Spectral distortions in the cosmic microwave background polarization

Sébastien Renaux-Petel CNRS-IAP

Cargèse. Hot Topics in Modern Cosmology 28.04.2015

mardi 28 avril 15

Worked on:

- Inflation: multifield effects, string-inspired models, primordial non-Gaussianities (review to appear for French Academy of Science)
- Modified Gravity: Massive Gravity on de-Sitter, Vainshtein mechanism
- New subject: Spectral distortions

Outline

I. Spectral distortions

2. Our work

JCAP 03 (2014) 033 SRP, C. Fidler (Portsmouth), C. Pitrou (IAP), G. Pettinari (Sussex)

Cosmic Microwave Background temperature fluctuations

Planck all sky map

Cosmic Microwave Background temperature fluctuations

Planck all sky map

Cosmic Microwave Background temperature fluctuations

Planck all sky map

Energy dependence

• Previous picture assumed:

$$I_{BB}(E, \hat{n}) = \frac{2}{e^{\frac{E}{T(\hat{n})}} - 1}$$

- Blackbody (BB) distribution of the CMB intensity with direction-dependent temperature.
- **But**: no full thermodynamic equilibrium throughout the universe history
- The energy dependence **is** more complicated
- The temperature is not enough to characterize the CMB signal. Its spectral dependence contains another independent piece of information.

Current spectral distortions constraints

COBE/FIRAS (Far InfraRed Absolute Spectrophotometer)

Compton y-distortion: $|y| \le 1.5 \times 10^{-5}$

Chemical potential mu-distortion: $|\mu| \leq 9 \times 10^{-5}$

Current spectral distortions constraints

COBE/FIRAS (Far InfraRed Absolute Spectrophotometer)

Compton y-distortion: $|y| \le 1.5 \times 10^{-5}$

Chemical potential mu-distortion: $|\mu| \leq 9 \times 10^{-5}$

Only very small distortions of the CMB spectrum are allowed

Dramatic improvement in angular resolution and sensitivity in the past decades

Dramatic improvement in angular resolution and sensitivity in the past decades

Future expected constraints

PIXIE arXiv:1105.2044

COrE/PRISM?

arXiv:1310.1554

- 400 spectral channels in the frequency range 30 GHz 6 THz (9 for Planck)
- About 1000 times more sensitive than COBE/FIRAS
- Improved limits on mu and y by 3 orders of magnitude!

The sky as seen by Planck

mardi 28 avril 15

Physical mechanisms that lead to spectral distortions

- Energy injection in the primordial plasma at $z < few \times 10^6$
- Heating by decaying or annihilating relic particles
- Dissipation of primordial acoustic waves (window into small scale power spectrum)
- Cosmological recombination
 Les Houches lecture notes,
 Chluba 13
- SZ effect from galaxy clusters, effects of reionization ...

Lots of effects within the reach of future experiments

The field of CMB spectral distortions is observationally and theoretically very promising.

Physical mechanisms that lead to spectral distortions

- Energy injection in the primordial plasma at z < few x 10^{6}
- Heating by decaying or annihilating relic particles
- Dissipation of primordial acoustic waves (window into small scale power spectrum)
- Cosmological recombination

Les Houches lecture notes, Chluba 13

• SZ effect from galaxy clusters, effects of reionization ...

Lots of effects within the reach of future experiments

The field of CMB spectral distortions is observationally and theoretically very promising.

Dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Dependencies on:

- Amplitude of the power spectrum
- Shape of the power spectrum
- Primordial non-Gaussianities in the squeezed limit

Pajer and Zaldarriaga 2012, Gang and Komatsu 2012

• Type of the perturbations (adiabatic vs isocurvature)

Dent et al 2012, Chluba and Grin 2012

Power spectrum constraints

- Amplitude of the power spectrum rather uncertain at $k > 3 \text{ Mpc}^{-1}$
- Improving limits at smaller scales would constrain inflationary models

Power spectrum constraints

- Amplitude of the power spectrum rather uncertain at $k > 3 \text{ Mpc}^{-1}$
- Improving limits at smaller scales would constrain inflationary models
- CMB spectral distortions allows us to probe a total of 17 e-folds of inflation

Our work

JCAP 03 (2014) 033 SRP, C. Fidler (Portsmouth), C. Pitrou (IAP), G. Pettinari (Sussex)

- The field of CMB spectral distortions is still in its infancy
- Most work to date concentrate on the CMB intensity, and its monopole
- But future experiments will characterize the spectrum of the CMB anisotropies, both in intensity and polarization.

• In 1312.4448, we computed the unavoidable spectral distortions of the CMB polarization induced by non-linear effects in the Compton interactions between CMB photons and the flow of intergalactic electrons (non-linear kinetic Sunyaev Zel'dovich, kSZ²)

Statistical description of polarized radiation

- Boltzmann equation better formulated in a tetrad basis $e_{(a)}^{\mu}$ (a = 0, 1, 2, 3)
- Photon momentum projected onto the set of tetrads $p^{\mu} = p^{(a)} e_{(a)}{}^{\mu}$

• Hermitian tensor-valued distribution function $f_{\mu\nu}(\eta, \mathbf{x}, p^{(i)})$

number density in phase space $\epsilon^{\mu} \epsilon^{*\nu} f_{\mu\nu}(\eta, \mathbf{x}, p^{(i)})$ of photons at $(\eta, \mathbf{x}, p^{(i)})$ with polarization state vector ϵ^{μ}

Distribution function

- Direction 4-vector of photons $n^{\mu} \equiv n^{(i)} e_{(i)}{}^{\mu}$
- Projection operator, or screen projector $S_{\mu\nu} \equiv g_{\mu\nu} + e^{(0)}{}_{\mu}e^{(0)}{}_{\nu} n_{\mu}n_{\nu}$
- Decomposition of the distribution function

Distribution function

- Direction 4-vector of photons $n^{\mu} \equiv n^{(i)} e_{(i)}{}^{\mu}$
- Projection operator, or screen projector $S_{\mu\nu}\equiv g_{\mu\nu}+e^{(0)}{}_{\mu}e^{(0)}{}_{\nu}-n_{\mu}n_{\nu}$
- Decomposition of the distribution function

Intensity y-type distortions

Number density of photons:

$$n \propto \int I E^3 \,\mathrm{d} \ln E$$

T: temperature of a blackbody that would have the same number density

see Pitrou, Stebbins, 1402.0968

Sunyaev-Zel'dovich effect

Compton interactions between CMB photons and electrons in clusters of galaxies.

Photon number is conserved, but energy is redistributed: spectral distortions.

$$y(\hat{n}) = \int n_e \frac{k_{\rm B} T_e}{m_e c^2} \sigma_{\rm T} \, \mathrm{d}s$$

Planck y-map

Polarization y-type distortions

• Similarly to y, Compton scattering generates a non-zero polarization distortion only beyond first-order perturbation theory

• Need for polarized Boltzmann equation at second order, with proper spectral dependence decomposition

Naruko, Pitrou, Koyama, Sasaki 1304.6929

Boltzmann equation for polarization distortion

Boltzmann
equation:
$$y'_{(i)(j)} + n^{(l)}\partial_{l}y_{(i)(j)} = \tau' \left(-y_{(i)(j)} + C_{(i)(j)}^{y}\right)$$
Thomson interaction rate $\tau' \equiv a \overline{n}_{e} \sigma_{T}$ Line of sight
formal solution
$$r(\eta) \equiv \eta_{0} - \eta$$
$$y_{ij}(\eta_{0}, k_{i}, n^{i}) = \int_{\eta_{re}}^{\eta_{0}} d\eta \tau' e^{-\tau} e^{-i k_{i} n^{i}(\eta_{0} - \eta)} C_{ij}^{y}(\eta, k_{i}, n^{i})$$
$$\frac{d\tau(\eta)}{d\eta} \equiv -\tau' \qquad \tau(\eta_{0}) = 0$$
Optical depth

Boltzmann equation for polarization distortion

Boltzmann
equation:
$$y'_{(i)(j)} + n^{(l)}\partial_l y_{(i)(j)} = \tau' \left(-y_{(i)(j)} + C_{(i)(j)}^y\right)$$

Thomson interaction rate $\tau' \equiv a \overline{n}_e \sigma_T$
Line of sight
formal solution $r(\eta) \equiv \eta_0 - \eta$
 $y_{ij}(\eta_0, k_i, n^i) = \int_{\eta_{re}}^{\eta_0} d\eta \, \tau' e^{-\tau} e^{-i k_i \, n^i (\eta_0 - \eta)} C_{ij}^y(\eta, k_i, n^i)$
 $g(\eta) = \tau' e^{-\tau}$

Visibility function

Boltzmann equation for polarization distortion

Boltzmann
equation:
$$y'_{(i)(j)} + n^{(l)}\partial_l y_{(i)(j)} = \tau' \left(-y_{(i)(j)} + C_{(i)(j)}^y\right)$$

Thomson interaction rate $\tau' \equiv a \overline{n}_e \sigma_T$
Line of sight
formal solution $r(\eta) \equiv \eta_0 - \eta$
 $y_{ij}(\eta_0, k_i, n^i) = \int_{\eta_{re}}^{\eta_0} d\eta \ \tau' e^{-\tau} e^{-i k_i n^i (\eta_0 - \eta)} C_{ij}^y(\eta, k_i, n^i)$
 $r(\eta) = \eta_0 - \eta$ comoving distance
from us

Non-linear kSZ effect (kSZ²)

Main signal originates from reionization (z < 15)

Multipolar expansion

the aim:

$$y_{ij}(\mathbf{k}, \hat{\mathbf{n}}) = \sum_{\pm} \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} \left[E_{\ell m}^{y}(\mathbf{k}) \pm i B_{\ell m}^{y}(\mathbf{k}) \right] \frac{Y_{\ell m}^{\pm 2}(\hat{\mathbf{n}})}{N_{\ell}} m_{i}^{\pm} m_{j}^{\pm}$$

$$spin-2 \text{ spherical harmonics}}$$

$$N_{\ell} \equiv i^{\ell} \sqrt{(2\ell+1)/(4\pi)}$$

$$natural \text{ polarization basis}$$

$$m_{i}^{\pm} \equiv (\hat{e}_{i}^{\theta} \mp i \hat{e}_{i}^{\phi})/\sqrt{2}$$

Multipolar expansion of the collision term

Leading-order collision term quadratic in:

$$v_i(\eta, \mathbf{k}) = -i \hat{k}_i F(k, \eta) \Phi(\mathbf{k})$$

transfer function of the baryon velocity

Convolution operator

$$\ldots\} \equiv \int \frac{\mathrm{d}^3 \mathbf{k}_1 \mathrm{d}^3 \mathbf{k}_2}{(2\pi)^3} \,\delta_{\mathrm{D}}^3(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k})$$

primordial

potential

 $E[C^{y}]_{\ell m}(\mathbf{k}) = \delta_{\ell}^{2} \mathcal{K} \left\{ S_{m}(\mathbf{\hat{k}}_{1}, \mathbf{\hat{k}}_{2}) F(k_{1}, \eta) F(k_{2}, \eta) \Phi(k_{1}) \Phi(k_{2}) \right\}$

 $\mathcal{K}\{.$

Multipolar expansion of the collision term

Leading-order collision term quadratic in:

$$v_i(\eta, \mathbf{k}) = -i \hat{k}_i F(k, \eta) \Phi(\mathbf{k})$$

transfer function of the baryon velocity primordial potential

Convolution operator

$$\mathcal{K}\{\dots\} \equiv \int \frac{\mathrm{d}^3 \mathbf{k}_1 \mathrm{d}^3 \mathbf{k}_2}{(2\pi)^3} \,\delta_{\mathrm{D}}^3(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k})$$

$$E[C^{y}]_{\ell m}(\mathbf{k}) = \delta_{\ell}^{2} \mathcal{K} \left\{ S_{m}(\hat{\mathbf{k}}_{1}, \hat{\mathbf{k}}_{2}) F(k_{1}, \eta) F(k_{2}, \eta) \Phi(k_{1}) \Phi(k_{2}) \right\}$$
$$(\ell = 1) \otimes (\ell = 1)$$

Multipolar expansion of the collision term

Leading-order collision term quadratic in:

$$v_i(\eta, \mathbf{k}) = -i \hat{k}_i F(k, \eta) \Phi(\mathbf{k})$$

transfer function of the baryon velocity primordial potential

- k) ...

Convolution operator

..}
$$\equiv \int \frac{\mathrm{d}^3 \mathbf{k}_1 \mathrm{d}^3 \mathbf{k}_2}{(2\pi)^3} \, \delta_{\mathrm{D}}^3(\mathbf{k}_1 + \mathbf{k}_2)$$

$$E[C^{y}]_{\ell m}(\mathbf{k}) = \delta_{\ell}^{2} \mathcal{K} \left\{ S_{m}(\hat{\mathbf{k}}_{1}, \hat{\mathbf{k}}_{2}) F(k_{1}, \eta) F(k_{2}, \eta) \Phi(k_{1}) \Phi(k_{2}) \right\}$$

 $\mathcal{K}\{.$

 $(\ell = 1) \otimes (\ell = 1)$

geometrical factor:

$$S_m(\hat{\mathbf{k}}_1, \hat{\mathbf{k}}_2) = -\frac{\pi}{15} \sqrt{\frac{2}{3}} \sum_{n=-1}^{1} \alpha_{n,m} \left(Y_1^{m-n}(\hat{\mathbf{k}}_1) Y_1^n(\hat{\mathbf{k}}_2) \right)^*$$

 $\alpha_{0,m} \equiv \sqrt{(4-m^2)}, \qquad \alpha_{\pm 1,m} \equiv \sqrt{(2\pm m)(2\pm m-1)/2}$

+

Rayleigh formula to expand the exponential into spherical harmonics

Addition of spherical harmonics

Angular power spectra

$$y_{ij}(\mathbf{x}, \hat{\mathbf{n}}) = \sum_{\pm} (Q^y \pm i U^y)(\mathbf{x}, \hat{\mathbf{n}}) m_i^{\pm} m_j^{\pm}$$

Distortion Stokes parameters

$$(Q^{y} \pm iU^{y})(\mathbf{x}, \hat{\mathbf{n}}) = \sum_{\ell=2}^{\infty} \sum_{m=-l}^{l} (e_{\ell m}^{y}(\mathbf{x}) \pm i b_{\ell m}^{y}(\mathbf{x})) Y_{\ell m}^{\pm 2}(\hat{\mathbf{n}}; \hat{\mathbf{e}})$$

$$C_{\ell}^{E^{y}} \equiv \langle |e_{\ell m}^{y}(\mathbf{x})|^{2} \rangle \text{ and } C_{\ell}^{B^{y}} \equiv \langle |b_{\ell m}^{y}(\mathbf{x})|^{2} \rangle$$

The result

$$(2\ell+1)^2 C_{\ell}^{E^y} = \frac{2}{\pi} \sum_{m=-2}^2 \int \mathrm{d}k \, k^2 \, \mathcal{Q}_{\ell m}^{E^y}(k)$$
 with

 $\langle E^{y}_{\ell m}(\mathbf{k}) E^{y*}_{\ell m'}(\mathbf{k}') \rangle = (2\pi)^{3} \,\delta^{3}_{\mathrm{D}}(\mathbf{k} - \mathbf{k}') \,\mathcal{Q}^{E^{y}}_{\ell m}(k) \,\delta_{mm'}$

$$\mathcal{Q}_{\ell m}^{E^{y}}(k) = \frac{2(2\ell+1)^{2}}{(2\pi)^{3}} \int d^{3}\mathbf{k}_{1} P(k_{1}) P(k_{2}) \left| S_{m}(\hat{\mathbf{k}}_{1}, \hat{\mathbf{k}}_{2}) \right|^{2} \\ \times \left| \int_{\eta_{\mathrm{re}}}^{\eta_{0}} d\eta \, g(\eta) \, \epsilon_{\ell}^{(m)}[kr(\eta)] F(k_{1}, \eta) F(k_{2}, \eta) \right|^{2}$$

$$k_2 = k - k_1 \qquad \qquad \text{Similarly for } B^{\text{y}} \text{ modes}$$

The result

$$(2\ell+1)^2 C_{\ell}^{E^y} = \frac{2}{\pi} \sum_{m=-2}^2 \int \mathrm{d}k \, k^2 \, \mathcal{Q}_{\ell m}^{E^y}(k)$$

with
$$\langle E_{\ell m}^y(\mathbf{k}) E_{\ell m'}^{y*}(\mathbf{k}') \rangle = (2\pi)^3 \, \delta_{\mathrm{D}}^3(\mathbf{k} - \mathbf{k}') \, \mathcal{Q}_{\ell m}^{E^y}(k) \, \delta_{mm'}$$

statistical isotropy truly 2-dimensional integrals
$$\mathcal{Q}_{\ell m}^{E^y}(k) = \frac{2(2\ell+1)^2}{(2\pi)^3} \int \mathrm{d}^3\mathbf{k}_1 \mathcal{P}(k_1) \mathcal{P}(k_2) \left| S_m(\hat{\mathbf{k}}_1, \hat{\mathbf{k}}_2) \right|^2$$
$$\times \left| \int_{\eta_{\mathrm{re}}}^{\eta_0} \mathrm{d}\eta \, g(\eta) \, \epsilon_{\ell}^{(m)}[kr(\eta)] F(k_1, \eta) F(k_2, \eta) \right|^2$$

$$\mathbf{k_2} = \mathbf{k} - \mathbf{k_1}$$
 Similarly for B^y modes

Limber approximation

For a slowly varying function with respect to the oscillations of the jl's

$$\sqrt{\frac{2x}{\pi}} j_{\ell}(x) \simeq \delta\left(x - \left(\nu = \ell + \frac{1}{2}\right)\right)$$

Limber approximation

Numerical results

Exact results with SONG, Pettinari, Fidler et al, 1302.0832

Exact vs Limber

Limber approximation is excellent

Numerical results

- E^y and B^y modes of similar magnitude (same sources)
- Smooth spectra (no acoustic oscillation structure)
- Naive suppression for a second-order effect mitigated by the growth of the electron velocity

• Slava Mukhanov: "I thought that it would take 1000 years to detect the logarithmic dependence of the power spectrum."

• Slava Mukhanov: "I thought that it would take 1000 years to detect the logarithmic dependence of the power spectrum." $n_e = 0.960 \pm 0.007$

• Slava Mukhanov: "I thought that it would take 1000 years to detect the logarithmic dependence of the power spectrum."

• Rashid Sunyaev:"I did not think that the acoustic oscillation would ever be observed."

• Jim Peebles (Annu. Rev.Astro.Astrophys. 2012): "I did not continue with (computation of CMB), in part because I had trouble imagining that such tiny disturbances to the CMB could be detected..."

• Slava Mukhanov: "I thought that it would take 1000 years to detect $n_{s} = 0.960 \pm 0.007$ the logarithmic dependence of the power spectrum."

 Rashid Sunyaev: "I did not think that the acoustic oscillation Angular scale 0.1° ever be observed."

1500

500 1000 Multipole moment,

2000

• Jim Peebles (Annu. Rev.Astro.Astrophys. 6000 5000 with (computation of CMB), in part becaus that such tiny disturbances to the CMB cou

• Slava Mukhanov: "I thought that it would take 1000 years to detect $n_{s} = 0.960 \pm 0.007$ the logarithmic dependence of the power spectrum."

 Rashid Sunyaev: "I did not think that the acoustic oscillation 0.1° Angular scale ever be observed."

• Jim Peebles (Annu. Rev.Astro.Astrophys. 6000 500 with (computation of CMB), in part becaus that such tiny disturbances to the CMB cou

• Yakov Zel'dovich: "(Speaking to Sunyaev about the Sunyaev-Zel'dovich effect:) This is a small effect, but the physics is beautiful. Let's publish it."

2000

1500

⁵⁰⁰ 1000 Multipole moment,

• Slava Mukhanov: "I thought that it would take 1000 years to detect $n_{s} = 0.960 \pm 0.007$ the logarithmic dependence of the power spectrum."

 Rashid Sunyaev: "I did not think that the acoustic oscillation Angular scale 0.1° ever be observed."

• Jim Peebles (Annu. Rev.Astro.Astrophys. 6000 500 with (computation of CMB), in part becaus that such tiny disturbances to the CMB cou

• Yakov Zel'dovich: "(Speaking to Sunyaev about the Sunyaev-Zel'dovich) effect:) This is a small effect, but the physics is beautiful. Let's publish it."

2000

100

1500

217 GHz

⁵⁰⁰ 1000 Multipole moment,

143 GHz

100 GHz

70 GHz

Total signal: angular times energy dependence

Total signal: angular times energy dependence

Non-linear kSZ effect from clusters

• The same effect is discussed in the context of galaxy clusters

astro-ph/0307293, astro-ph/0208511 ...

• Our signal is **one order of magnitude larger**

Non-linear kSZ effect from clusters

• The same effect is discussed in the context of galaxy clusters

```
astro-ph/0307293, astro-ph/0208511 ...
```

- Our signal is one order of magnitude larger
- Simple understanding:
- on angular scales at which clusters are unresolved, $\ell \lesssim 500$, linear description is enough to model the electron number density

- additional contribution pre-formation of clusters, for $2\lesssim z\lesssim 12$, when the visibility function is the largest.

Contribution(z) to $\ell(\ell+1)C_{\ell \text{ Limber}}^{E^y}$

Non-linear kSZ effect from clusters

• The same effect is discussed in the context of galaxy clusters

```
astro-ph/0307293, astro-ph/0208511 ...
```

- Our signal is one order of magnitude larger
- Simple understanding:
- on angular scales at which clusters are unresolved, $\ell \lesssim 500$, linear description is enough to model the electron number density

- additional contribution pre-formation of clusters, for $2\lesssim z\lesssim 12$, when the visibility function is the largest.

Contribution(z) to $\ell(\ell+1)C_{\ell \text{ Limber}}^{E^{y}}$ 10^{-19} 10^{-20} $\ell=100$ 10^{-21} 10^{-21} 10^{-21} 10^{-24} $10^$

Improving the detectability with cross-correlations

• Standard polarization has a similar contribution

$$\mathcal{P}_{\mu\nu} = (\mathcal{P}_{\mu\nu})_{\text{linear}} + 4 (y_{\mu\nu})_{kSZ} \longrightarrow \left\langle E^{\text{st}} E^{y*} \right\rangle = 4 \langle E^y E^{y*} \rangle$$
$$\left\langle B^{\text{st}} B^{y*} \right\rangle = 4 \langle B^y B^{y*} \rangle$$

 Correlation with the y-type intensity distortion
 (sourced by tSZ effect + kSZ² effect)

Effects of an extended period of reionization

• Reionization history is unknown but is necessarily more complicated than the simple scenario of instantaneous reionization (patchy etc).

$$x_e(z) \equiv \frac{n_e(z)}{n_H(z)} = \frac{1}{2} \left\{ 1 + \tanh\left[\frac{(1+z_r)^{3/2} - (1+z)^{3/2}}{\Delta}\right] \right\}$$

built such that total optical depth independent of Delta.

Effects of an extended period of reionization

• Reionization history is unknown but is necessarily more complicated than the simple scenario of instantaneous reionization (patchy etc).

$$x_e(z) \equiv \frac{n_e(z)}{n_H(z)} = \frac{1}{2} \left\{ 1 + \tanh\left[\frac{(1+z_r)^{3/2} - (1+z)^{3/2}}{\Delta}\right] \right\}$$

built such that total optical depth independent of Delta.

Conclusions

CMB spectral distortions: new promising observational window in cosmology

- Probe of the thermal history of the universe, inflation, dark matter, reionization...
- It should be studied at the level of the anisotropies of the intensity and polarization

• First step in this direction: unavoidable contribution to diffuse polarization distortion generated by non-linear kSZ effect from reionization. Larger than contribution from clusters.

Guaranteed signal in the vanilla cosmological model.
 Worth studying for extensions.