
2

[
1 + α2(∆p)2

]
,

where x is the position and p the momentum, and

α = α0

lpl
}

(α0 is a dimensionless constant). GUP corrects the Bekenstein entropy and the Hawking temperature

of black holes into (C = const.)

SGUP = S +
α2π

4
lnS − (α2π)2

8

1

S
+ ... + C,

and

TGUP = T − α2π

2
T 2 − 4(α2π)4T 4.
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The above GUP corrected entropy and temperature can be derived by using the quadratic form of GUP.

One can also use the linear GUP and modified dispersion relations for possible other modifications

of the Bekenstein entropy and the Hawking temperature but we will not be investigating such a case

here. By using the above definitions, we can write the GUP corrected entropic force

FrGUP = −TGUP
dSGUP
dr

or

FrGUP = −[Fr +
α2π

4

Fr
S
− α2π

2
TFr + ....].

From above equations one can conclude that the GUP force can be influenced by the Hawking temper-

ature and the Bekenstein entropy and possibly through their dependence on the running fundamental

constants c and G they may cause it to diverge then abolishing the Principle of Maximum Tension in

this GUP case.



Summary

• We extended the entropic cosmology onto the framework of the theories with varying gravitational

constant G and varying speed of light c. We discussed the consequences of such variability onto

the entropic force terms and the boundary terms using three differ- ent approaches which possibly

relate thermodynamics, cosmological horizons and gravity.

• In all these cases the entropic terms and and the varying constants played the role of dark energy.

• We have studied the Principle of Maximum Tension in the context of different theories of gravity.

We noticed that the entropic force applied recently to cosmology as a cause of global acceleration

up to a numerical factor is just the maximum force between the two relativistic bodies surrounded

by their horizons.



Summary

• We have explored the issue of abolishing the Principle of Maximum Tension in a couple of physical

cases. It has emerged that it has been possible to avoid the principle if one applies the idea that

physical constants which enter the expression for the maximum force - the speed of light c and the

gravitational constant G - are supposed to vary. There are many other examples like the entropic

force models

• It is also possible to abolish the principle if one applies different definitions of entropy than the

Bekenstein area entropy which is quadratic in the horizon radius and when multiplied by the

Hawking temperature gives a finite value of the entropic force. This is not the case if one applies

the volume entropy which is cubic in the horizon radius or the quartic entropy which is quartic in

the horizon radius. In both cases the force obtained grows as the horizon radius grows and the

force may eventually reach infinity.
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