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Introduction

I The general relativity connects the geometrical properties
of the spacetime to its matter content.
The matter tells to the spacetime how to curve itself, the
spacetime geometry tells to the matter how to move.

I The cosmological singularities constitute one of the main
problems of modern cosmology.

I The discovery of the cosmic acceleration stimulated the
development of “exotic” cosmological models of dark
energy; some of these models possess the so called soft or
sudden singularities characterized by the finite value of
the radius of the universe and its Hubble parameter.



I “Traditional” or “hard” singularities are associated with
the zero volume of the universe (or of its scale factor),
and with infinite values of the Hubble parameter, of the
energy density and of the pressure –Big Bang and Big
Crunch

I In some models interplay between the geometry and the
matter forces the matter to change some of its basic
properties, such as equation of state for fluids and even
the form of the Lagrangian.

I Tachyons (Born-Infeld fields) is a natural candidate for a
dark energy

I The toy tachyon model, proposed in 2004 has two
particular features:
Tachyon field transforms itself into a pseudo-tachyon field,
The evolution of the universe can encounter a new type
of singularity - the Big Brake singularity.



I The Big Brake singularity is a particular type of the so
called “soft” cosmological singularities - the radius of the
universe is finite, the velocity of expansion is equal to
zero, the deceleration is infinite.

I The predictions of the model do not contradict
observational data on supenovae of the type Ia
(2009,2010)

I The Big Brake singularity is a particular one - it is
possible to cross it (2010)



I Open questions: other soft singularities - is it
possible to cross them ?

I What is more important: matter or geometry ?

I How general are the “exotic” phenomena
connected with an interplay between the matter
properties and geometry ?



Description of the tachyon model

The flat Friedmann universe

ds2 = dt2 − a2(t)dl2

The tachyon Lagrange density

L = −V (T )
√

1− Ṫ 2

The energy density

ρ =
V (T )√
1− Ṫ 2

The pressure

p = −V (T )
√

1− Ṫ 2



The Friedmann equation

H2 ≡ ȧ2

a2
= ρ

The equation of motion for the tachyon field

T̈

1− Ṫ 2
+ 3HṪ +

V,T

V
= 0

In our model

V (T ) =
Λ

sin2
[

3
2

√
Λ (1 + k) T

]

×
√

1− (1 + k) cos2
[
3

2

√
Λ (1 + k) T

]
,

where k and Λ > 0 are the parameters of the model. The
case k > 0 is more interesting.
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Phase portrait of the model for a positive k.



Some trajectories (cosmological evolutions) finish in the
infinite de Sitter expansion. In other trajectories the tachyon
field transforms into the pseudotachyon field with the
Lagrange density, energy density and positive pressure:

L = W (T )
√

Ṫ 2 − 1,

ρ =
W (T )√
Ṫ 2 − 1

,

p = W (T )
√

Ṫ 2 − 1,

W (T ) =
Λ

sin2
[

3
2

√
Λ (1 + k) T

]

×
√

(1 + k) cos2

[
3

2

√
Λ (1 + k) T − 1

]



What happens with the Universe after the

transformation of the tachyon into the

pseudotachyon ?

It encounters the Big Brake

cosmological singularity.



The Big Brake cosmological singularity

and other soft singularities

t → tBB < ∞
a(t → tBB) → aBB < ∞

ȧ(t → tBB) → 0

ä(t → tBB) → −∞
R(t → tBB) → +∞

T (t → tBB) → TBB , |TBB | < ∞
|Ṫ (t → tBB)| → ∞

ρ(t → tBB) → 0

p(t → tBB) → +∞
If ȧ(tBB) 6= 0 it is more general soft singularity.



Crossing the Big Brake singularity and the future of

the universe

At the Big Brake singularity the equations for
geodesics are regular, because the Christoffel
symbols are regular (moreover, they are equal to
zero).

Is it possible to cross the Big Brake ?

Let us study the regime of approaching the Big
Brake.



Analyzing the equations of motion we find that approaching
the Big Brake singularity the tachyon field behaves as

T = TBB +

(
4

3W (TBB)

)1/3

(tBB − t)1/3.

Its time derivative s ≡ Ṫ behaves as

s = −
(

4

81W (TBB)

)1/3

(tBB − t)−2/3,

the cosmological radius is

a = aBB − 3

4
aBB

(
9W 2(TBB)

2

)1/3

(tBB − t)4/3,

its time derivative is

ȧ = aBB

(
9W 2(TBB)

2

)1/3

(tBB − t)1/3



and the Hubble variable is

H =

(
9W 2(TBB)

2

)1/3

(tBB − t)1/3.

All these expressions can be continued in the region
where t > tBB ,which amounts to crossing the Big
Brake singularity. Only the expression for s is
singular at t = tBB but this singularity is integrable
and not dangerous.



Once reaching the Big Brake, it is impossible for

the system to stay there because of the infinite

deceleration, which eventually leads to the decrease
of the scale factor. This is because after the Big

Brake crossing the time derivative of the

cosmological radius and Hubble variable change

their signs. The expansion is then followed by a

contraction, culminating in the Big Crunch
singularity.



Crossing of the soft singularity in the model with the

anti-Chaplygin gas and dust
One of the simplest cosmological models revealing the Big
Brake singularity is the model based on the anti-Chaplygin gas
with an equation of state

p =
A

ρ
, A > 0

Such an equation of state arises in the theory of wiggly
strings ( B. Carter, 1989, A. Vilenkin, 1990).

ρ(a) =

√
B

a6
− A

At a = a∗ =
(

B
A

)1/6
the universe encounters the Big Brake

singularity.



The anti-Chaplygin gas plus dust

The energy density and the pressure are

ρ(a) =

√
B

a6
− A +

M

a3
, p(a) =

A√
B
a6 − A

.

Due to the dust component, the Hubble parameter has a
non-zero value at the encounter with the singularity, therefore
the dust implies further expansion. With continued expansion
however, the energy density and the pressure of the
anti-Chaplygin gas would become ill-defined.



In principle one can solve the paradox by redefining the
anti-Chaplygin gas in a distributional sense (Keresztes, Gergely,
Kamenshchik, 2012) . Then a contraction could follow the
expansion phase at the singularity at the price of a jump in the
Hubble parameter. Although such an abrupt change is not
common in any cosmological evolution, we explicitly show that
the set of Friedmann, Raychaudhuri and continuity equations
are all obeyed both at the singularity and in its vicinity.
The jump in the Hubble parameter

H → −H

leaves intact the first Friedmann equation H2 = ρ, the
continuity equations and the equations of state, however, it
breaks the validity of the second Friedmann (Raychaudhuri)
equation Ḣ = −3

2
(ρ + p).



H(t) = HSsgn(tS − t)

+

√
3A

2HSa4
S

sgn(tS − t)
√
|tS − t| ,

Ḣ = −2HSδ(tS − t)−
√

3A

8HSa4
S

sgn(tS − t)√
|tS − t| .

To restore the validity of the Raychaudhuri equation we add a
singular δ -term to the pressure of the anti-Chaplygin gas

p =

√
A

6HS |tS − t| +
4

3
HSδ(tS − t).

To preserve the equation of state we also modify the
expression for its energy density:

ρ =
A√

A
6HS |tS−t| +

4
3
HSδ(tS − t)

.



Change of the equation of state at soft singularity

crossings
The abrupt transition from the expansion to the contraction of
the universe does not look natural. There is an
alternative/complementary way of resolving the paradox.

One can tray to change the equation of state of the
anti-Chaplygin gas at passing the soft singularity.

There is some analogy between the transition from an
expansion to a contraction of a universe and an absolutely
elastic bounce of a ball from a wall in classical mechanics.
There is also an abrupt change of the direction of the velocity
(momentum).

However, we know that really the velocity is changed
continuously due to the deformation of the ball and of the wall.



The pressure of the anti-Chaplygin gas

p =
A√

B
a6 − A

tends to +∞ when the universe approaches the soft
singularity.
Requiring the expansion to continue into the region a > aS ,
while changing minimally the equation of state, we assume

p =
A√

| B
a6 − A|

,

p =
A√

A− B
a6

, for a > aS .

It implies the energy density

ρ = −
√

A− B

a6
.



The anti-Chaplygin gas transforms itself into Chaplygin gas
with negative energy density.
The pressure remains positive, expansion continues. The
spacetime geometry remains continuous.
The expansion stops at a = a0, where

M

a3
0

−
√

A− B

a6
0

= 0.



Then the contraction of the universe begins.

At the moment when the energy density of the
Chaplygin gas becomes equal to zero

(again a soft singularity), the Chaplygin gas
transforms itself into the anti-Chaplygin gas

and the contraction continues to culminate in the
encounter with the Big Crunch singularity
a = 0.



Crossing the Big Brake singularity and the future of

the universe in the tachyon model in the presence of

dust.

What happens with the Born-Infeld type
pseudo-tachyon field in the presence of a dust
component? Does the universe still run into a soft
singularity?
Yes !

T = TS ±
√

2

3HS

√
tS − t, HS =

√
ρm,0

a3
S

.

How can the universe cross this singularity ?



A pseudo-tachyon field with a constant potential

is equivalent to the anti-Chaplygin gas.
To the change of the equation of state of the anti-Chaplygin
gas corresponds the following transformation of the
Lagrangian of the pseudo-tachyon field:

L = W0

√
g ttṪ 2 + 1,

p = W0

√
Ṫ 2 + 1

ρ = − W0√
Ṫ 2 + 1

.

It is a new type of Born-Infeld field, which we may call
“quasi-tachyon”.



For an arbitrary potential the Lagrangian

reads

L = W (T )

√
g ttṪ 2 + 1, a > aS

T̈

Ṫ 2 + 1
+ 3HṪ − W,T

W
= 0,

ρ = − W (T )√
Ṫ 2 + 1

,

p = W (T )
√

Ṫ 2 + 1.



In the vicinity of the soft singularity the
friction term 3HṪ in the equation of motion
dominates over the potential term W,T/W .
Hence, the dependence of W (T ) on its
argument is not essential and a
pseudo-tachyon field approaching this
singularity behaves like one with a constant
potential. Thus, it is reasonable to assume
that upon crossing the soft singularity the
pseudo-tachyon transforms itself into a
quasi-tachyon for any potential W (T ).



The dynamics of the model with trigonometric

potential in the presence of dust.
After the soft singularity crossing the absolute value of the
negative contribution to the energy density of the universe
induced by the quasi-tachyon grows while the energy density of
the dust decreases due to the expansion of the universe. Thus,
at some moment the total energy density vanishes and the
universe reaches the point of maximal expansion, after which
the expansion is replaced by a contraction and the Hubble
variable changes sign.
At some finite moment of time the universe hits again the soft
singularity. Upon crossing this singularity the quasi-tachyon
transforms back to pseudo-tachyon.
After this the universe continues its contraction until it hits
the Big Crunch singularity.



Numerical simulations for the tachyon model.

Comparing the prediction of our model with the Supernovae Ia
Union2 Dataset, we have found the subset of accessible initial
conditions (T , Ṫ , Ωm).

Starting from this initial conditions we have simulated future
evolutions of the universe.

Some of the trajectories go towards de Sitter attractive node.

Other trajectories go towards the transformation
tachyon-pseudo-tachyon, the first crossing the soft singularity,
the turning point, the second soft singularity crossing, and
finally, the encounter with the Big Crunch.



yx

-1

-0.8

-0.6

-0.4

-0.2

 0

z

Ωm=0.03

(1,0,-1)

-1
-0.5

 0
 0.5

 1
 0

 0.2
 0.4

 0.6
 0.8

 1

z

yx

-1

-0.8

-0.6

-0.4

-0.2

 0

z

Ωm=0.09

(1,0,-1)

-1
-0.5

 0
 0.5

 1
 0

 0.2
 0.4

 0.6
 0.8

 1

z

yx

-1

-0.8

-0.6

-0.4

-0.2

 0

z

Ωm=0.15

(1,0,-1)

-1
-0.5

 0
 0.5

 1
 0

 0.2
 0.4

 0.6
 0.8

 1

z

yx

-1

-0.8

-0.6

-0.4

-0.2

 0

z

Ωm=0.21

(1,0,-1)

-1
-0.5

 0
 0.5

 1
 0

 0.2
 0.4

 0.6
 0.8

 1

z

yx

-1

-0.8

-0.6

-0.4

-0.2

 0

z

Ωm=0.27

(1,0,-1)

-1
-0.5

 0
 0.5

 1
 0

 0.2
 0.4

 0.6
 0.8

 1

z

yx

-1

-0.8

-0.6

-0.4

-0.2

 0

z

Ωm=0.33

(1,0,-1)

-1
-0.5

 0
 0.5

 1
 0

 0.2
 0.4

 0.6
 0.8

 1

z

The future evolution of those universes, which are in a 68.3%

confidence level fit with the supernova data.



Transformation phantom - normal scalar field in some

cosmological models

Some cosmological observations point out the the present
cosmic acceleration is such that

w =
p

ρ
< −1.

Phantom matter.
Phantom scalar field :

L = − φ̇2

2
− V (φ).

Standard scalar field:

L =
φ̇2

2
− V (φ).



Some observations tell that it was a moment when
w + 1 has changed the sign.
Phantom divide line crossing

Is it possible to have this phenomenon in the model
with one scalar field - the transformations between
phantom scalar field and normal scalar field ?

Yes ! If two conditions are satisfied:

The potential V (φ) has a cusp.
The initial conditions are fixed in such a way that
the scalar (or phantom scalar) field arrives at the
cusp with the vanishing velocity φ̇.



A simple mechanical example

A particle moving in a potential with a cusp:

V (x) =
V0

(1 + x2/3)2
, V0 > 0.

ẍ − 4V0

3(1 + x2/3)3x1/3
= 0.



If we have a fine tuning such that E = V0, we encounter an
exceptional case. In the vicinity of the point x = 0 the
trajectory can behave as

x = C (t0 − t)3/2, (1)

C = ±
(

16V0

9

)3/4

and t ≤ t0. The particle can arrive in finite time to the point
of the cusp of the potential x = 0.



Another solution
x = C (t − t0)

3/2,

t ≥ t0. We can combine the branches of the solutions in four
different manners and there is no way to choose if the particle
arriving to the point x = 0 should go back or should pass the
cusp of the potential. It can stop at the top as well.



Friction

ẍ + γẋ − 4V0

3(1 + x2/3)3x1/3
= 0.

γ = 3

√
ẋ2

2
+ V (x).

γ̇ = −3

2
ẋ2

γ̈ = −3ẍ ẋ (2)

just like in the cosmological case.



One can check that at any crossing of the point x = 0 we shall
have a jump of the second derivative of γ
If one would like to avoid this jump, one should try to change
the sign in Eq. (2). To implement it in a self-consistent way
one can substitute

γ = 3

√
− ẋ2

2
+ V (x)

ẍ + γẋ +
4V0

3(1 + x2/3)3x1/3
= 0.

In fact, it is exactly that what happens automatically in
cosmology, when we change the sign of the kinetic energy
term for the scalar field, crossing the phantom divide line.



In cosmology the role of γ is played by the Hubble variable H .
The jump of the second derivative of the friction coefficient γ
corresponds to the divergence of the third time derivative of
the Hubble variable, which represents some kind of very soft
cosmological singularity. Thus, one seems to confront the
problem of choosing between two alternatives: 1) to encounter
a weak singularity in the spacetime geometry; 2) to change the
sign of the kinetic term for matter field. We have pursued the
second alternative insofar as we privilege the smoothness of
spacetime geometry and consider equations of motion for
matter as less fundamental than the Einstein equations.



In the Newtonian mechanics there is rather a realistic example
of motion when, the dependence of the distance of time is
given by some fractional power. If one consider the motion of
a car with a orangeconstant power (which is more realistic
than the motion with a constant force, usually presented in
textbooks), when the velocity behaves as t1/2 and if the initial
value of the coordinate and of the velocity are equal to zero,
when the acceleration behaves as t−1/2 and at the moment of
start is singular.



Relations between classical and quantum dynamics in

models with a soft singularity

There is an old hypothesis that the classical
cosmological singularities disappear in the quantum
theory.
That means that introducing a quantum state (wave
function) of the universe one can calculate quantum
probabilities of realization of different classical
configurations and to see that these probabilities
disappear for those configurations of parameters,
which correspond to classical singularities.



We have studied three cosmological models with
soft singularities: the tachyon model with
trigonometrical potential, the tachyon model with
constant potential and minimally coupled scalar
field model with the Lagrangian

L =
φ̇2

2
− V0

φ
, V0 > 0.

In all three cases the effect of quantum avoidance
of singularities is absent for the classically
traversable soft singularities and is present for
“hard” Big Bang and Big Crunch singularities.



Quantum tunneling, instantons, birth of the universe

and general relativity

In the modern cosmology the notions of the wave function of
the universe of the quantum birth of the universe and of the
quantum tunneling are connected.

The link between them is constituted by the instantons - the
solutions of Euclidean Einstein equations.

Then one should carry out some kind of analytical
continuation from the instantons to the spacetimes with the
Lorentzian signature - “birth of the universe”.

Usually, the matter presented in these instantons behaves
approximately like a cosmological constant.



If we consider the matter consisting of two components -
(quasi)-cosmological constant and the radiation, which can be
represented by some set of conformal fields, then:

1. The quantum state of the universe is not a pure quantum
state, described by the wave function of the universe but
a mixed quantum state, described by the cosmological
density matrix.

2. One obtains a system of two coupled equations, whose
solution gives essential restrictions on the matter content
of the universe.



The modified Friedmann equation

ȧ2

a2
+ B

(
1

2

ȧ4

a4
− ȧ2

a4

)
=

1

a2
− H2 − C

a4
,

The amount of radiation constant C is given by the bootstrap
equation

m2
PC = m2

P

B

2
+

dF (η0)

dη0
≡ m2

P

B

2
+

∞∑
n=1

n3

enη0 − 1
.

Full conformal time

η0 = 2

∫ τ+

τ−

dτ

a(τ)
.



Σ Σ’

The presence of radiation implies a statistical ensemble, rather
than a pure state. Density matrix in Euclidean quantum
gravity originates from an instanton with two disjoint
boundaries.



Σ Σ’



Conclusions and discussion

I The general relativity contains a lot of surprises
concerning relations between the matter and
geometry. It is enough to take it seriously.

I The things become even more surprising when
we combine the general relativity with quantum
theory.


