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Motivations for massive gravity

Dark energy = modification of gravity:

Newton
1

r
→ Yukawa

1

r
e−mr

hence the gravity is weaker at large distances ⇒ the cosmic
acceleration, m ∼ 1/(cosm. horizon size).

Theoretical problems, but it seems there is a consistent theory



Massive gravity = potential for the metric
Physical metric gµν and flat reference metric fµν

S =
1

κ2

∫ √−g
(

1

2
R −m2 U

)

d4x ≡ 1

κ2

∫

L d4x

in the generic case (Hα
β = gασfσν) /Fierz-Pauli 1939/

U =
1

8

(

(Hα
α )

2 − Hα
βH

β
α

)2
+ . . .

gµν = ηµν+hµν ⇒ �hµν + . . . = m2(hµν − h ηµν) + 16πGTµν

In the dRGT case the . . . are uniquely fixed

U = b0+ b1
∑

a

λa+ b2
∑

a<b

λaλb + b3
∑

a<b<c

λaλbλc + b4 λ0λ1λ2λ3

where λa are eigenvalues of
√

H
µ
ν =
√
gµαfαν

How to compute the energy ?

/Hassan and Rosen 2012/
/Comelli, Nesti, Pilo 2012/



ADM decomposition

With

ds2g = −N2dt2 + γik(dx
i + N idt)(dxk + Nkdt)

ds2f = −dt2 + δikdx
idxk

the Lagrangian becomes

L =
√
γN

(

1

2
{KikK

ik − K 2 + R (3)} −m2U(Nν , γik)

)

where the second fundamental form

Kik =
1

2N
(∂tγik −∇(3)

i Nk −∇(3)
k Ni ).

Variables are γik and Nµ = (N,Nk ).



Hamiltonian

The conjugate momenta

πik =
∂L
∂γ̇ik

=
1

2

√
γ (K ik − Kγik), pNµ

=
∂L
∂Ṅµ

= 0.

⇒ Nµ are non-dynamical. Hamiltonian

H = πik γ̇ik − L = NµHµ +m2V(Nα, γik)

with V =
√
γN U and

H0 =
1√
γ
(2πikπik − (πk

k )
2)− 1

2

√
γR (3), Hk = −2∇(3)

i πi
k

phase space is spanned by 12 (πik , hik)

0 = −ṗNµ
=

∂H
∂Nµ

= Hµ(π
ik , γik) +m2∂V(Nα, γik)

∂Nµ
,

this condition determines the number of Dof.



GR, m = 0

∂H
∂Nµ

= Hµ(π
ik , γik) = 0. 4 constraints

They are fist class,
{Hµ,Hν} ∼ Hα

they generate gauge symmetries ⇒ one can impose 4 gauge
conditions. There remain

12− 4− 4 = 4 = 2× (2 DoF)

independent variables ⇒ 2 graviton polarizations.

Energy vanishes on the constraint surface (up to a surface term)

H = NµHµ = 0



m 6= 0 generic case, the BD problem

4 conditions

∂H
∂Nµ

= Hµ(π
ik , γik) +m2 ∂V(Nα, γik)

∂Nµ
= 0

determine the laps and shifts Nµ = Nµ(πik , γik). Inserting Nµ to
H gives

H = E(πik , γik)

⇒ no constraints

⇒ there are 12 = 2× (5 + 1 DoF). The kinetic part of the energy
H is has the wrong sign – the energy is unbounded from below,
which is associated to the extra Dof=BD ghost /1972/



m 6= 0, dRGT theory
4 conditions

∂H
∂Nµ

= Hµ(π
ik , γik) +m2 ∂V(Nα, γik)

∂Nµ
= 0

determine three shifts Nk = Nk(N, πik , γik). The lapse N remains
undetermined because the Hessian matrix

∂2V(Nα, γik)

∂Nµ∂Nν

has rank 3. Inserting Nk to H gives

H = E(πik , γik) + NC(πik , γik)

⇒ constraints C = 0, S = {C,H} = 0

⇒ there are 12− 2 = 10 = 2× (5 DoF). The energy density is
E(πik , γik) computed on the constraint surface.
The energy can be negative as well. However, there are ways to
overcome this.



Restricting to the s-sector



Spherical symmetry

ds2g = −N2dt2 +
1

∆2
(dr + β dt)2 + R2 (dϑ2 + sin2 ϑdϕ2)

ds2f = −dt2 + dr2 + r2 (dϑ2 + sin2 ϑdϕ2)

where N, β,∆,R depend on t, r . Lapse N and shift β are
non-dynamical. Dynamical variables are ∆ and R and their
momenta

p∆ =
∂L
∂∆̇

, pR =
∂L
∂Ṙ

Phase space is spanned by 4 variables ∆,R , p∆, pR ≡ (qi , pk).



Hamiltonian

H = pq̇ −L = ∆̇π∆ + ṘπR −L = NH0 + βHr +m2V

where

H0 =
∆3

4R2
p2∆ +

∆2

2R
p∆pR +∆RR ′2 + 2R(∆R ′)′ − 1

∆
,

Hr = ∆p′∆ + 2∆′p∆ + R ′pR .

and the potential

V =
NR2P0

∆
+

R2P1

∆

√

(∆N + 1)2 − β2 + R2P2

with

Pn = bn + 2bn+1
r

R
+ bn+2

r2

R2



Dof’s

One has

∂H
∂N

= H0 +m2 ∂V
∂N

= 0

∂H
∂β

= Hr +m2 ∂V
∂β

= 0

If m = 0 ⇒ 2 first class constraints H0 = 0, Hr = 0 ⇒
4− 2− 2 = 0 Dof’s ⇒ no dynamics = Birkhoff theorem.

If m 6= 0 ⇒ the second condition determines β,

β = (N∆+ 1)
∆Hr

Y

while the first condition gives a constraint C(∆,R , p∆, pR) = 0



Constraints

C ≡ H0 + Y +m2R
2P0

∆
= 0

The Hamiltonian is H = E + NC where

E =
Y

∆
+m2R2P2 with Y ≡

√

(∆Hr )2 + (m2R2P1)2

Secondary constraint

S = {C,H} = m4R2P2
1

2Y
(∆p∆ + RpR)− Y

(

∆Hr

Y

)′

− ∆2p∆

2R

{

m4

2∆Y
∂R(R

4P2
1 ) +m2∂R(R

2P2)

}

− m2Hr

Y

{

∆
(

R2P2

)′
+ R2∂r (P0 −∆2P2)

}

= 0

⇒ 4− 2 = 2× 1 Dof. Energy E =
∫

∞

0 Edr assuming C = S = 0.



Weak fields=Fierz-Pauli limit

If N = ∆ = 1, R = r and p∆ = pR = 0 ⇒ C = S = E = 0.

If N = 1 + ν, ∆ = 1 + δ, R = r + ρ then

C = CFP + . . . , S = SFP + . . . , H = EFP + ν CFP + . . .

where EFP is the quadratic part,

EFP = ( )2 + ( )′

⇒ E =
∫

EFPdr ≥ 0.



Strong fields – kinetic energy sector

With ∆ = 1, R = r , p∆ =

√
xz

m
, pR = −(xz + 4x4f )

(2x
√
xz)

and x = mr the constraints reduce to

dz

dx
= 4x2f + 2x

√
xz
√

f (f + 2) ,

df

dx
=
{4 zf − 4x3f − 3z}

√

f (f + 2)

4x
√
xz

− 2

x
f (f + 2) ,

while E = x2f . One should have f (f + 2) ≥ 0 ⇒ two solution
branches: either f ≥ 0 and E > 0 or f ≤ −2 and E < 0.

Solutions with E < 0 are not globally defined and are singular.



Strong fields – potential energy sector

Let p∆ = pR = 0, ∆ =
g

h
, R = rh, ⇒ S = 0,

C = −h′′ − 2

x
h′ +

h′2

2h
− (xh)′g ′

xg
+

h(1− g2)

2x2g2

+
h(2− 3h)

2g
+

h(1− 6h + 6h2)

2g2
= 0,

asymptotic flatness: h0 ← h→ 1, 1← g → 1 for 0← x →∞

E = x2h2(3h − g − 2)/g .

Special solutions, also fulfill the Hamilton equations:
flat space: h = 1, g = 1, ds2g = ds2f , E = 0

tachyon space: h = 1
2 , g = 1, ds2g = 1

4 ds
2
f , E = −3x2

8 , m2
FP = −m2

2



Deformations of flat space

Setting g = qh/(xh)′, the constraint is solved with

Q = xh(1− q2) + x3h(2h − 1)(h − 1),

Q ′ = r2h(3h − 2)(q − 1)

for any Q(x). Let Q = AΘ(x − x0)(x − x0)
pe−x
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Energy is positive for smooth, asymptotically flat fields.



Deformations of tachyon space

Solutions with

h0 ← h→ 1

2

the energy is negative and infinite.

Negative energies cannot affect the positive energy solutions,
because the asymptotic conditions at infinity are different:

h0 ← h→ 1 positive energy branch
h0 ← h→ 1

2 negative energy branch

When deforming positive branch to the negative one the energy
shows a pole ⇒ the two branches are completely disjoint



Tachyon bubbles

Asymptotically flat solutions that start from the tachyon branch at
the origin and approach the flat space at infinity. The energy is
finite and negative.
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Does this affect the stability of flat space ?



Tachyon bubbles
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The lapse N shows poles. Can be proven for c3 = c4 = 0, in other
cases – numerical evidence.

One does not find globally regular and asymptotically flat negative

energy solutions which would describe initial data for a decay of

flat space ⇒ negative energy decouple and are harmless.



Summary of part I

The energy is positive for globally regular and asymptotically
flat fields constituting the “physical sector”

The energy can be unbounded from below, but only for fields
that are either singular or not asymptotically flat. Such fields
can show superluminal features.

It seems that negative energies are completely disjoint from
the positive sector. Negative energy solutions cannot describe
initial data for a decay of flat space ⇒ negative energy
decouple and are harmless ⇒ the physical sector is protected
from negative energies and superluminal phenomena by a
potential barrier.



II. Stability of cosmological solutions

arXiv:1503.03042



Problems of dRGT cosmology

dRGT theory does not admit spatially flat FLRW solutions

There is a spatially open FLRW solution, but it is unstable

Therefore, one should rather study extensions of the dRGT –
bigravity, quasidilaton etc.



de Sitter cosmology

dRGT theory admit solutions whose gµν is de Sitter while fµν
depends on a Stuckelberg scalar which should satisfy a complicated
nonlinear PDE. Only some simple solutions of the PDE are known.

Koyama, Niz, Tasinato, 2011
Chamseddine and M.S.V., 2011

dAmico, de Rham, Dubovsky, Gabadadze, Pirtskhalava, 2011
Gumrukcuoglu, Lin, Mukohyama, 2011

Gratia, Hu, and Wyman, 2011
M.S.V., 2012

Kobayashi, Siino, Yamaguchi, Yoshida, 2012
Khosravi, Niz, Koyama, Tasinato, 2013



de Sitter space

Hyperboloid

−X 2
0 + X 2

1 + X 2
2 + X 2

3 + X 2
4 = α2

is 5D Minkowski space with metric

ds2 = −dX 2
0 + dX 2

1 + dX 2
2 + dX 2

3 + dX 2
4

The induced geometry solves Einstein equations

Gµν + Λgµν = 0

provided that
1

α2
=

Λ

3

Changing coordinates gives expanding FLRW cosmologies.



Gordon ansatz

fµν = ω2
(

gµν + (1− ζ2)VµVν

)

,

with
gµνVµVν = −1.

If
P1(ω) = 0

with Pm(ω) = bm + 2bm+1 ω + bm+2 ω
2 then

Tµ
ν = −Λδµν

with Λ = m2P0(u) ⇒

Gµ
ν + Λδµν = 0

/Baccetti, Martin-Moruno, Visser, 2012/



de Sitter in dRGT

physical metric, 1/α2 = m2 P0(u)/3

ds2g = α2
{

−dt2 + dr2 + dx2 + dy2 + dz2
}

(g)

1 = −t2 + r2 + x2 + y2 + z2

reference metric, P1(u) = 0,

ds2f = α2u2
{

−dT 2(t, r) + dx2 + dy2 + dz2
}

(f )

⇒ compatible with Gordon if

(∂tT )2 − (∂rT )2 = 1

⇒ infinitely many solutions with the same (g) but different (f).



Simplest solution T = t

Transformation to the flat slicing

t = sinh τ +
ρ2

2
eτ , r = cosh τ − ρ2

2
eτ , R ≡

√

x2 + y2 + z2 = eτρ

gives spatially flat FLRW g-metric, with a(τ) = eτ ,

ds2g = α2{−dτ2 + a2(τ)(dρ2 + ρ2dΩ2)},

and

ds2f = α2u2{−dT 2(τ, ρ) + dR2 + R2dΩ2)},

with

T (τ, ρ) =
1

2

∫

dτ

ȧ(τ)
+

1

2

(

1 + ρ2
)

a(τ)

f-metric is inhomogeneous, whole solution is not FLRW

/d’Amico, de Rham, Dubovsky, Gabadadze, Pirtskhalava, 2011/



Simplest solution T = t

Transformation to the open slicing

t = sinh(τ) cosh(ρ), r = cosh(τ), R = sinh(τ) sinh(ρ)

gives

ds2g = α2{−dτ2 + a2(τ)(dρ2 + sinh2(ρ)dΩ2)},
ds2f = α2u2{− cosh(τ)2dτ2 + a2(τ)(dρ2 + sinh2(ρ)dΩ2)}.

with a(τ) = cosh(τ). Solution is manifestly FLRW.

/ Gumrukcuoglu, Lin, Mukohyama, 2011/

Lesson: the two metrics can have common non-manifest isometries



Simplest solution T = t

Transformation to the static slicing

t =
√

1− ρ2 sinh(τ), r =
√

1− ρ2 cosh(τ), R = ρ.

gives

ds2g = α2

{

−(1− ρ2) dτ2 +
dρ2

1− ρ2
+ ρ2dΩ2

}

,

ds2f = α2u2{−dT 2(τ, ρ) + dρ2 + ρ2dΩ2)},

with
T (τ, ρ) =

√

1− ρ2 sinh(τ),

Solution is not invariant under the action of the timelike de Sitter
isometry ∂/∂τ . This probably explains why it is unstable

/de Felice, Gumrukcuoglu, Mukohyama, 2012/

What about other solutions of (∂tT )2 − (∂rT )2 = 1 ?



(∂tT )2 − (∂rT )2 = 1

fairly general solution

T = cosh(ξ) t + sinh(ξ) r +W (ξ) ,

0 = sinh(ξ) t + cosh(ξ) r +
dW (ξ)

dξ



(∂tT )2 − (∂rT )2 = 1

method of characteristics

t

r

γ

γ

T=1
n

~n
n



(∂tT )2 − (∂rT )2 = 1

separation of variables. E.g. in static coordinates

1

1− ρ2

(

∂T

∂τ

)2

− 1− ρ2

ρ2

(

∂T

∂ρ

)2

= 1.

gives genuinely static solutions

T =
√

1 + q2 τ +

∫

ρ dρ

1− ρ2

√

q2 + ρ2

⇒ f-metric is static ⇒ a one-parameter family labeled by
q ≥ 0. If q = 0 then



Static solutions

ds2g = α2{−ΣdV 2 + 2dVdρ+ ρ2dΩ2},
ds2f = u2α2{−dV 2 + 2dVdρ+ ρ2dΩ2}.

with

V = t +

∫

dρ

1− ρ2

The canonical energy is time-independent



Canonical energy

E =

∫

E dρ,

where the radial energy density

E = u2P2(u)ρ
2∂τT .

If T = t then

E = u2P2(u)ρ
2
√

1− ρ2 cosh(τ)

depends on time. For the static solutions

E = u2P2(u)
√

1 + q2ρ2

which corresponds to the constant volume energy density

ǫ = u2P2(u)
√

1 + q2

Conjecture: E is minimal and the solutions are stable.



Summary of part II

In dRGT theory there are infinitely many de Sitter solutions
labeled by T (t, r) subject to (∂tT )2 − (∂rT )2 = 1.

Solutions can be FLRW (g and f have common rotational and
translational isometries) in a non-manifest way.

For a one-parameter family of solutions both metrics are
invariant under the timelike isometry and the energy is
time-independent. If the energy is minimal then the solution is
stable ⇒ “de Sitter vacuum”.



III. Wormholes in ghost-free bigravity

S.V.Sushkov and M.S.V., arXiv.1502.03712

Mikhail S. Volkov Energy of massive gravitons and the related issues (cosmology,



Wormholes – bridges between universes

ds2 = −Q2(r)dt2 + dr2 + R2(r)(dϑ2 + sin2 ϑdϕ2),

- 3 - 2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5

3.0

Gµν = 8πGTµν ⇒ ρ+ p < 0, p < 0 ⇒ violation of the null energy
condition: Tµνv

µvν ≥ 0 for any null vµ.
⇒ one needs vacuum polarization, phantom fields, higher
derivative gravity, Gauss-Bonnet, branworld gravity, non-minimal
couplings, Horndeski, Galileon, massive gravitons.



Ghost-free bigravity – two dynamical metrics gµν and fµν.

S =
M2

Pl

m2

∫
(

1

2κ1
R(g)

√−g +
1

2κ2
R(f )

√
−f − U√−g

)

d4x

U = b0 + b1
∑

A

λA + b2
∑

A<B

λAλB

+ b3
∑

A<B<C

λAλBλC + b4 λ0λ1λ2λ3

where λA are eigenvalues of γµν =
√
gµαfαν .

Gµ
ν (g) = κ1 T

µ
ν(g , f ),

Gµ
ν (f ) = κ2 T µ

ν(g , f ),

A massive + a massless graviton = 7 DoF.



Reduction to the S-sector

ds2g = −Q2dt2 +
R ′2

N2
dr2 + R2dΩ2

ds2f = −q2dt2 + U ′2

Y 2
dr2 + U2dΩ2

Q,N,R , q,Y ,U depend on r , one can impose 1 gauge condition.
5 independent equations

G 0
0 (g) = κ1 T

0
0 ,

G r
r (g) = κ1 T

r
r ,

G 0
0 (f ) = κ2 T 0

0 ,

G r
r (f ) = κ2 T r

r ,

T r
r
′ +

Q ′

Q
(T r

r − T 0
0 ) +

2

r
(Tϑ

ϑ − T r
r ) = 0.



Local solution at the throat

ds2g = −Q2dt2 + dr2 + R2dΩ2

ds2f = −q2dt2 + U ′2

Y 2
dr2 + U2dΩ2

Y = Y1r + Y3r
3 + . . . Q = Q0 + Q2r

2 + . . . R = h+ R2r
2 + . . .

q = q0 + q2r
2 + . . . U = σh + U2r

2 + . . .

Expanding the field equations gives in the leading order

(

κ1P0 −
1

h2

)

Q0 + κ1P1 q0 = 0,

(

κ2P2 −
1

h2

)

q0 + κ2P1Q0 = 0,

with Pm = bm + 2bm+1σ + bm+2 σ
2 . To have non-zero Q0, q0, the

determinant of this system must vanish. This gives



W1 wormholes – asymptotically AdS
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W1 wormhole solution – both metrics are asymptotically AdS.



Particle motion

ρ = 0 ρ = ρ∞ρ = −ρ∞
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Conformal structure of the g-geometry for the W1 solutions and

the effective potential in the geodesic equation
(

dρ
dt

)2
+ µ2

E2 Q
2 = 1.



Asymptotic behavior

For R →∞ approach the AdS solution, ds2f = λ2ds2g where

ds2g = −N2dt2 +
dR2

N2
+ R2dΩ2

with N2 → N2
0 = 1− Λr2

3 . One has

N2/N2
0 = 1 +

C

R3
+

A

R
√
R

cos (ω ln(R) + ϕ)

C -term is the Newtonian tail, the A-term is the effect of the
massive mode – scalar polarization of the massive graviton.
Oscillations: the massive graviton becomes a tachyon, with

m2
FP

=
(κ2
λ

+ κ1λ
)

(b1 + 2b2λ+ b3λ
2) < 0

May or may not exceed the BF bound

m2
BF =

3

4
Λ



W2 wormholes
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g-metric is asymptotically AdS, but f-metric is different and
geodesically incomplete



Particles

ρ = 0 ρ = ρ∞ρ = −ρ∞
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Summary of part III

The ghost-free bigravity theory admits wormhole solutions for
which the g-metric interpolates between AdS spaces

The wormhole throat is cosmologically large (could we live
inside it ?)

Some wormholes show the tachyon instability in the AdS
limit, but others could be stable.
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Section Alternative theories – AT4: Localized self-gravitating field

systems in the Einstein and alternatives theories of gravity
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