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Consistent Field Theories Standard Model of Particle Physics         
     & General Relativity

Spin 0:        Higgs boson   

Spin 1/2:     leptons, quarks 

Spin 1:        gluons, photon, W- & Z-boson      
       
Spin 2:        graviton  
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MASSLESS !

Consistent Field Theories

massive & 

massless



How do we describe  
massive spin-2 fields ?



Massless + Massive 
Spin-2 Fields



General Relativity
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Linear perturbations of Einstein’s equations,                              :

Massless Gravity

General Relativity with Einstein-Hilbert action for metric gµ⌫

SEH[g] = M

2
P

Z
d4x

p
g

⇣
R(g)� 2⇤

⌘

Einstein equations: Rµ⌫ � 1
2gµ⌫R+ ⇤gµ⌫ = 0

maximally symmetric solutions: R̄µ⌫ = ⇤ḡµ⌫

linear perturbation theory: gµ⌫ = ḡµ⌫ + �gµ⌫ :

Ē ⇢�
µ⌫ �g⇢� � ⇤g

�
�gµ⌫ � 1

2 ḡµ⌫�g
�
= 0

! equation for a massless spin-field with 2 degrees of freedom
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equation for a massless spin-2 field with 2 degrees of freedom,

Contents

Introduction

(Massive) Bimetric Gravity

The ghost-free theory

Relation to Conformal Gravity

Summary

⇤� = 0 (1)

ȧ

a

⇠ ⇢+ ⇤e↵ +O(↵2) (2)
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General Relativity  
= 

nonlinear theory  
of massless spin-2  



Linear Massive Gravity

Fierz & Pauli (1939): equation for massive spin-2 field

Ē ⇢�
µ⌫ �g⇢� +

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g

�
= 0

propagates 5 degrees of freedom for a = 1

for a 6= 1 there is an additional propagating scalar mode that
gives rise to a ghost instability

6 / 26
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Ghosts
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Ghost  =  field with negative kinetic energy

Ghosts in field theory

Ghost ⌘ field with negative kinetic energy

L = (@t�)
2 · · · (healthy)

L = �(@t�)
2 · · · (ghost)

consequences: classical instabilities, negative probabilities in
quantum theory ! must be avoided!

explicit check for ghosts by computing the Hamiltonian

massive spin-2 ghost: 6 degrees of freedom instead of 5

! need extra constraint to remove the ghost

in linear Fierz-Pauli theory the constraint arises only for a = 1

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g

�
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healthy

ghost

consequences: classical instability, negative probabilities at quantum level
must be avoided!

Modifications of General Relativity tend to be haunted by ghosts.  
Modifying gravity is EXTREMELY difficult!

See however Yashar’s talk!
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Ghosts



Fierz-Pauli theory is linear. 
General Relativity is nonlinear. 

Can we write down a  
nonlinear mass term ?



Nonlinear Mass Term
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… should not contain derivatives nor loose indices.

Nonlinear Massive Gravity

Mass term should have non-derivative interactions of gµ⌫ , but
if we try to contract the indices we get:

g

µ⌫
gµ⌫ = 4

This is not a mass term.

Only way out: introduce second metric to contract indices

g

µ⌫
fµ⌫ = Tr (g�1

f) f

µ⌫
gµ⌫ = Tr (f�1

g)

Massive Gravity action is of the form

SMG[g] = SEH[g] �
Z

d4x V (g, f)

What determines fµ⌫?
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kinetic term mass term 

What determines          ? 

Can we make it dynamical ? 
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Bimetric Theory 

7/21

Massive Gravity
nondynamical background metric fµ⌫ , fixed by hand

! 5 d.o.f.

dynamical fµ⌫ , determined by its equation of motion
! 5 + 2 = 7 d.o.f. [Rosen, 1940; Isham, Salam & Strathdee,1971/77]

Bimetric action:

Sb[g, f ] = m

2
g

Z
d4x

p
g

⇣
R(g)� 2⇤

⌘

+ m

2
f

Z
d4x

p
f

⇣
R(f)� 2⇤̃

⌘
�

Z
d4x V (g, f)

But there’s still a problem . . .

Nonlinear bimetric action:

both metrics are dynamical and treated on equal footing

should describe massive & massless spin-2 field (5+2 d.o.f.)



This looks nice … 

… but unfortunately  
the general theory  
again has ghosts!

Linear Massive Gravity
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The Nonlinear Ghost
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Can we extend the Fierz-Pauli mass term  
                                by nonlinear interactions ?

Can we choose coefficients      such that the ghost remains absent ?

The nonlinear ghost

Can we extend the linear mass term by higher-order interactions?

m2
FP
2

�
�gµ⌫ � ḡµ⌫�g

�
+ c1�g

⇢
µ �g⇢⌫ + c2�g�gµ⌫ + . . .

! Can we fix coefficients ci such that ghost is absent?

Boulware & Deser (1972): Beyond linear order this is impossible!

No consistent nonlinear Massive Gravity?
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Boulware & Deser (1972): Beyond linear order this is impossible!

No consistent nonlinear massive gravity / bimetric theory ?



Massive gravity stinks. 
If you want to modify gravity, 

try something else…

“

Quote from lecture notes by Kurt Hinterbichler, 2010 
(now turned into a very nice review!)



The Ghost-Free  
Theory



Development 
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de Rham, Gabadadze, Tolley (2010):
construction of candidate theory for massive gravity in flat reference frame;  
ghost-free in “decoupling limit”

Creminelli, Nicolis, Papucci, Trincherini (2005):
attempt to construct ghost-free candidate theory; fails only because of  
unfortunate sign mistake 

Hassan, Rosen, ASM, von Strauss (2011/12):
proof of absence of ghost in fully nonlinear theory

Hassan & Rosen (2011):
generalisation to ghost-free bimetric theory



Interaction Potential 
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de Rham, Gabadadze, Tolley (2010); 
Hassan & Rosen (2011)

Ghost-free interaction potential

◆
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⌘V (g, f) = m

4p
g

3X
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⇣p
g

�1
f
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[de Rham, Gabadadze & Tolley, 2010; Hassan & Rosen, 2011; Hassan, ASM & Rosen, 2011]

The potential involves . . .

. . . an arbitrary mass scale m, 3 free parameters �n

. . . the elementary symmetric polynomials

en(S) =
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n!(4� n)!
✏µ1...µn�n+1...�4✏

⌫1...⌫n�n+1...�4
S

µ1
⌫1 . . . S

µn
⌫n

. . . a square-root matrix S defined through S

2 = g

�1
f
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1
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) Consistent theory for massless & massive spin-2
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) Consistent theory for massless & massive spin-211/21

- free bimetric theory

Linear Massive Gravity

Fierz & Pauli (1939): equation for massive spin-2 field

Ē ⇢�
µ⌫ �g⇢� � ⇤g

�
�gµ⌫ � 1

2 ḡµ⌫�g
�
+

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g

�
= 0

propagates 5 degrees of freedom for a = 1

for a 6= 1 there is an additional propagating scalar mode that
gives rise to a ghost instability

6 / 26

Hassan & Rosen (2011)

Based on

ASM, M. von Strauss
1412.3812

S.F. Hassan, ASM, M. von Strauss
1208.1515
1203.5283

S.F. Hassan, R. Rosen, ASM
1109.3230

↵
⌦

�
 V (g, f) = m4pg

4X

n=0

�n en

✓q
g�1f

◆
= m4pf

4X

n=0

�4�n en

✓q
f�1g

◆
(1)



What is the physical  
content of ghost-free  

bimetric theory ?



Proportional solutions
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Proportional backgrounds [Hassan, ASM & von Strauss, 2012]

Particularly important solution to equations of motion:

f̄µ⌫ = c

2
ḡµ⌫ with c = const.

– gives two copies of Einstein’s equations (↵ ⌘ mf/mg)

Rµ⌫(ḡ)� 1
2 ḡµ⌫R(ḡ) + ⇤g(↵,�n, c)ḡµ⌫ = 0

Rµ⌫(ḡ)� 1
2 ḡµ⌫R(ḡ) + ⇤f (↵,�n, c)ḡµ⌫ = 0

– consistency condition: ⇤g(↵,�n, c) = ⇤f (↵,�n, c) determines c

) maximally symmetric backgrounds with Rµ⌫(ḡ) = ⇤g ḡµ⌫
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16 / 26

consistency condition:                                           determines 

Proportional backgrounds [Hassan, ASM & von Strauss, 2012]

Particularly important solution to equations of motion:

f̄µ⌫ = c

2
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Maximally symmetric backgrounds with 

Hassan, ASM, von Strauss (2012)



Mass spectrum 
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Bimetric mass spectrum [Hassan, ASM & von Strauss, 2012]

perturb bimetric equations around proportional backgrounds:

gµ⌫ = ḡµ⌫ + �gµ⌫ fµ⌫ = c

2
ḡµ⌫ + �fµ⌫

fluctuations diagonalizable into mass eigenstates:

massless �Gµ⌫ / �gµ⌫ + ↵

2
�fµ⌫

massive �Mµ⌫ / �fµ⌫ � c

2
�gµ⌫

) linear equations:

Ē ⇢�
µ⌫ �G⇢� � ⇤g

�
�Gµ⌫ � 1

2 ḡµ⌫�G
�
= 0

Ē ⇢�
µ⌫ �M⇢� � ⇤g

�
�Mµ⌫ � 1

2 ḡµ⌫�M
�
+

m2
FP
2 (�Mµ⌫ � ḡµ⌫�M) = 0

with mass mFP = mFP(↵,�n, c)
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ḡµ⌫ + �fµ⌫

fluctuations diagonalizable into mass eigenstates:

massless �Gµ⌫ / �gµ⌫ + ↵

2
�fµ⌫

massive �Mµ⌫ / �fµ⌫ � c

2
�gµ⌫

) linear equations:
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with Fierz-Pauli mass

Linearised equations: 
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Ghost-free bimetric theory 
= 

nonlinear theory  
of massless & massive spin-2  



Deviations from 
General Relativity



What is the physical metric ? 

How does matter couple  
to the tensor fields ?



Matter coupling
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Only one metric can couple to matter!

Which metric represents gravity?

Absence of ghost: only one of the metrics couples to matter

Sgf = m

2
g

Z
d4x

p
g R(g) + m

2
f

Z
d4x

p
f R(f)

� m

4

Z
d4x

p
g

4X

n=0

�nen

⇣p
g

�1
f

⌘

+

Z
d4x

p
g Lmatter(g,�)

! only known coupling that does not re-introduce the ghost

! gµ⌫ is the gravitational metric

The gravitational metric is not massless!
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The gravitational metric is not massless !!

Yamashita, de Felice, Tanaka;  
de Rham, Heisenberg, Ribeiro (2015)



Assume that                       is small (i.e. weak gravity!)

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :

m

2
g

Z
d4x

p
g R(g) +m

2
f

Z
d4x K(g,M) +

Z
d4x V (g,M)

+

Z
d4x

p
g Lmatter(g,�)

Recall: �gµ⌫ / �Gµ⌫ � ↵

2
�Mµ⌫

) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory
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the gravitational metric is almost massless

the massive spin-2 field interacts only weakly with matter

Baccetti, Martin-Moruno, Visser (2012);  
Hassan, ASM, von Strauss (2012/14); 
Akrami, Hassan, Koennig, ASM, Solomon (2015)

Bimetric theory = General Relativity (GR) + corrections 



Assume that                       is small (i.e. weak gravity!)

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :

m

2
g

Z
d4x

p
g R(g) +m

2
f

Z
d4x K(g,M) +

Z
d4x V (g,M)

+

Z
d4x

p
g Lmatter(g,�)

Recall: �gµ⌫ / �Gµ⌫ � ↵

2
�Mµ⌫

) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory

19 / 26

Recall:

Physical Interpretation

15/21

Bimetric theory = General Relativity (GR) + corrections 

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :

m

2
g

Z
d4x

p
g R(g) +m

2
f

Z
d4x K(g,M) +

Z
d4x V (g,M)

+

Z
d4x

p
g Lmatter(g,�)

Recall: �gµ⌫ / �Gµ⌫ � ↵

2
�Mµ⌫

) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory

19 / 26

the gravitational metric is almost massless

the massive spin-2 field interacts only weakly with matter

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :

m

2
g

Z
d4x

p
g R(g) +m

2
f

Z
d4x K(g,M) +

Z
d4x V (g,M)

+

Z
d4x

p
g Lmatter(g,�)

Recall: �gµ⌫ / �Gµ⌫ � ↵

2
�Mµ⌫

) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory

19 / 26

is the General Relativity limit of bimetric theory

Baccetti, Martin-Moruno, Visser (2012);  
Hassan, ASM, von Strauss (2012/14); 
Akrami, Hassan, Koennig, ASM, Solomon (2015)



Large Spin-2 Mass
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Interactions with a heavy field do not strongly affect the low-energy  
theory of the massless spin-2 mode, which therefore resembles GR.

This can be verified explicitly in static point-source solutions and  
cosmological solutions of bimetric theory.

~
-2For small     the Fierz-Pauli mass scales as: 

Thus it becomes large in the limit of small    .  

Babichev & Chrisostomi (2013)



Ghost-free bimetric theory 
= 

General Relativity + 
additional (heavy?) tensor field  
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extra symmetries? 
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What if it has spin-2 ?

Akrami, Hassan, Könnig, ASM, Solomon (2015); 
Könnig, Patil, Amendola (2014); 

Akrami, Koivisto, Mota, Sandstad (2013); 
Volkov; von Strauss, ASM, Enander, Mörtsell, Hassan; 

Comelli, Crisostomi, Nesti, Pilo (2011)

Viable cosmology 
with self-accelerating 

solutions 
See Adam’s talk!



Spin-2 
Dark Matter



Dark Matter
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Aoki, Mukohyama (2016); 
Babichev, Marzola, Raidal, ASM, 

Urban, Veermäe, von Strauss (2016)

Quadratic action for mass eigenstates:



Dark Matter

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :
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) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory
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In the General Relativity (GR) limit of bimetric theory,              : 

massive spin-2 field decouples from matter, interacts only with gravity.
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In the General Relativity (GR) limit of bimetric theory,              : 

massive spin-2 field decouples from matter, interacts only with gravity.

18/21

Aoki, Mukohyama (2016); 
Babichev, Marzola, Raidal, ASM, 

Urban, Veermäe, von Strauss (2016)

A large spin-2 mass further suppresses deviations from GR.

Quadratic action for mass eigenstates:

Basically we get:  GR + Standard Model +  spin-2 dark matter candidate



Consistency checks
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… gravitates just like baryonic matter

… has interactions with baryonic matter which are naturally 
    suppressed by the Planck scale

Our spin-2 dark matter is part of gravity (!) and…

… can be produced thermally for a mass of 1 - 10  TeV8 

… does not decay into gravitons and its decay rate into  
    Standard Model fields is sufficiently small:           ~

automatically stable



Detection

20/21

correlations with gravitational waves                 Ask Shinji!

massive spin-2 field may gravitate differently in curved backgrounds 
         

     non-standard behaviour of dark matter around massive objects ?

not observable in current indirect and direct detection experiments

dark matter self-interactions: could be observable in cluster collisions 
                                           and in power spectrum



Lessons learned  
 (and to be    
       learned…)
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Ghost-free bimetric theory…

is one of the few known consistent modifications of General Relativity

describes nonlinear interactions of massless and massive spin-2 fields

can be interpreted as gravity in the presence of an extra spin-2 field

contains an interesting dark matter candidate whose coupling to  
baryonic matter is suppressed by the Planck scale
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Ghost-free bimetric theory…

is one of the few known consistent modifications of General Relativity

describes nonlinear interactions of massless and massive spin-2 fields

can be interpreted as gravity in the presence of an extra spin-2 field

contains an interesting dark matter candidate whose coupling to  
baryonic matter is suppressed by the Planck scale

And what is next ? develop better understanding of phenomenology

can we detect this ??



Linear Massive Gravity

Fierz & Pauli (1939): equation for massive spin-2 field

Ē ⇢�
µ⌫ �g⇢� � ⇤g

�
�gµ⌫ � 1

2 ḡµ⌫�g
�
+

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g

�
= 0

propagates 5 degrees of freedom for a = 1

for a 6= 1 there is an additional propagating scalar mode that
gives rise to a ghost instability

6 / 26

  Thank you for you attention!


