Gravitational Origin of Dark Matter

 mostly based on arXiv 1604.08564
Angnis Schmidt-May

ETHzürich

Hot Topics in Modern Cosmology

May 9, 2016

Cargèse
1604.08564
Eugeny Babichev
Luca Marzola
Martti Raidal Federico Urban
Hardi Veermäe Mikael von Strauss

Yashar Akrami Oliver Baldacchino Laura Bernard Cédric Deffayet Jonas Enander Fawad Hassan Mikica Kocic Frank Könnig Edvard Mörtsell Rachel Rosen Adam Solomon

\Rightarrow Motivation

\Rightarrow Massless \& Massive Spin-2 Fields
\Rightarrow The Ghost-Free Theory

Contents

s Deviations from General Relativity
$\$$ Cosmology
\& Spin-2 Dark Matter
Δ Conclusions

Mokivation

Philosophy

Approach I

1. invent a model to explain observations
many possibilities
2. check if model is consistent, fits into larger framework, has motivations besides cosmology, etc.

Philosophy

Approach I

1. invent a model to explain observations
\Rightarrow many possibilities
2. check if model is consistent, fits into larger framework, has motivations besides cosmology, etc.

Approach 2

1. construct a consistent model guided by a fundamental question \Rightarrow few possibilities
2. check if it can explain (part of) an observational phenomenon

Philosophy

Approach

invent a model to explain observations

- many possibilities
check if model is consistent, fits into larger framework, has motivations besides cosmology, etc.

Approach 2

1. construct a consistent model guided by a fundamental question
\Rightarrow few possibilities
2. check if it can explain (part of) an observational phenomenon

Standard Model of Particle Physics

\& General Relativity

Spin 0: \quad Higgs boson ϕ
Spin 1/2: leptons, quarks ψ^{a}
Spin 1: gluons, photon, W- \& Z-boson A_{μ}
Spin 2: \quad graviton $g_{\mu \nu}$

Consistent Field Theories

Standard Model of Particle Physics

\& General Relativity

Spin 0: \quad Higgs boson ϕ
Spin 1/2: leptons, quarks ψ^{a}
Spin 1: gluons, photon, W- \& Z-boson A_{μ}
Spin 2:
graviton $g_{\mu \nu}$

How do we describe massive spin-2 fields?

Massless + Massive Spin-2 Fields

General Relativity

$$
S_{\mathrm{EH}}[g]=M_{\mathrm{P}}^{2} \int \mathrm{~d}^{4} x \sqrt{g}(R(g)-2 \Lambda)
$$

Einstein's equations: $\quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$
Maximally symmetric solutions: $\bar{R}_{\mu \nu}=\Lambda \bar{g}_{\mu \nu}$

Linear perturbations of Einstein's equations, $g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}$:

$$
\overline{\mathcal{E}}_{\mu \nu}^{\rho \sigma} \delta g_{\rho \sigma}=0 \quad \overline{\mathcal{E}} \sim \nabla \nabla+\Lambda
$$

equation for a massless spin-2 field with 2 degrees of freedom, tensor analogue of $\square \phi=0$

General Relativity
 $$
=
$$
 nonlinear theory of massless spin-2

Linear Massive Gravity

Equation for a massive spin-2 field:

$$
\overline{\mathcal{E}}_{\mu \nu}{ }^{\rho \sigma} \delta g_{\rho \sigma}+\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta g_{\mu \nu}-\mathbf{a} \bar{g}_{\mu \nu} \delta g\right)=0
$$

tensor analogue of $\square \phi-m^{2} \phi=0$

Linear Massive Gravity

Equation for a massive spin-2 field:

$$
\overline{\mathcal{E}}_{\mu \nu}{ }^{\rho \sigma} \delta g_{\rho \sigma}+\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta g_{\mu \nu}-\mathbf{a} \bar{g}_{\mu \nu} \delta g\right)=0
$$

tensor analogue of $\square \phi-m^{2} \phi=0$
\Rightarrow propagates 5 degrees of freedom for $\mathrm{a}=1$
\lesssim for $a \neq 1$ there is an additional scalar mode which gives rise to a ghost instability

Ghosts

Ghost = field with negative kinetic energy

$$
\begin{aligned}
\mathcal{L} & =\left(\partial_{t} \phi\right)^{2} \ldots \text { healthy } \\
\mathcal{L} & =-\left(\partial_{t} \phi\right)^{2} \ldots \text { ghost }
\end{aligned}
$$

\Rightarrow consequences: classical instability, negative probabilities at quantum level \Rightarrow must be avoided!

Ghosts

Ghost = field with negative kinetic energy

$$
\begin{aligned}
\mathcal{L} & =\left(\partial_{t} \phi\right)^{2} \ldots \text { healthy } \\
\mathcal{L} & =-\left(\partial_{t} \phi\right)^{2} \ldots \text { ghost }
\end{aligned}
$$

\rightarrow consequences: classical instability, negative probabilities at quantum level \Rightarrow must be avoided!

Ghosts

Ghost $=$ field with negative kinetic energy

$$
\begin{aligned}
\mathcal{L} & =\left(\partial_{t} \phi\right)^{2} \ldots \text { healthy } \\
\mathcal{L} & =-\left(\partial_{t} \phi\right)^{2} \ldots \text { ghost }
\end{aligned}
$$

\Rightarrow consequences: classical instability, negative probabilities at quantum level \Rightarrow must be avoided!

Modifications of General Relativity tend to be haunted by ghosts. Modifying gravity is EXTREMELY difficult!

Fierz-Pauli theory is linear. General Relativity is nonlinear.

Can we write down a nonlinear mass term?

Nonlinear Mass Term

... should not contain derivatives nor loose indices.
But if we try to contract the indices of the metric, we get: $g^{\mu \nu} g_{\mu \nu}=4$ This is not a mass term.

Simplest way out: Introduce second "metric" to contract indices:

$$
g^{\mu \nu} f_{\mu \nu}=\operatorname{Tr}\left(g^{-1} f\right) \quad f^{\mu \nu} g_{\mu \nu}=\operatorname{Tr}\left(f^{-1} g\right)
$$

But if we try to contract the indices of the metric, we get: $g^{\mu \nu} g_{\mu \nu}=4$ This is not a mass term.

Simplest way out: Introduce second "metric" to contract indices:

$$
g^{\mu \nu} f_{\mu \nu}=\operatorname{Tr}\left(g^{-1} f\right) \quad f^{\mu \nu} g_{\mu \nu}=\operatorname{Tr}\left(f^{-1} g\right)
$$

Massive gravity action is of the form

$$
\begin{aligned}
S_{\mathrm{MG}}[g]= & S_{\mathrm{EH}}[g]-\int \mathrm{d}^{4} x V(g, f) \\
\text { kinetic term } & \text { mass term }
\end{aligned}
$$

Bimetric Theory

Nonlinear bimetric action:

$$
\begin{aligned}
S_{\mathrm{b}}[g, f] & =m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g}(R(g)-2 \Lambda) \\
& +m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f}(R(f)-2 \tilde{\Lambda})-\int \mathrm{d}^{4} x V(g, f)
\end{aligned}
$$

si both metrics are dynamical and treated on equal footing
Δ should describe massive \& massless spin-2 field ($5+2$ d.o.f.)

This looks nice ...
... but unfortunately the general theory again has ghosts!

The Nonlinear Ghost

Can we extend the Fierz-Pauli mass term
by nonlinear interactions?

$$
\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta g_{\mu \nu}-\bar{g}_{\mu \nu} \delta g\right)+\mathbf{c}_{1} \delta g_{\mu}^{\rho} \delta g_{\rho \nu}+\mathbf{c}_{2} \delta g \delta g_{\mu \nu}+\ldots
$$

$\sqrt{3}$ Can we choose coefficients C_{i} such that the ghost remains absent?

The Nonlinear Ghost

Can we extend the Fierz-Pauli mass term
by nonlinear interactions?

$$
\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta g_{\mu \nu}-\bar{g}_{\mu \nu} \delta g\right)+\mathbf{c}_{1} \delta g_{\mu}^{\rho} \delta g_{\rho \nu}+\mathbf{c}_{2} \delta g \delta g_{\mu \nu}+\ldots
$$

$\sqrt[3]{ }$ Can we choose coefficients c_{i} such that the ghost remains absent?

Boulware \& Deser (1972): Beyond linear order this is impossible!

No consistent nonlinear massive gravity / bimetric theory?

66

Massive gravity stinks. If you want to modify gravity, try something else...

Quote from lecture notes by Kurt Hinterbichler, 2010 (now turned into a very nice review!)

The Chost-Free Theory

Development

Creminelli, Nicolis, Papucci, Trincherini (2005): attempt to construct ghost-free candidate theory; fails only because of unfortunate sign mistake
de Rham, Gabadadze, Tolley (2010):
construction of candidate theory for massive gravity in flat reference frame; ghost-free in "decoupling limit"

Hassan, Rosen, ASM, von Strauss (2011/12):
proof of absence of ghost in fully nonlinear theory
Hassan \& Rosen (2011):
generalisation to ghost-free bimetric theory

$$
V(g, f)=m^{4} \sqrt{g} \sum_{n=1}^{3} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)
$$

\gg arbitrary spin- 2 mass scale m
s 3 interaction parameters β_{n}
\Rightarrow elementary symmetric polynomials $e_{n}(S)$
\Rightarrow square-root matrix S defined through $S^{2}=g^{-1} f$

$$
\begin{aligned}
& S_{\mathrm{b}}[g, f]=m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g} R(g) \\
&+m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f} R(f)-\int \mathrm{d}^{4} x V(g, f) \\
& V(g, f)=m^{4} \sqrt{g} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)=m^{4} \sqrt{f} \sum_{n=0}^{4} \beta_{4-n} e_{n}\left(\sqrt{f^{-1} g}\right) \\
& e_{1}(S)=\operatorname{Tr}[S] \quad e_{2}(S)=\frac{1}{2}\left((\operatorname{Tr}[S])^{2}-\operatorname{Tr}\left[S^{2}\right]\right) \\
& e_{3}(S)=\frac{1}{6}\left((\operatorname{Tr}[S])^{3}-3 \operatorname{Tr}\left[S^{2}\right] \operatorname{Tr}[S]+2 \operatorname{Tr}\left[S^{3}\right]\right)
\end{aligned}
$$

What is the physical content of ghost-free bimetric theory?

Proportional solutions

$$
\bar{f}_{\mu \nu}=c^{2} \bar{g}_{\mu \nu} \quad \text { with } \quad c=\text { const. }
$$

s gives two copies of Einstein's equations $\left(\alpha \equiv m_{f} / m_{g}\right)$:

$$
\begin{aligned}
& R_{\mu \nu}(\bar{g})-\frac{1}{2} \bar{g}_{\mu \nu} R(\bar{g})+\Lambda_{g}\left(\alpha, \beta_{n}, c\right) \bar{g}_{\mu \nu}=0 \\
& R_{\mu \nu}(\bar{g})-\frac{1}{2} \bar{g}_{\mu \nu} R(\bar{g})+\Lambda_{f}\left(\alpha, \beta_{n}, c\right) \bar{g}_{\mu \nu}=0
\end{aligned}
$$

\Rightarrow consistency condition: $\Lambda_{g}\left(\alpha, \beta_{n}, c\right)=\Lambda_{f}\left(\alpha, \beta_{n}, c\right)$ determines c

Maximally symmetric backgrounds with $\quad R_{\mu \nu}(\bar{g})=\Lambda_{g} \bar{g}_{\mu \nu}$

Mass spectrum

Perturbations around proportional backgrounds:

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu} \quad f_{\mu \nu}=c^{2} \bar{g}_{\mu \nu}+\delta f_{\mu \nu}
$$

Can be diagonalised into mass eigenstates:

$$
\begin{aligned}
\delta G_{\mu \nu} & \propto \delta g_{\mu \nu}+\alpha^{2} \delta f_{\mu \nu} \\
\delta M_{\mu \nu} & \propto \delta f_{\mu \nu}-c^{2} \delta g_{\mu \nu}
\end{aligned} \text { massives (2 d.o.f.) } \text { (5 d.o.f.) }
$$

Linearised equations:

$$
\begin{aligned}
& \overline{\mathcal{E}}_{\mu \nu}^{\rho \sigma} \delta G_{\rho \sigma}=0 \\
& \overline{\mathcal{E}}_{\mu \nu}^{\rho \sigma} \delta M_{\rho \sigma}+\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta M_{\mu \nu}-\bar{g}_{\mu \nu} \delta M\right)=0
\end{aligned}
$$

with Fierz-Pauli mass $\quad m_{\mathrm{FP}}=m_{\mathrm{FP}}\left(\alpha, \beta_{n}, c\right)$

Ghost-free bimetric theory

nonlinear theory of massless \& massive spin-2

Deviations from General Relakivily

What is the physical metric?
How does matter couple to the tensor fields?

Only one metric can couple to matter!

$$
\begin{aligned}
S_{g f}=m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g} R(g) & +m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f} R(f) \\
& -m^{4} \int \mathrm{~d}^{4} x \sqrt{g} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right) \\
& +\int \mathrm{d}^{4} x \sqrt{g} \mathcal{L}_{\text {matter }}(g, \phi)
\end{aligned}
$$

\Rightarrow only coupling that does not re-introduce the ghost
$g_{\mu \nu}$ is gravitational metric

Only one metric can couple to matter!

$$
\begin{aligned}
S_{g f}=m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g} R(g) & +m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f} R(f) \\
& -m^{4} \int \mathrm{~d}^{4} x \sqrt{g} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right) \\
& +\int \mathrm{d}^{4} x \sqrt{g} \mathcal{L}_{\text {matter }}(g, \phi)
\end{aligned}
$$

\Rightarrow only coupling that does not re-introduce the ghost
$g_{\mu \nu}$ is gravitational metric

Physical Interpretation

Baccetti, Martin-Moruno, Visser (2012); Hassan, ASM, von Strauss (2012/14); Akrami, Hassan, Koennig, ASM, Solomon (2015)

$$
\text { Bimetric theory }=\text { General Relativity }(G R)+\text { corrections }
$$

Recall: $\quad \delta g_{\mu \nu} \propto \delta G_{\mu \nu}-\alpha^{2} \delta M_{\mu \nu}$
Assume that $\alpha=m_{f} / m_{g}$ is small (i.e. weak gravity!)
\Rightarrow the gravitational metric is almost massless
the massive spin-2 field interacts only weakly with matter

Physical Interpretation

Baccetti, Martin-Moruno, Visser (2012); Hassan, ASM, von Strauss (2012/14); Akrami, Hassan, Koennig, ASM, Solomon (2015)
Bimetric theory = General Relativity (GR) + corrections

Recall: $\quad \delta g_{\mu \nu} \propto \delta G_{\mu \nu}-\alpha^{2} \delta M_{\mu \nu}$
Assume that $\alpha=m_{f} / m_{g}$ is small (i.e. weak gravity!)
the gravitational metric is almost massless
the massive spin-2 field interacts only weakly with matter
$\alpha \rightarrow 0$ is the General Relativity limit of bimetric theory

For small α the Fierz-Pauli mass scales as: $\quad m_{\mathrm{FP}} \sim \alpha^{-2}$

Thus it becomes large in the limit of small α.
\& Interactions with a heavy field do not strongly affect the low-energy theory of the massless spin-2 mode, which therefore resembles GR.
\Rightarrow This can be verified explicitly in static point-source solutions and cosmological solutions of bimetric theory.

Ghost-free bimetric theory

General Relativity + additional (heavy?) tensor field

Cosmology

"Screening" does not work. But maybe extra symmetries? See Mikael's talk!

Dark Matter

Quadratic action for mass eigenstates:

$$
\begin{aligned}
S_{(2)}=\frac{1}{2} \int \mathrm{~d}^{4} x[& \delta G_{\mu \nu} \mathcal{E}^{\mu \nu \rho \sigma} \delta G_{\rho \sigma}+ \\
& \delta M_{\mu \nu} \mathcal{E}^{\mu \nu \rho \sigma} \delta M_{\rho \sigma} \\
& \left.-\frac{m_{\mathrm{PP}}^{2}}{2}\left(\delta M^{\mu \nu} \delta M_{\mu \nu}-\delta M^{2}\right)-\frac{1}{m_{\mathrm{Pl}}}\left(\delta G^{\mu \nu}-\alpha \delta M^{\mu \nu}\right) T_{\mu \nu}\right]
\end{aligned}
$$

Dark Matter

Quadratic action for mass eigenstates:

$$
\begin{aligned}
& S_{(2)}=\frac{1}{2} \int \mathrm{~d}^{4} x[\delta G_{\mu \nu} \mathcal{E}^{\mu \nu \rho \sigma} \delta G_{\rho \sigma}+ \\
& \delta M_{\mu \nu} \mathcal{E}^{\mu \nu \rho \sigma} \delta M_{\rho \sigma} \\
&\left.\quad-\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta M^{\mu \nu} \delta M_{\mu \nu}-\delta M^{2}\right)-\frac{1}{m_{\mathrm{P} 1}}\left(\delta G^{\mu \nu}-\alpha \delta M^{\mu \nu}\right) T_{\mu \nu}\right]
\end{aligned}
$$

In the General Relativity (GR) limit of bimetric theory, $\alpha \rightarrow 0$:
massive spin-2 field decouples from matter, interacts only with gravity.
A large spin-2 mass further suppresses deviations from GR.

Dark Matter

Quadratic action for mass eigenstates:

$$
\begin{aligned}
& S_{(2)}=\frac{1}{2} \int \mathrm{~d}^{4} x[\delta G_{\mu \nu} \mathcal{E}^{\mu \nu \rho \sigma} \delta G_{\rho \sigma}+ \\
& \delta M_{\mu \nu} \mathcal{E}^{\mu \nu \rho \sigma} \delta M_{\rho \sigma} \\
&\left.\quad-\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta M^{\mu \nu} \delta M_{\mu \nu}-\delta M^{2}\right)-\frac{1}{m_{\mathrm{P} 1}}\left(\delta G^{\mu \nu}-\alpha \delta M^{\mu \nu}\right) T_{\mu \nu}\right]
\end{aligned}
$$

In the General Relativity (GR) limit of bimetric theory, $\alpha \rightarrow 0$: massive spin-2 field decouples from matter, interacts only with gravity.

A large spin-2 mass further suppresses deviations from GR.

Basically we get: GR + Standard Model + spin-2 dark matter candidate

Consistency checks

Our spin-2 dark matter is part of gravity (!) and...
ss ... gravitates just like baryonic matter
\rangle... does not decay into gravitons and its decay rate into Standard Model fields is sufficiently small: $\Gamma(\delta M \rightarrow X X) \sim \frac{\alpha^{2} m_{2}^{3}}{m_{\mathrm{P}}^{2}}$
\Rightarrow automatically stable
s ... has interactions with baryonic matter which are naturally suppressed by the Planck scale
$\Rightarrow \quad$... can be produced thermally for a mass of $1-10^{8} \mathrm{TeV}$

Detection

st not observable in current indirect and direct detection experiments
> massive spin-2 field may gravitate differently in curved backgrounds
\Rightarrow non-standard behaviour of dark matter around massive objects?
> dark matter self-interactions: could be observable in cluster collisions and in power spectrum
2) correlations with gravitational waves
\Rightarrow Ask Shinji!

Lessons learned (and to be learned...)

Ghost-free bimetric theory...
st is one of the few known consistent modifications of General Relativity
is describes nonlinear interactions of massless and massive spin-2 fields
st can be interpreted as gravity in the presence of an extra spin-2 field
s) contains an interesting dark matter candidate whose coupling to baryonic matter is suppressed by the Planck scale

Ghost-free bimetric theory...
$\$ 3$ is one of the few known consistent modifications of General Relativity
25 describes nonlinear interactions of massless and massive spin-2 fields
st can be interpreted as gravity in the presence of an extra spin-2 field
s) contains an interesting dark matter candidate whose coupling to baryonic matter is suppressed by the Planck scale

And what is next?

develop better understanding of phenomenology
\square can we detect this ??

Thank you for you attention!

