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Modified Gravity ?

A single free parameter: G ∼ 1/M2
pl

Weak Equivalence principle (10−13 )
Post Newtonian solar system tests (weak field) (10−3 − 10−5 )
Indirect GWs emission test: binary pulsar (10−3)
GR is an effective field theory:

quantum corrections small and under control when
E << Λcut-off ∼

(
10−33 cm

)−1 ∼ Mpl ∼ 1019 GeV
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Then why ?

Theoretical motivation: is GR an isolated theory ?
In gauge theories we can give mass to gauge bosons (W±, Z )
effectively controlling the interaction range:

1
r

vs
e−m r

r

Is GR gauge theory alike and a massive gravity phase exists ?
Cosmological motivation:
The universe is accelerating
GR requires a tiny cosmological constant Λ ∼

(
10−3 eV

)4

CC is equivalent to a fluid with p = −ρ, w = −1
Quantum Field Prediction is way out observed value
ΛQFT ≥ 1060 Λobs

Perhaps w 6= 1 and a Dark Energy model is needed
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Modify what and at what scale ?

∫
d4x
√

g
[
M2

pl R(g) + Lmatter (g, φ)
]

Where ?

Dark energy scale H−1
0 ≈ 4.2 Gpc or H0 ≈ 10−33 eV

Modification in the infrared: large distance and low energy

What ?

Modify the way matter couple to gravity is modified

tough ... equivalence principle is well established
New “gravitational” fields that couple with gµν are introduced
Scalars, vectors, tensors ...
gµν is still the only “gravitational” field but R(g) is modified
Add non derivative terms for gµν
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Warm up: Massive Electrodynamics

Massless case L = −1
4FµνFµν + AµJµ

one gauge invariance Aµ → Aµ + ∂µf

∂νFµν = −Jµ

#DOF: 2 = 4− 2× 1 the two elicity states of the photon

Massive case Lm = −1
4FµνFµν − 1

2m2AµAµ + AµJµ

∂νFµν + m2 Aµ = Jµ ⇒ ∂µAµ = 0

#DOF: 3 = 4− 1 massive spin 1 particle→ three spin states

no gauge invariance, broken by the mass term
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Stuckelberg trick, gauge inv. as redundant description

Does really a massive photon break gauge invariance ?

add a scalar φ by the following field redefinition Aµ = Ãµ + ∂µφ

−1
4

FµνFµν − 1
2

m2AµAµ + jµAµ = −1
4

F̃µν F̃µν − m2

2

(
Ãµ + ∂µφ

)2
+ JµÃµ

Massive ED plus φ is gauge invariant again

Ãµ → Ãµ + ∂µf and φ→ φ− f #DoF counting: 4 + 1− 2× 1 = 3 !

Special choice of gauge (unitary): f = −φ⇒ back to massive ED

The limit m→ 0 is smooth, the extra degree of freedom decouples

Bottom line:
adding (Stuckelberg) fields any theory can be made gauge invariant

Gauge invariant is a very useful redundant description of physics
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Massive gravity, linearized level

a mass term is the simplest infrared modification
GR in the weak field limit

M2
pl E (1)

µν = T (1)
µν gµν = ηµν + hµν

#DOF: 10− 2× 4 = 2 4 gauge modes δhµν = ∂µξν + ∂νξµ
Linear mGR theory Pauli and Fierz ’39

L = M2
pl Lspin 2 + M2

plm
2 (a hµνhµν + b h2) h = hµνηµν

E (1)
µν − m2

4 (a hµν + b h ηµν) = M−2
pl T (1)

µν ∂νE (1)
µν = 0

4 constraints #DOF: 10− 4 = 6 = 5 + 1
The sixth mode is a ghost (Boulware-Deser) when a + b 6= 0.

h00 = ψ , h0i = ∂iv , hij = ∂i∂jσ + δijτ

L = M2
pl k

2
(
σ̇
τ̇

)T ( 0 1
1 4

a

)(
σ̇
τ̇

)
+ ... ∂i∂i → −k2
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Discontinuity vs Ghost: Vainshtein Mechanism

tune a + b = 0 Pauli-Fierz (PF) theory

no ghost, however the m→ 0 limit is not smooth (vDVZ disc.)

an extra scalar mode still couples to matter when m→ 0

⇒ light bending is 25% off from the experimental value

linear FP theory fails to pass solar system tests

very clean using Stuckelberg formulation Arkani-Hamed-Georgi-Schwartz 03

Saving PF: linearized approximation must fail in the solar system

valid only r > rV =
(

M�m−2 M−2
pl

)1/3
∼ 1016 Km

Vainshtein ’72

Babichev-Deffayet-Ziour ’09

Kaloper-Padilla-Tanahashi ’11

the discontinuity is removed in non perturbative way:
Vainshtein Mechanism

interesting but problematic for massive gravity
Sbisa,Niz,Koyama,Tasinato ’12

Koyama, Niz,Tasinato ’13

for a review Babichev-Deffayet ’13
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Avoiding the vDVZ discontinuity

There is a way to avoid the vDVZ discontinuity:
Rubakov 04, Dubovsky 04

Berezhiani-Comelli-Nesti-LP 07

change the structure of mass terms

Lspin 2 +
1
4
(
m2

0 h2
00 + 2m2

1 h0ih0i −m2
2 hijhij + m2

3 h2
ii − 2m2

4 h00hii
)

different masses for each rotational invariant combination
No Lorentz symmetry for mass terms

No ghost when m0 = 0

SO(3) invariant mass terms give a smooth m→ 0 limit
mi → 0 m2

i /m
2
j fixed, no discontinuity

The matter coupling is standard, weak equivalence principle OK

Weak field expansion works fine in the solar system Comelli-Nesti-LP 13

Post Newtonian correction can be computed in controlled way
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Linear Theory: Summary

PF Lorentz invariant massive GR:

either ruled out or non-perturbative in the solar system

Lorentz breaking massive GR:

consistent and in agreement with basic weak-field tests

What happens beyond the linear level ?
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Nonlinear Massive Gravity I

Add to the GR Lagrangian an extra piece V that depends on the
metric field (no derivatives allowed)

√
g
(

R − m2 V
)

such that when gµν = ηµν + hµν

√
g
(

R − m2 V
)

= Lspin 2 +
1
4
(
m2

0 h2
00 + 2m2

1 h0ih0i −m2
2 hijhij

+ m2
3 h2

ii − 2m2
4 h00hii

)
+ · · ·

Lorentz invariant mass term when V is such that:

m2
0 = a + b , m2

1 = −b , m2
2 = −a , m2

4 = b , m2
3 = b

−m2 V = m2
(

a hµνhµν + b h2
)

+ ...
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Nonlinear Massive Gravity II

To build a nontrivial V we need extra stuff
There is no “scalar” function of the metric itself
option 1: Introduce an extra non-dynamical metric g̃µν
option 2: g̃µν is a dynamical metric

we end up in a bimetric theory: bigravity not in this talk

A Lorentz invariant example: take g̃µν = ηµν

Scalars made out of Xµ
ν = gµαηαν , τn = Tr(X n)

a (τ1 − 4)2 + b (τ2 − 2τ1 + 4) =
(

a hµνhµν + b h2
)

+ O(h)3

Similiar in the SO(3) invariant case
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Nonlinear Massive Gravity: Stuckelberg

Diff restored by four Stuckelberg fields φA
Arkani-Hamed-Georgi-Schwartz 03

ηµν → g̃µν = ∂µφ
A∂νφ

B ηAB

The Stuckelberg are “coordinates” of a fictitious flat space and
eA = dφA are the tetrads with deA = 0
Adapting the coordinates such that g̃µν is the Minkowski metric

(unitary gauge) ∂µφ
A = δA

µ

Unitary gauge coordinates represents a preferred frame to be
specified

For instance: the frame where the sun is at rest or where the CMB
is almost isotropic
Similar Stuckelberg construction in the Lorentz breaking case
Dubovsky 04, Rubakov-Tnyakov 08, Comelli-Nesti-Pilo 13
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Nonlinear Massive Gravity III

The presence of g̃µν breaks inevitably local Lorentz (grav. sector)

gab = diag(−1,1,1,1) , g̃ab = diag(−α0, α1, α2, α3)

Accidental Lorentz symm. of V (unitary gauge) is different from
local Lorentz symmetry of the equivalence principle

In the Lorentz breaking case only global SO(3) is present in the
unitary gauge

Matter always couples with gµν , weak equivalence principle is OK
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Taming the zoo of Massive Gravity: non-linear analysis

How to choose V ? How many DoF propagate ?

Non-perturbative analysis needed

Canonical analysis is best suited

{
nonperturbative
background independent

ADM splitting of spacetime

(spatial) 3-metric γij of t = const hypersurface
normal nµ = (N−1,N−1 N i) of the hypersurface
N → Lapse function, N i → shift vector

gµν =

(
−N2 + N iN jγij γijN j

γijN j γij

)
NA = (N,N i)

ADM language V = m2
√

(g) V = m2 N γ1/2 V (NA, γij)
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Taming the zoo of Massive Gravity

Comelli-Crisostomi-Nesti-Pilo ’12, Comelli-Nesti-Pilo ’13 & ’14

Results from Canonical Analysis

1 No condition on V ⇒ 6 DoF propagate
Around flat space : 2 tensors + 2 vectors + 1+ 1 scalars
One of the scalars is a the Boulware-Deser ghost. No good

2 5 DoFs propagate if and only if

det(
∂2V

∂NA∂NB ) ≡ det(VAB) = 0 and rank(VAB) = 3 Monge-Ampere eq.

plus another condition on V involving γij not shown

3 rank(VAB) < 3 ⇒ #DoF= 2,3 see Comelli-Nesti-Pilo 2014
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Taming the zoo of Massive Gravity: bottom line

Construction of all mGR with ( 5 DOF)

infinitely many in terms of two functions !!

V (N,N i , γij ) = U + N−1 (E +Qi Uξi

)
U(Kij ) , E(γij , ξ

i ) Kij = γ ij − ξi ξj

ξi is defined by N i − N ξi =

(
∂2U
∂ξi∂ξj

)−1
∂E
∂ξj ≡ Q

i (γ ij , ξi )

Interesting example:
E ≡ E(γij ) ⇒ ξi = N i/N ⇒ Kij = γ ij − N−2 N i N j ≡ g ij

V = U(g ij ) + N−1 E(γij )

The nonlinear version the Pauli-Fierz mass term (Lorentz invariant)
(de Rham-Gabadze-Tolley) is recovered

V ∼ Tr(X 1/2), Xµ
ν = gµαηαν
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Pauli-Fierz Pauli Status

The FP tuning can extended at the nonlinear level
de Rham-Gabadaze-

Tolley ’11

In the Solar system nonperturbative physics required (Vainshtein)

post Newtonian corrections are very difficult to compute

see however Avilez-Lopez-Padilla-Saffin-Skordis ’15

Vainshtein mechanism is problematic in massive gravity
No spatially flat FRW cosmology

As an effective field theory the cutoff is very low

Λ3 =
(
m2 Mpl

)1/3 ∼
(
103 Km

)−1 ∼ 10−13 eV

Even the static gravitation potential of two masses one meter
apart might get large quantum corrections
see conflicting papers: Burrage-Kaloper-Padilla ’14 and N. Brouzakis and N. Tetradis ’14
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Lorentz Breaking Status

Most of non-perturbative constructed potentials with 5 DoF
Solar system scale tests OK
FRW cosmology OK with some constraints on V
working dark energy model
As an effective theory the cutoff is
Λ2 =

(
m Mpl

)1/2 ∼ 10−3 eV >> Λ3
Largest cutoff we can get in the absence of an Higgs mechanism
for gravity
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Massive Gravity Cosmology: general results I

Comelli-Nesti-LP 14

The most general ansatz compatible with homogeneity
CMB isotropy frame ≡ massive GR preferred frame

ds2 = −N2dt2 + a(t)2 δij dx idx j

zero spatial curvature for simplicity
EMT: matter +“gravitational” fluid: T tot

µν = Tµν + (8πG)−1 Tµν

T00 = m2 N2

2
U ≡ ρeff N2 where Uγ ij ≡ U ′ γij

Tij = m2 γij

[
U ′ − U

2
+

1
N

(
E ′ − E

2

)]
≡ peff γij ,
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Massive Gravity Cosmology: general results II

EMT conservation from the gravitational fluid ∇νTµν = 0

∂tρeff + 3H(ρeff + peff) = 0 ⇒ H
(
E ′ − E

2

)
= 0 .

U enters in the total Hamiltonian as N U likewise GR as required by
time reparametrization⇒ U part automatically conserved

Only the E part is constrained
Either there is no cosmology or E must be tuned to solve Bianchi
for instance, E homogeneous of degree -3/2 in γij
Once Bianchi is enforces, E does not enter anymore in FRW
equations
The Lorentz invariant dRGT does not satisfy Bianchi

no flat FRW cosmology
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Massive Gravity Cosmology: general results III

Once Bianchi is satisfied E disappears from the equation of motion

3H2 = N2
(

m2 U
2

+ 8πG ρm

)
.

the “gravitational” fluid mimics Dark Energy when 2U ′/U < 1

weff =
peff

ρeff
= −1 +

2U ′

U

dS space⇒ U ′ = 0
Minkowski space background⇒ U = 0 , U ′ = 0

U
γ ij ≡ U′ γij
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Conclusions

A randomly picked mGR theory has 5+1 DOF;
the scalar is a ghost around Minkowski space
Non-perturbative construction of all mGR theories with 5 DoF
mGR theory favours Lorentz breaking theories in the grav. sector

- 5 DOF and no vDVZ discontinuity

- cutoff Λ2 = (m Mpl)
1/2 ≈ 10−2 eV, the highest possible

In cosmology we can trust the theory when H < Λ2 ∼ 10−2 eV

OK for BBN, HBBN ∼ 10−16 eV << Λ2

Hinflation >> Λ2 ≈ 10−2 eV /

Higgs mechanism for gravity needed

goal: Λcut-off ∼ Mpl as in in GR
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General Picture and Summary

Massive
Gravity

PF Lorentz
inv. (LI)

mGR

Lorentz
breaking

(LB) mGR

vDVZ issue

Hamiltonian
Analysis

General
Potential

#DoF ≤ 5

Nonlinear
extension

Vainsthein &
nonlin. ghost
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Potential,

5 DOF

General LB
potential

with 5 DOF

strong
coupling and
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cosmology /

Solar system
& small

scale OK
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