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Inflation and particle physics

- Inflation requires physics beyond the SM: 

Difficulty to connect known particle physics and inflation: 
large separation of energy scales 

1.At least a new degree of freedom (the inflaton)

2. Couplings: reheating and DM production
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Couplings of the inflaton

- Can they affect how inflation takes place?

First part of the talk:

- What is the interplay between inflation and the SM?
Second part of the talk (if time permits):

Example: monomial chaotic inflation 
(arXiv:1510.05669)

Example: stability of the SM effective potential
(arXiv:1505.07476)
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Summary of part one

V / �N

r . 0.07CMB:

r ' 4N/Ne

Tensor-to-scalar ratio:

Ne = number of e-folds

N = 2

N = 4

r ⇠ 0.13

r ⇠ 0.26

Solution: radiative corrections 
can flatten the potential

Require couplings to:
fermions and scalar or gauge bosons

r ⇠ 10�3

r / M2
P (V

0/V )2

Future sensitivity: �r ⇠ 10�3
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FIG. 7. Constraints in the r vs. ns plane when using Planck
plus additional data, and when also adding BICEP2/Keck
data through the end of the 2014 season including new 95 GHz
maps—the constraint on r tightens from r0.05 < 0.12 to
r0.05 < 0.07. This figure is adapted from Fig. 21 of Ref. [2]—
see there for further details.

also thank the Planck and WMAP teams for the use of
their data.

⇤ jmkovac@cfa.harvard.edu
† pryke@physics.umn.edu

[1] A. A. Penzias and R. W. Wilson, Astrophys. J. 142, 419
(1965).

[2] Planck Collaboration 2015 XIII, ArXiv e-prints (2015),
arXiv:1502.01589.

[3] M. Kamionkowski and E. D. Kovetz, ArXiv e-prints
(2015), arXiv:1510.06042.

[4] J. M. Kovac, E. M. Leitch, C. Pryke, J. E. Carlstrom,
N. W. Halverson, and W. L. Holzapfel, Nature 420, 772
(2002), astro-ph/0209478.

[5] BICEP1 Collaboration, Astrophys. J. 783, 67 (2014),
arXiv:1310.1422.

[6] BICEP2 Collaboration I, Physical Review Letters 112,
241101 (2014), arXiv:1403.3985.

[7] Keck Array and BICEP2 Collaborations V, Astrophys.
J. 811, 126 (2015), arXiv:1502.00643.

[8] Planck Collaboration Int. XIX, Astron. Astrophys. 576,
A104 (2015), arXiv:1405.0871.

[9] Planck Collaboration Int. XXX, ArXiv e-prints (2014),
arXiv:1409.5738.

[10] R. Flauger, J. C. Hill, and D. N. Spergel, J. Cosmol.
Astropart. Phys. 8, 039 (2014), arXiv:1405.7351.

[11] M. J. Mortonson and U. Seljak, J. Cosmol. Astropart.
Phys. 10, 035 (2014), arXiv:1405.5857.

[12] BICEP2/Keck and Planck Collaborations, Physical Re-
view Letters 114, 101301 (2015), arXiv:1502.00612.

[13] BICEP2 Collaboration II, Astrophys. J. 792, 62 (2014),
arXiv:1403.4302.

[14] BICEP2/Keck and Spider Collaborations, Astrophys. J.
812, 176 (2015), arXiv:1502.00619 [astro-ph.IM].

[15] See http://www.cosmos.esa.int/web/planck/pla.
[16] Planck Collaboration 2015 I, ArXiv e-prints (2015),

arXiv:1502.01582.
[17] See http://lambda.gsfc.nasa.gov/product/map/dr5/

m_products.cfm.
[18] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik,

G. Hinshaw, N. Odegard, K. M. Smith, R. S. Hill,
B. Gold, M. Halpern, E. Komatsu, M. R. Nolta, L. Page,
D. N. Spergel, E. Wollack, J. Dunkley, A. Kogut,
M. Limon, S. S. Meyer, G. S. Tucker, and E. L.
Wright, Astrophys. J. Suppl. Ser. 208, 20 (2013),
arXiv:1212.5225.

[19] Planck Collaboration 2015 XII, ArXiv e-prints (2015),
arXiv:1509.06348.

[20] S. Hamimeche and A. Lewis, Phys. Rev. D 77, 103013
(2008), arXiv:0801.0554.

[21] A. Lewis and S. Bridle, Phys. Rev. D66, 103511 (2002),
astro-ph/0205436.

[22] Planck Collaboration Int. XXII, Astron. Astrophys. 576,
A107 (2015), arXiv:1405.0874.

[23] U. Fuskeland, I. K. Wehus, H. K. Eriksen, and S. K.
Næss, Astrophys. J. 790, 104 (2014), arXiv:1404.5323.

[24] See http://lambda.gsfc.nasa.gov/product/map/dr5/

mcmc_maps_info.cfm.

Keck Array and BICEP2 Collaborations

Phys. R
ev. L

ett. 1
16, 031302 – Publish

ed 20 January 2016

Last constraints on chaotic inflation

doi:xyz

BICEP2 / Keck Array VI: Improved Constraints On Cosmology and Foregrounds When
Adding 95GHz Data From Keck Array

Keck Array and BICEP2 Collaborations: P. A. R. Ade,1 Z. Ahmed,2, 3 R. W. Aikin,4 K. D. Alexander,5

D. Barkats,5 S. J. Benton,6 C. A. Bischo↵,5 J. J. Bock,4, 7 R. Bowens-Rubin,5 J. A. Brevik,4 I. Buder,5 E. Bullock,8

V. Buza,5, 9 J. Connors,5 B. P. Crill,7 L. Duband,10 C. Dvorkin,9 J. P. Filippini,4, 11 S. Fliescher,12 J. Grayson,3

M. Halpern,13 S. Harrison,5 G. C. Hilton,14 H. Hui,4 K. D. Irwin,3, 2, 14 K. S. Karkare,5 E. Karpel,3

J. P. Kaufman,15 B. G. Keating,15 S. Kefeli,4 S. A. Kernasovskiy,3 J. M. Kovac,5, 9, ⇤ C. L. Kuo,3, 2 E. M. Leitch,16

M. Lueker,4 K. G. Megerian,7 C. B. Netterfield,6, 17 H. T. Nguyen,7 R. O’Brient,4, 7 R. W. Ogburn IV,3, 2

A. Orlando,4, 15 C. Pryke,12, 8, † S. Richter,5 R. Schwarz,12 C. D. Sheehy,12, 16 Z. K. Staniszewski,4, 7 B. Steinbach,4

R. V. Sudiwala,1 G. P. Teply,4, 15 K. L. Thompson,3, 2 J. E. Tolan,3 C. Tucker,1 A. D. Turner,7 A. G. Vieregg,5, 18, 16

A. C. Weber,7 D. V. Wiebe,13 J. Willmert,12 C. L. Wong,5, 9 W. L. K. Wu,3 and K. W. Yoon3, 2

1School of Physics and Astronomy, Cardi↵ University, Cardi↵, CF24 3AA, United Kingdom
2Kavli Institute for Particle Astrophysics and Cosmology,

SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, California 94025, USA
3Department of Physics, Stanford University, Stanford, California 94305, USA

4Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
5Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge, Massachusetts 02138, USA

6Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada
7Jet Propulsion Laboratory, Pasadena, California 91109, USA

8Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
9Department of Physics, Harvard University, Cambridge, MA 02138, USA

10Service des Basses Températures, Commissariat à l’Energie Atomique, 38054 Grenoble, France
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We present results from an analysis of all data taken by the BICEP2 & Keck Array CMB po-
larization experiments up to and including the 2014 observing season. This includes the first Keck
Array observations at 95GHz. The maps reach a depth of 50 nKdeg in Stokes Q and U in the
150GHz band and 127 nKdeg in the 95GHz band. We take auto- and cross-spectra between these
maps and publicly available maps from WMAP and Planck at frequencies from 23GHz to 353GHz.
An excess over lensed-⇤CDM is detected at modest significance in the 95⇥150 BB spectrum, and
is consistent with the dust contribution expected from our previous work. No significant evidence
for synchrotron emission is found in spectra such as 23⇥95, or for dust/sync correlation in spectra
such as 23⇥353. We take the likelihood of all the spectra for a multi-component model including
lensed-⇤CDM, dust, synchrotron and a possible contribution from inflationary gravitational waves
(as parametrized by the tensor-to-scalar ratio r), using priors on the frequency spectral behaviors of
dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions
of the sky. This analysis yields an upper limit r0.05 < 0.09 at 95% confidence, which is robust
to variations explored in analysis and priors. Combining these B-mode results with the (more
model-dependent) constraints from Planck analysis of CMB temperature and other evidence yields
a combined limit r0.05 < 0.07 at 95% confidence. These are the strongest constraints to date on
inflationary gravitational waves.

PACS numbers: 98.70.Vc, 04.80.Nn, 95.85.Bh, 98.80.Es

Introduction.—Measurements of the cosmic microwave
background (CMB) [1] are one of the observational pil-
lars of the standard cosmological model (⇤CDM) and
constrain its parameters to high precision (see most re-
cently Ref. [2]). This model extrapolates the Universe

back to very high temperatures (� 1012 K) and early
times. Observations indicate that conditions at early
times are described by an almost uniform plasma with a
nearly scale invariant spectrum of adiabatic density per-
turbations. However ⇤CDM itself o↵ers no explanation
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Constraints on inflation from Planck

16 Planck Collaboration: Constraints on inflation

Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.

  Planck 2015 res
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Planck Collaboration. Feb 7, 2015
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µ/Mpl � 1. By considering a double-well potential, V(�) =
⇤4[1��2/(2µ2)]2, instead, we obtain a slightly worse Bayes fac-
tor than the hilltop p = 2 model, ln B = �3.1 (�2.3) for wint = 0
(wint allowed to vary). This different result can be easily under-
stood. Although the double-well potential is equal to the hilltop
model for � ⌧ µ, it approximates V(�) / �2 for µ/Mpl � 1.
Since a linear potential is a better fit to Planck than �2, the fit
of the double-well potential is therefore worse than the hilltop
p = 2 case for µ/Mpl � 1, and this partially explains the slightly
different Bayes factors obtained.

In the p = 4 case, we obtain log10(µ/Mpl) > 1.05 (1.02) at
95 % CL and ln B = �2.8 (�2.6) for wint = 0 (allowing wint to
float), assuming a prior range [�2, 2] for log10(µ/Mpl).

Natural inflation

In natural inflation (Freese et al., 1990; Adams et al., 1993) a
non-perturbative shift symmetry is invoked to suppress radiative
corrections, leading to the periodic potential

V(�) = ⇤4
"

1 + cos
 

�

f

!#

, (50)

where f is the scale which determines the curvature of the po-
tential. We sample log10( f /Mpl) within the prior [0.3, 2.5] as in
PCI13. We obtain log10( f /Mpl) > 0.84 (> 0.83) at 95 % CL and
ln B = �2.4 (�2.3) for wint = 0 (allowing wint to vary).

Note that the super-Planckian value for f required by ob-
servations is not necessarily a problem for this class of models.
When several fields �i with a cosine potential as in Eq. (50) and
scales fi appear in the Lagrangian, an effective single field infla-
tionary trajectory can be found for a suitable choice of param-
eters (Kim et al., 2005). In such a setting, the super-Planckian
value of the effective scale f required by observations can be
obtained even if the original scales statisfy fi ⌧ Mpl (Kim et al.,
2005).

D-brane inflation

Inflation can be caused by physics in extra dimensions. If
the standard model of particle physics is confined to our 3-
dimensional brane, the distance between our brane and anti-
brane can drive inflation. We consider the following parameteri-
zation for the effective potential driving inflation:

V(�) = ⇤4
 

1 � µ
p

�p + ...

!

. (51)

We sample log10(µ/Mpl) within the prior [�6, 0.3]. We consider
p = 4 (Kachru et al., 2003; Dvali et al., 2001) and p = 2 (Garcia-
Bellido et al., 2002). The predictions for r and ns can be obtained
from the hilltop case with the substitution p ! �p. These mod-
els agree with the Planck data with a Bayes factor of ln B = �0.4
(�0.6) and ln B = �0.7 (�0.9) for p = 4 and p = 2, respectively,
for wint = 0 (allowing wint to vary).

Exponential potentials

Exponential potentials are ubiquitous in inflationary models mo-
tivated by supergravity and string theory (Goncharov & Linde,
1984; Stewart, 1995; Dvali & Tye, 1999; Burgess et al., 2002;
Cicoli et al., 2009). We restrict ourselves to the analysis of the
following class of potentials:

V(�) = ⇤4
⇣

1 � e�q�/Mpl + ...
⌘

. (52)

As for the hilltop models described earlier, the ellipsis indicates
possible higher-order terms that are negligible during inflation
but ensure positiveness of the potential. These models predict
r ⇡ 8q2e�2q�/Mpl/(1 � e�q�/Mpl )2 and ns � 1 ⇡ �q2e�q�/Mpl (2 +
e�q�/Mpl )/(1 � e�q�/Mpl )2 in a slow-roll trajectory characterized
by N ⇡ f (�/Mpl) � f (�end/Mpl), with f (x) = (eqx � qx)/q2.
By sampling log10(q/Mpl) within the prior [�3, 3], we obtain a
Bayes factor of �0.6 for wint = 0 (�0.9 when wint is allowed to
vary).

Spontaneously broken SUSY

Hybrid models (Copeland et al., 1994; Linde, 1994) predict-
ing ns > 1 are strongly disfavoured by the Planck data, as for
the first cosmological release (PCI13). An example of a hybrid
model predicting ns < 1 is the case in which slow-roll infla-
tion is driven by loop corrections in spontaneously broken su-
persymmetric (SUSY) grand unified theories (Dvali et al., 1994)
described by the potential

V(�) = ⇤4
h

1 + ↵h log(�/Mpl)
i

, (53)

where ↵h > 0 is a dimensionless parameter. Note that for
↵h ⌧ 1, this model leads to the same predictions as the power-
law potential for p ⌧ 1 to lowest order in the slow-roll approxi-
mation. By sampling log10(↵h) on a flat prior [�2.5, 1], we obtain
a Bayes factor of �2.2 for wint = 0 (�1.7 when wint is allowed to
vary).

R2 inflation

The first inflationary model proposed (Starobinsky, 1980), with
action

S =
Z

d4x
p�g

M2
pl

2

 

R +
R2

6M2

!

, (54)

is still within the Planck 68 % CL constraints, as it was for the
Planck 2013 release (PCI13). This model corresponds to the po-
tential

V(�) = ⇤4
⇣

1 � e�
p

2/3�/Mpl
⌘2

(55)

in the Einstein frame, which leads to the slow-roll predictions
ns � 1 ⇡ �2/N and r ⇡ 12/N2 (Starobinsky, 1980; Mukhanov &
Chibisov, 1981).

After the Planck 2013 release, several theoretical develop-
ments supported the model in Eq. (54) beyond the original mo-
tivation of including quantum effects at one-loop (Starobinsky,
1980). No-scale supergravity (Ellis et al., 2013a), the large field
regime of superconformal D-term inflation (Buchmüller et al.,
2013), or recent developments in minimal supergravity (Farakos
et al., 2013; Ferrara et al., 2013b) can lead to a generalization
of the potential in Eq. (55) (see Ketov & Starobinsky (2011) for
a previous embedding of R2 inflation in F(R) supergravity). The
potential in Eq. (55) can also be generated by spontaneous break-
ing of conformal symmetry (Kallosh & Linde, 2013). This infla-
tionary model has ��2 ⇡ 0.8 (0.3) larger than the base ⇤CDM
model with no tensors for wint = 0 (for wint allowed to vary). We
obtain 54 < N⇤ < 62 (53 < N⇤ < 64) at 95 % CL for wint = 0
(for wint allowed to vary), compatible with the theoretical pre-
diction, N⇤ = 54 (Starobinsky, 1980; Vilenkin, 1985; Gorbunov
& Panin, 2011).
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As for the hilltop models described earlier, the ellipsis indicates
possible higher-order terms that are negligible during inflation
but ensure positiveness of the potential. These models predict
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By sampling log10(q/Mpl) within the prior [�3, 3], we obtain a
Bayes factor of �0.6 for wint = 0 (�0.9 when wint is allowed to
vary).

Spontaneously broken SUSY

Hybrid models (Copeland et al., 1994; Linde, 1994) predict-
ing ns > 1 are strongly disfavoured by the Planck data, as for
the first cosmological release (PCI13). An example of a hybrid
model predicting ns < 1 is the case in which slow-roll infla-
tion is driven by loop corrections in spontaneously broken su-
persymmetric (SUSY) grand unified theories (Dvali et al., 1994)
described by the potential

V(�) = ⇤4
h

1 + ↵h log(�/Mpl)
i

, (53)

where ↵h > 0 is a dimensionless parameter. Note that for
↵h ⌧ 1, this model leads to the same predictions as the power-
law potential for p ⌧ 1 to lowest order in the slow-roll approxi-
mation. By sampling log10(↵h) on a flat prior [�2.5, 1], we obtain
a Bayes factor of �2.2 for wint = 0 (�1.7 when wint is allowed to
vary).

R2 inflation

The first inflationary model proposed (Starobinsky, 1980), with
action

S =
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d4x
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is still within the Planck 68 % CL constraints, as it was for the
Planck 2013 release (PCI13). This model corresponds to the po-
tential

V(�) = ⇤4
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1 � e�
p

2/3�/Mpl
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(55)

in the Einstein frame, which leads to the slow-roll predictions
ns � 1 ⇡ �2/N and r ⇡ 12/N2 (Starobinsky, 1980; Mukhanov &
Chibisov, 1981).

After the Planck 2013 release, several theoretical develop-
ments supported the model in Eq. (54) beyond the original mo-
tivation of including quantum effects at one-loop (Starobinsky,
1980). No-scale supergravity (Ellis et al., 2013a), the large field
regime of superconformal D-term inflation (Buchmüller et al.,
2013), or recent developments in minimal supergravity (Farakos
et al., 2013; Ferrara et al., 2013b) can lead to a generalization
of the potential in Eq. (55) (see Ketov & Starobinsky (2011) for
a previous embedding of R2 inflation in F(R) supergravity). The
potential in Eq. (55) can also be generated by spontaneous break-
ing of conformal symmetry (Kallosh & Linde, 2013). This infla-
tionary model has ��2 ⇡ 0.8 (0.3) larger than the base ⇤CDM
model with no tensors for wint = 0 (for wint allowed to vary). We
obtain 54 < N⇤ < 62 (53 < N⇤ < 64) at 95 % CL for wint = 0
(for wint allowed to vary), compatible with the theoretical pre-
diction, N⇤ = 54 (Starobinsky, 1980; Vilenkin, 1985; Gorbunov
& Panin, 2011).
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Inflationary observables ~ Shape of the potential
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we provide the explicit expressions for the three independent parameters, which can be used

for direct fits to CMB data.

We consider the field rolling from larger to smaller values and compute the primordial

inflationary parameters at some field value φi, such that the total amount of inflation

from that point until the end should be approximately 50–60 e-folds [69]. For very small

deformations (and in particular if b1 = b2 = 0), a much larger amount of inflation is

actually possible due to the flatness of the plateau, but those extra e-folds are irrelevant

for the solution of the horizon problem. Enough e-folds can be attained generically with

an initial field value φi < φ0, which is the case we consider in this work. However, it is

worth pointing out that if the plateau is tilted considerably, the rolling of the field will be

faster and enough inflation may require φi > φ0.

Inflation is of chaotic type for the radiatively corrected potential (3.1), like in the

standard monomial φ4 model. If the parameters b1 and b2 are such that the potential

increases monotonically, the inflaton classically rolls down the potential until it reaches the

attractor solution and its velocity is determined by the slope. The attractor is guaranteed

to be attained by the flatness of the potential. Then, we can think of the inflaton field

as taking random values initially in different patches of the primordial universe. All the

regions where the inflaton is larger than φi lead to the required final state. If the potential

has a local minimum,9 the random inflaton distribution ensures that successful inflation

can take place, provided that φi is smaller than the location of the minimum. The same

argument holds if the potential is unstable, if the value of φi leading to Ne ∼ 50 is smaller

than the maximum of the potential.

The primordial spectra of scalar and tensor perturbations in the slow-roll approxima-

tion are:

logPs(k) = logAs +

(
ns − 1 +

α

2
log

k

k∗
+ · · ·

)
log

(
k

k∗

)
, (3.2)

logPt(k) = logAt + (nt + · · · ) log
(

k

k∗

)
, (3.3)

where the ellipses stand for higher order terms in the slow-roll expansion. The primordial

parameters As, ns, etc. are understood to be evaluated at the fiducial scale k∗, which is often

chosen to be k∗ = 0.05 Mpc−1. Since the largest observable scale is ki # 2×10−4Mpc−1, the

scale k∗ sits at log(0.05/10−4) ∼ 5 e-folds away from the beginning of observable inflation.

Given that the CMB data implies that the change of the primordial parameters is very

small between ki and k∗ and given the uncertainty on the number of e-folds of observable

inflation, we can simply evaluate the primordial parameters at φi (corresponding to ki).

This approximation is particularly good for very flat potentials, as it is the case here.

If b1, b2 and χ = 1 − φi/φ0 are sufficiently small, it is straightforward to write ex-

plicit formulas for the primordial parameters by Taylor expanding their standard slow-roll

expressions in these variables. The value of χ for the cases that fit the data tends to be

too large to obtain expansions that are both accurate and concise, so we do not write

9A necessary condition to avoid the formation of a local minimum is b1 > 0.
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Figure 4: Corrections beyond the leading one-dimensional approximation to the mass parameter (left) and
to the quartic coupling (right), in terms of the field S along the h-line for the same scenario as in figure 3,
with mt = 171.7 GeV, �S = 3.82 ·10�13, �SH = 3.67 ·10�10, and m2

S = �1.06 ·1026 GeV2. The left red points
mark the beginning of observable inflation, and the right points mark the end of inflation. The corrections
to the mass and quartic parameters were estimated with the tree-level potential, while the cosmological
parameters were calculated with the RG-improved e↵ective potential. Notice that the corrections to the
quartic coupling are much smaller than �S .
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where k⇤ is an arbitrary reference scale that is often taken to be k⇤ = 0.05 Mpc�1, as in the
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we provide the explicit expressions for the three independent parameters, which can be used

for direct fits to CMB data.

We consider the field rolling from larger to smaller values and compute the primordial

inflationary parameters at some field value φi, such that the total amount of inflation

from that point until the end should be approximately 50–60 e-folds [69]. For very small

deformations (and in particular if b1 = b2 = 0), a much larger amount of inflation is

actually possible due to the flatness of the plateau, but those extra e-folds are irrelevant

for the solution of the horizon problem. Enough e-folds can be attained generically with

an initial field value φi < φ0, which is the case we consider in this work. However, it is

worth pointing out that if the plateau is tilted considerably, the rolling of the field will be

faster and enough inflation may require φi > φ0.

Inflation is of chaotic type for the radiatively corrected potential (3.1), like in the

standard monomial φ4 model. If the parameters b1 and b2 are such that the potential

increases monotonically, the inflaton classically rolls down the potential until it reaches the

attractor solution and its velocity is determined by the slope. The attractor is guaranteed

to be attained by the flatness of the potential. Then, we can think of the inflaton field

as taking random values initially in different patches of the primordial universe. All the

regions where the inflaton is larger than φi lead to the required final state. If the potential

has a local minimum,9 the random inflaton distribution ensures that successful inflation

can take place, provided that φi is smaller than the location of the minimum. The same

argument holds if the potential is unstable, if the value of φi leading to Ne ∼ 50 is smaller

than the maximum of the potential.

The primordial spectra of scalar and tensor perturbations in the slow-roll approxima-

tion are:

logPs(k) = logAs +

(
ns − 1 +

α

2
log

k
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+ · · ·

)
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(
k
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)
, (3.2)

logPt(k) = logAt + (nt + · · · ) log
(

k
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, (3.3)

where the ellipses stand for higher order terms in the slow-roll expansion. The primordial

parameters As, ns, etc. are understood to be evaluated at the fiducial scale k∗, which is often

chosen to be k∗ = 0.05 Mpc−1. Since the largest observable scale is ki # 2×10−4Mpc−1, the

scale k∗ sits at log(0.05/10−4) ∼ 5 e-folds away from the beginning of observable inflation.

Given that the CMB data implies that the change of the primordial parameters is very

small between ki and k∗ and given the uncertainty on the number of e-folds of observable

inflation, we can simply evaluate the primordial parameters at φi (corresponding to ki).

This approximation is particularly good for very flat potentials, as it is the case here.

If b1, b2 and χ = 1 − φi/φ0 are sufficiently small, it is straightforward to write ex-

plicit formulas for the primordial parameters by Taylor expanding their standard slow-roll

expressions in these variables. The value of χ for the cases that fit the data tends to be

too large to obtain expansions that are both accurate and concise, so we do not write

9A necessary condition to avoid the formation of a local minimum is b1 > 0.
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2 Radiative plateaus

Radiative corrections to a renormalizable tree-level potential can induce an inflection point

with vanishing first derivative along some direction. This can favour slow-roll inflation in

the approximately flat region of the potential around that point. Considering the potential

on the direction φ relevant for inflation, such a plateau will be characterized by the existence

of a field value φ0 which solves the two equations

dV

dφ
= 0 ,

d2V

dφ2
= 0 . (2.1)

In the limit of large field values, only the quartic part of the potential matters and

the radiative corrections can be accounted for through the running of the quartic coupling.

The potential can be well approximated in this situation by

V (φ) ! λ(φ)

4!
φ4 , (2.2)

where λ(φ) is an effective field-dependent coupling. The simplest way of understanding the

field dependence of the potential (2.2) is using the Coleman-Weinberg form [65]:

V (φ) = Ω(µ) + V0(φ) +
1

64π2

∑

i

M4
i (φ)

(
log

M2
i (φ)

µ2
− Ci

)
+ · · · , (2.3)

recalling that the effective squared masses M2
i of the particles running in the loops are

proportional to φ2 for large values of the field.6 In this expression, V0(φ) is the tree-level

potential and Ω(µ) is the field-independent loop contribution to the cosmological constant.

The third term on the right hand side is due to one-loop diagrams and the ellipsis stands

for higher order loops. At large values of φ, the effective quartic coupling will be of the form

λ(φ) = λ̃(µ) +
1

2
c̃1(µ) log

φ2

µ2
+

1

8
c̃2(µ)

(
log

φ2

µ2

)2

+ · · · , (2.4)

where the logarithm squared comes from two-loop and higher order terms in the

Coleman-Weinberg expansion (2.3). Without loss of generality, we absorb in λ̃0(µ) all

non-logarithmic terms that come from the constants Ci. The field independent part Ω(µ)

is irrelevant in the large field limit.

It is convenient to choose the renormalization scale µ to be proportional to the location

of the plateau, i.e. µ = µ0 ≡ ε φ0, where generically ε$ 1. The (positive) constant ε comes

from M2
i (φ) ∝ φ2 (which is valid in the large field limit) and parametrizes the smallness of

the couplings implicit in these proportionality relations. One can choose ε to correspond,

for instance, to the smallest of the couplings appearing for the masses M2
i (φ). A different

choice does not make any practical difference in the computations if all the couplings are

approximately of the same order of magnitude.7

6We assume that either φ is the only scalar of the model or, in a more general situation, that the

field-dependent masses Mi are dominated by the φ contribution.
7If the model contained widely dissimilar energy thresholds or particle masses, a treatment such as those

of [66] and [67] could be implemented. For simplicity, we assume throughout that this is not required.
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A radiative plateau for chaotic inflation

V / �2
or �4

Assume a renormalizable potential and zero non-minimal 
couplings to the curvature, for simplicity

Still, for sufficiently large field values: 

V ' �(�)

4!
�4

Coupling the inflaton to a fermion or another scalar (e.g. the Higgs) 
generates radiatively all possible renormalizable terms: 

V = v0 +m3
1�+
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2
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Monomial chaotic inflation cannot be regarded a complete model
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2 Radiative plateaus

Radiative corrections to a renormalizable tree-level potential can induce an inflection point

with vanishing first derivative along some direction. This can favour slow-roll inflation in

the approximately flat region of the potential around that point. Considering the potential

on the direction φ relevant for inflation, such a plateau will be characterized by the existence

of a field value φ0 which solves the two equations

dV

dφ
= 0 ,

d2V

dφ2
= 0 . (2.1)

In the limit of large field values, only the quartic part of the potential matters and

the radiative corrections can be accounted for through the running of the quartic coupling.

The potential can be well approximated in this situation by

V (φ) ! λ(φ)

4!
φ4 , (2.2)

where λ(φ) is an effective field-dependent coupling. The simplest way of understanding the

field dependence of the potential (2.2) is using the Coleman-Weinberg form [65]:

V (φ) = Ω(µ) + V0(φ) +
1

64π2

∑

i

M4
i (φ)

(
log

M2
i (φ)

µ2
− Ci

)
+ · · · , (2.3)

recalling that the effective squared masses M2
i of the particles running in the loops are

proportional to φ2 for large values of the field.6 In this expression, V0(φ) is the tree-level

potential and Ω(µ) is the field-independent loop contribution to the cosmological constant.

The third term on the right hand side is due to one-loop diagrams and the ellipsis stands

for higher order loops. At large values of φ, the effective quartic coupling will be of the form

λ(φ) = λ̃(µ) +
1

2
c̃1(µ) log

φ2

µ2
+

1

8
c̃2(µ)

(
log

φ2

µ2

)2

+ · · · , (2.4)

where the logarithm squared comes from two-loop and higher order terms in the

Coleman-Weinberg expansion (2.3). Without loss of generality, we absorb in λ̃0(µ) all

non-logarithmic terms that come from the constants Ci. The field independent part Ω(µ)

is irrelevant in the large field limit.

It is convenient to choose the renormalization scale µ to be proportional to the location

of the plateau, i.e. µ = µ0 ≡ ε φ0, where generically ε$ 1. The (positive) constant ε comes

from M2
i (φ) ∝ φ2 (which is valid in the large field limit) and parametrizes the smallness of

the couplings implicit in these proportionality relations. One can choose ε to correspond,

for instance, to the smallest of the couplings appearing for the masses M2
i (φ). A different

choice does not make any practical difference in the computations if all the couplings are

approximately of the same order of magnitude.7

6We assume that either φ is the only scalar of the model or, in a more general situation, that the

field-dependent masses Mi are dominated by the φ contribution.
7If the model contained widely dissimilar energy thresholds or particle masses, a treatment such as those

of [66] and [67] could be implemented. For simplicity, we assume throughout that this is not required.
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With this choice of renormalization scale, a straightforward redefinition of the coeffi-

cients of (2.4) allows to write this expression as follows:

λ(φ) = λ(φ0) +
1

2
c1(φ0) log

φ2

φ20
+

1

8
c2(φ0)

(
log

φ2

φ20

)2

+ · · · , (2.5)

where the coefficients λ0(φ0), c1(φ0), . . . , are functions of the original λ̃0(µ), c̃1(µ), etc.

evaluated at µ0. Thus, the equations (2.1) are solved at φ = φ0 if

c2(φ0) = −4 c1(φ0) = 16λ(φ0) . (2.6)

The reason for the relative signs in (2.6) can be easily understood. Since the potential

has to be positive at the plateau, i.e. around the inflection point φ0, the effective quartic

coupling λ0(φ0) has to be positive. A negative first derivative of λ(φ) with respect to log φ

at the plateau, i.e. c1(φ0), tends to drive the effective quartic coupling to negative values,

flattening the potential. In order to avoid the appearance of an instability, c2(φ0) has to

be positive.

Using the conditions (2.6) into the expression (2.5), the effective potential becomes

V (φ) " λ(φ0)

4!

(
1− 2 log

φ2

φ20
+ 2

(
log

φ2

φ20

)2

+ · · ·
)
φ4 , (2.7)

where the ellipsis stand for higher powers of the logarithm, coming from higher order loops,

which we are neglecting. Therefore, we see that a plateau may arise from the interplay of the

one- and two-loop corrections to the effective potential. Actually, the expression (2.7) shows

that a plateau can arise already at the two-loop leading log level, as we will discuss next.

Another way of understanding the potential is the following. Starting anew with the

Coleman-Weinberg expansion (2.3), we choose the renormalization scale to be µ = ε φ and

keep only the terms involving powers of φ4. With this choice, the logarithms are effectively

resummed into an effective quartic coupling λ(φ), which multiplies φ4, as we anticipated

in (2.2). This effective coupling λ(φ) includes the quartic terms at all orders, arising from

the the Coleman-Weinberg potential in the large field limit. Then, we expand λ(φ) around

the location of the plateau, φ0, obtaining an expression analogous to (2.5), i.e.

λ(φ) = λ(φ0) +
1

2
βλ(φ0) log

φ2

φ20
+

1

8
β′λ(φ0)

(
log

φ2

φ20

)2

+ · · · . (2.8)

This shows explicitly that the coefficients c1, c2, etc. of (2.5) are related to the beta function

of the effective quartic coupling,

βλ =
∂λ

∂ log µ
, (2.9)

and its logarithmic derivatives, indicated with primes in (2.8). Therefore, the condi-

tions (2.6) can be interpreted in terms of the variation of the beta function of the effective

quartic coupling at the plateau. The need of including two loops to describe a plateau

also becomes automatically apparent in this way, since β′λ is of order two in the loop ex-

pansion. By construction, evaluating the effective quartic coupling λ at φ0 corresponds to

– 5 –
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2 Radiative plateaus

Radiative corrections to a renormalizable tree-level potential can induce an inflection point

with vanishing first derivative along some direction. This can favour slow-roll inflation in

the approximately flat region of the potential around that point. Considering the potential

on the direction φ relevant for inflation, such a plateau will be characterized by the existence

of a field value φ0 which solves the two equations

dV

dφ
= 0 ,

d2V

dφ2
= 0 . (2.1)

In the limit of large field values, only the quartic part of the potential matters and

the radiative corrections can be accounted for through the running of the quartic coupling.

The potential can be well approximated in this situation by

V (φ) ! λ(φ)

4!
φ4 , (2.2)

where λ(φ) is an effective field-dependent coupling. The simplest way of understanding the

field dependence of the potential (2.2) is using the Coleman-Weinberg form [65]:

V (φ) = Ω(µ) + V0(φ) +
1

64π2

∑

i

M4
i (φ)

(
log

M2
i (φ)

µ2
− Ci

)
+ · · · , (2.3)

recalling that the effective squared masses M2
i of the particles running in the loops are

proportional to φ2 for large values of the field.6 In this expression, V0(φ) is the tree-level

potential and Ω(µ) is the field-independent loop contribution to the cosmological constant.

The third term on the right hand side is due to one-loop diagrams and the ellipsis stands

for higher order loops. At large values of φ, the effective quartic coupling will be of the form

λ(φ) = λ̃(µ) +
1

2
c̃1(µ) log

φ2

µ2
+

1

8
c̃2(µ)

(
log

φ2

µ2

)2

+ · · · , (2.4)

where the logarithm squared comes from two-loop and higher order terms in the

Coleman-Weinberg expansion (2.3). Without loss of generality, we absorb in λ̃0(µ) all

non-logarithmic terms that come from the constants Ci. The field independent part Ω(µ)

is irrelevant in the large field limit.

It is convenient to choose the renormalization scale µ to be proportional to the location

of the plateau, i.e. µ = µ0 ≡ ε φ0, where generically ε$ 1. The (positive) constant ε comes

from M2
i (φ) ∝ φ2 (which is valid in the large field limit) and parametrizes the smallness of

the couplings implicit in these proportionality relations. One can choose ε to correspond,

for instance, to the smallest of the couplings appearing for the masses M2
i (φ). A different

choice does not make any practical difference in the computations if all the couplings are

approximately of the same order of magnitude.7

6We assume that either φ is the only scalar of the model or, in a more general situation, that the

field-dependent masses Mi are dominated by the φ contribution.
7If the model contained widely dissimilar energy thresholds or particle masses, a treatment such as those

of [66] and [67] could be implemented. For simplicity, we assume throughout that this is not required.
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With this choice of renormalization scale, a straightforward redefinition of the coeffi-

cients of (2.4) allows to write this expression as follows:

λ(φ) = λ(φ0) +
1

2
c1(φ0) log

φ2
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+

1

8
c2(φ0)

(
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+ · · · , (2.5)

where the coefficients λ0(φ0), c1(φ0), . . . , are functions of the original λ̃0(µ), c̃1(µ), etc.

evaluated at µ0. Thus, the equations (2.1) are solved at φ = φ0 if

c2(φ0) = −4 c1(φ0) = 16λ(φ0) . (2.6)

The reason for the relative signs in (2.6) can be easily understood. Since the potential

has to be positive at the plateau, i.e. around the inflection point φ0, the effective quartic

coupling λ0(φ0) has to be positive. A negative first derivative of λ(φ) with respect to log φ

at the plateau, i.e. c1(φ0), tends to drive the effective quartic coupling to negative values,

flattening the potential. In order to avoid the appearance of an instability, c2(φ0) has to

be positive.

Using the conditions (2.6) into the expression (2.5), the effective potential becomes

V (φ) " λ(φ0)
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(
1− 2 log

φ2

φ20
+ 2

(
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)2

+ · · ·
)
φ4 , (2.7)

where the ellipsis stand for higher powers of the logarithm, coming from higher order loops,

which we are neglecting. Therefore, we see that a plateau may arise from the interplay of the

one- and two-loop corrections to the effective potential. Actually, the expression (2.7) shows

that a plateau can arise already at the two-loop leading log level, as we will discuss next.

Another way of understanding the potential is the following. Starting anew with the

Coleman-Weinberg expansion (2.3), we choose the renormalization scale to be µ = ε φ and

keep only the terms involving powers of φ4. With this choice, the logarithms are effectively

resummed into an effective quartic coupling λ(φ), which multiplies φ4, as we anticipated

in (2.2). This effective coupling λ(φ) includes the quartic terms at all orders, arising from

the the Coleman-Weinberg potential in the large field limit. Then, we expand λ(φ) around

the location of the plateau, φ0, obtaining an expression analogous to (2.5), i.e.

λ(φ) = λ(φ0) +
1

2
βλ(φ0) log

φ2

φ20
+

1

8
β′λ(φ0)

(
log

φ2

φ20

)2

+ · · · . (2.8)

This shows explicitly that the coefficients c1, c2, etc. of (2.5) are related to the beta function

of the effective quartic coupling,

βλ =
∂λ

∂ log µ
, (2.9)

and its logarithmic derivatives, indicated with primes in (2.8). Therefore, the condi-

tions (2.6) can be interpreted in terms of the variation of the beta function of the effective

quartic coupling at the plateau. The need of including two loops to describe a plateau

also becomes automatically apparent in this way, since β′λ is of order two in the loop ex-

pansion. By construction, evaluating the effective quartic coupling λ at φ0 corresponds to
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With this choice of renormalization scale, a straightforward redefinition of the coeffi-

cients of (2.4) allows to write this expression as follows:

λ(φ) = λ(φ0) +
1

2
c1(φ0) log

φ2

φ20
+

1

8
c2(φ0)

(
log

φ2

φ20

)2

+ · · · , (2.5)

where the coefficients λ0(φ0), c1(φ0), . . . , are functions of the original λ̃0(µ), c̃1(µ), etc.

evaluated at µ0. Thus, the equations (2.1) are solved at φ = φ0 if

c2(φ0) = −4 c1(φ0) = 16λ(φ0) . (2.6)

The reason for the relative signs in (2.6) can be easily understood. Since the potential

has to be positive at the plateau, i.e. around the inflection point φ0, the effective quartic

coupling λ0(φ0) has to be positive. A negative first derivative of λ(φ) with respect to log φ

at the plateau, i.e. c1(φ0), tends to drive the effective quartic coupling to negative values,

flattening the potential. In order to avoid the appearance of an instability, c2(φ0) has to

be positive.

Using the conditions (2.6) into the expression (2.5), the effective potential becomes

V (φ) " λ(φ0)

4!

(
1− 2 log

φ2

φ20
+ 2

(
log

φ2

φ20

)2

+ · · ·
)
φ4 , (2.7)

where the ellipsis stand for higher powers of the logarithm, coming from higher order loops,

which we are neglecting. Therefore, we see that a plateau may arise from the interplay of the

one- and two-loop corrections to the effective potential. Actually, the expression (2.7) shows

that a plateau can arise already at the two-loop leading log level, as we will discuss next.

Another way of understanding the potential is the following. Starting anew with the

Coleman-Weinberg expansion (2.3), we choose the renormalization scale to be µ = ε φ and

keep only the terms involving powers of φ4. With this choice, the logarithms are effectively

resummed into an effective quartic coupling λ(φ), which multiplies φ4, as we anticipated

in (2.2). This effective coupling λ(φ) includes the quartic terms at all orders, arising from

the the Coleman-Weinberg potential in the large field limit. Then, we expand λ(φ) around

the location of the plateau, φ0, obtaining an expression analogous to (2.5), i.e.

λ(φ) = λ(φ0) +
1

2
βλ(φ0) log

φ2

φ20
+

1

8
β′λ(φ0)

(
log

φ2

φ20

)2

+ · · · . (2.8)

This shows explicitly that the coefficients c1, c2, etc. of (2.5) are related to the beta function

of the effective quartic coupling,

βλ =
∂λ

∂ log µ
, (2.9)

and its logarithmic derivatives, indicated with primes in (2.8). Therefore, the condi-

tions (2.6) can be interpreted in terms of the variation of the beta function of the effective

quartic coupling at the plateau. The need of including two loops to describe a plateau

also becomes automatically apparent in this way, since β′λ is of order two in the loop ex-

pansion. By construction, evaluating the effective quartic coupling λ at φ0 corresponds to
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With this choice of renormalization scale, a straightforward redefinition of the coeffi-

cients of (2.4) allows to write this expression as follows:

λ(φ) = λ(φ0) +
1

2
c1(φ0) log

φ2

φ20
+

1

8
c2(φ0)

(
log

φ2

φ20

)2

+ · · · , (2.5)

where the coefficients λ0(φ0), c1(φ0), . . . , are functions of the original λ̃0(µ), c̃1(µ), etc.

evaluated at µ0. Thus, the equations (2.1) are solved at φ = φ0 if

c2(φ0) = −4 c1(φ0) = 16λ(φ0) . (2.6)

The reason for the relative signs in (2.6) can be easily understood. Since the potential

has to be positive at the plateau, i.e. around the inflection point φ0, the effective quartic

coupling λ0(φ0) has to be positive. A negative first derivative of λ(φ) with respect to log φ

at the plateau, i.e. c1(φ0), tends to drive the effective quartic coupling to negative values,

flattening the potential. In order to avoid the appearance of an instability, c2(φ0) has to

be positive.

Using the conditions (2.6) into the expression (2.5), the effective potential becomes

V (φ) " λ(φ0)

4!

(
1− 2 log

φ2

φ20
+ 2

(
log

φ2

φ20

)2

+ · · ·
)
φ4 , (2.7)

where the ellipsis stand for higher powers of the logarithm, coming from higher order loops,

which we are neglecting. Therefore, we see that a plateau may arise from the interplay of the

one- and two-loop corrections to the effective potential. Actually, the expression (2.7) shows

that a plateau can arise already at the two-loop leading log level, as we will discuss next.

Another way of understanding the potential is the following. Starting anew with the

Coleman-Weinberg expansion (2.3), we choose the renormalization scale to be µ = ε φ and

keep only the terms involving powers of φ4. With this choice, the logarithms are effectively

resummed into an effective quartic coupling λ(φ), which multiplies φ4, as we anticipated

in (2.2). This effective coupling λ(φ) includes the quartic terms at all orders, arising from

the the Coleman-Weinberg potential in the large field limit. Then, we expand λ(φ) around

the location of the plateau, φ0, obtaining an expression analogous to (2.5), i.e.

λ(φ) = λ(φ0) +
1

2
βλ(φ0) log

φ2

φ20
+

1

8
β′λ(φ0)

(
log

φ2

φ20

)2

+ · · · . (2.8)

This shows explicitly that the coefficients c1, c2, etc. of (2.5) are related to the beta function

of the effective quartic coupling,

βλ =
∂λ

∂ log µ
, (2.9)

and its logarithmic derivatives, indicated with primes in (2.8). Therefore, the condi-

tions (2.6) can be interpreted in terms of the variation of the beta function of the effective

quartic coupling at the plateau. The need of including two loops to describe a plateau

also becomes automatically apparent in this way, since β′λ is of order two in the loop ex-

pansion. By construction, evaluating the effective quartic coupling λ at φ0 corresponds to
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2 Radiative plateaus

Radiative corrections to a renormalizable tree-level potential can induce an inflection point

with vanishing first derivative along some direction. This can favour slow-roll inflation in

the approximately flat region of the potential around that point. Considering the potential

on the direction φ relevant for inflation, such a plateau will be characterized by the existence

of a field value φ0 which solves the two equations

dV

dφ
= 0 ,

d2V

dφ2
= 0 . (2.1)

In the limit of large field values, only the quartic part of the potential matters and

the radiative corrections can be accounted for through the running of the quartic coupling.

The potential can be well approximated in this situation by

V (φ) ! λ(φ)

4!
φ4 , (2.2)

where λ(φ) is an effective field-dependent coupling. The simplest way of understanding the

field dependence of the potential (2.2) is using the Coleman-Weinberg form [65]:

V (φ) = Ω(µ) + V0(φ) +
1

64π2

∑

i

M4
i (φ)

(
log

M2
i (φ)

µ2
− Ci

)
+ · · · , (2.3)

recalling that the effective squared masses M2
i of the particles running in the loops are

proportional to φ2 for large values of the field.6 In this expression, V0(φ) is the tree-level

potential and Ω(µ) is the field-independent loop contribution to the cosmological constant.

The third term on the right hand side is due to one-loop diagrams and the ellipsis stands

for higher order loops. At large values of φ, the effective quartic coupling will be of the form

λ(φ) = λ̃(µ) +
1

2
c̃1(µ) log

φ2

µ2
+

1

8
c̃2(µ)

(
log

φ2

µ2

)2

+ · · · , (2.4)

where the logarithm squared comes from two-loop and higher order terms in the

Coleman-Weinberg expansion (2.3). Without loss of generality, we absorb in λ̃0(µ) all

non-logarithmic terms that come from the constants Ci. The field independent part Ω(µ)

is irrelevant in the large field limit.

It is convenient to choose the renormalization scale µ to be proportional to the location

of the plateau, i.e. µ = µ0 ≡ ε φ0, where generically ε$ 1. The (positive) constant ε comes

from M2
i (φ) ∝ φ2 (which is valid in the large field limit) and parametrizes the smallness of

the couplings implicit in these proportionality relations. One can choose ε to correspond,

for instance, to the smallest of the couplings appearing for the masses M2
i (φ). A different

choice does not make any practical difference in the computations if all the couplings are

approximately of the same order of magnitude.7

6We assume that either φ is the only scalar of the model or, in a more general situation, that the

field-dependent masses Mi are dominated by the φ contribution.
7If the model contained widely dissimilar energy thresholds or particle masses, a treatment such as those

of [66] and [67] could be implemented. For simplicity, we assume throughout that this is not required.
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With this choice of renormalization scale, a straightforward redefinition of the coeffi-

cients of (2.4) allows to write this expression as follows:

λ(φ) = λ(φ0) +
1

2
c1(φ0) log

φ2

φ20
+

1

8
c2(φ0)

(
log

φ2

φ20

)2

+ · · · , (2.5)

where the coefficients λ0(φ0), c1(φ0), . . . , are functions of the original λ̃0(µ), c̃1(µ), etc.

evaluated at µ0. Thus, the equations (2.1) are solved at φ = φ0 if

c2(φ0) = −4 c1(φ0) = 16λ(φ0) . (2.6)

The reason for the relative signs in (2.6) can be easily understood. Since the potential

has to be positive at the plateau, i.e. around the inflection point φ0, the effective quartic

coupling λ0(φ0) has to be positive. A negative first derivative of λ(φ) with respect to log φ

at the plateau, i.e. c1(φ0), tends to drive the effective quartic coupling to negative values,

flattening the potential. In order to avoid the appearance of an instability, c2(φ0) has to

be positive.

Using the conditions (2.6) into the expression (2.5), the effective potential becomes

V (φ) " λ(φ0)

4!

(
1− 2 log

φ2

φ20
+ 2

(
log

φ2

φ20

)2

+ · · ·
)
φ4 , (2.7)

where the ellipsis stand for higher powers of the logarithm, coming from higher order loops,

which we are neglecting. Therefore, we see that a plateau may arise from the interplay of the

one- and two-loop corrections to the effective potential. Actually, the expression (2.7) shows

that a plateau can arise already at the two-loop leading log level, as we will discuss next.

Another way of understanding the potential is the following. Starting anew with the

Coleman-Weinberg expansion (2.3), we choose the renormalization scale to be µ = ε φ and

keep only the terms involving powers of φ4. With this choice, the logarithms are effectively

resummed into an effective quartic coupling λ(φ), which multiplies φ4, as we anticipated

in (2.2). This effective coupling λ(φ) includes the quartic terms at all orders, arising from

the the Coleman-Weinberg potential in the large field limit. Then, we expand λ(φ) around

the location of the plateau, φ0, obtaining an expression analogous to (2.5), i.e.

λ(φ) = λ(φ0) +
1

2
βλ(φ0) log

φ2

φ20
+

1

8
β′λ(φ0)

(
log

φ2

φ20

)2

+ · · · . (2.8)

This shows explicitly that the coefficients c1, c2, etc. of (2.5) are related to the beta function

of the effective quartic coupling,

βλ =
∂λ

∂ log µ
, (2.9)

and its logarithmic derivatives, indicated with primes in (2.8). Therefore, the condi-

tions (2.6) can be interpreted in terms of the variation of the beta function of the effective

quartic coupling at the plateau. The need of including two loops to describe a plateau

also becomes automatically apparent in this way, since β′λ is of order two in the loop ex-

pansion. By construction, evaluating the effective quartic coupling λ at φ0 corresponds to
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A plateau of this type is only viable if the cubic and quartic corrections to the potential

remain suppressed for the field values around φ0. The potential (2.12) assumes that those

interactions vanish at the scale φ0 of the plateau. Clearly, a similar assumption is needed

for a standard φ2 chaotic model of inflation. In concrete implementations of the quadratic

plateau, it has to be checked that the cubic and quartic corrections induced through loops

are suppressed for the range of fields relevant for inflation.

Plateaus may also occur in a region of a potential that is dominated by a linear

or cubic term. However, whereas the radiatively corrected φ2 and φ4 potentials have a

vanishing absolute minimum V (0) ! 0 (under the assumption that the odd terms are

negligible at all scales), the situation is more complicated for odd monomials. For linear

and cubic plateaus the minimum can only appear once the quadratic or quartic terms

start to be relevant, which happens away from φ = 0 and necessarily breaks the monomial

approximation. Unless the potential has a tuned field-independent piece, the minimum

will then be negative. We recall that the stages of the universe following inflation require

a long-lived minimum with a small and positive cosmological constant. As it is usually

done, we will assume that this is achieved by some mechanism for which inflation has no

bearing. For simplicity, we will focus our attention on φ2 and φ4 plateaus, avoiding in this

work the the complications of odd monomials.

3 Inflation

Before searching for concrete particle physics models giving rise to successful inflationary

plateaus, we are going to study the generic properties of the potentials (2.7) and (2.12).

As discussed in the introduction, the appearance of a plateau from radiative corrections

is a possibility for completing and rendering viable the classical quadratic and quartic

chaotic models of inflation, which are now either under strong tension (in the case of φ2) or

completely ruled out (φ4), mostly due to Planck CMB data [14, 15]. In this section we will

show how radiative corrections to standard monomial chaotic inflation make these models

compatible with the data.

3.1 Quartic plateau

The potential (2.7) can be generalized to allow small deformations of the plateau, alleviating

the tuning implied by the conditions (2.6). This may also serve the purpose of parametrizing

the effect of higher order radiative corrections altering the shape of the plateau. We will

then consider the potential

V (φ) =
λ

4!

(
1− 2

(
1− b1

)
log

φ2

φ20
+ 2
(
1 + b2

)(
log

φ2

φ20

)2
)
φ4 , (3.1)

where the absolute values of b1 and b2 are assumed to be smaller than 1.

Notice that the running of the couplings is constrained, in such a way that the truncated

potential is approximately scale invariant. Formally, the potential (3.1) has just three

parameters, which are combinations of λ, b1, b2 and the logarithm of φ0/MP . In appendix A
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SM can satisfy the plateau conditions, and why it fails to provide successful inflation, as

already pointed out, e.g. in [38].

We write the tree-level Higgs potential as in (4.16), where the Higgs SU(2) doublet,

H, contains the (would-be inflaton) real part of the neutral component, h, as well as the

Goldstone modes, i.e. H = (H̃, v + h + iG0)/
√
2. In the MS scheme, the effective quartic

coupling λ of h can be written (for large h) as in the expression (4.5), where the tree-level

contribution is λ(0l) = 3Z4
HλH , and at the one-loop level

λ(1l)

Z4
H

" 9λ2H
2

[
log

27λ4H
16

− 6

]
− 9y4t

2

[
log

y2t
2

− 3

2

]
+

9g42
4

[
log

g22
4

− 5

6

]
+

9g̃4

8

[
log

g̃2

4
− 5

6

]
,

(4.17)

with g̃2 ≡ 3g21/5 + g22.
21 In this expression we are neglecting all fermion contributions

except the one of the top quark. We choose the top Yukawa coupling, yt, and Higgs

quartic coupling, λH , to be the couplings that we determine from the plateau conditons,22

expanding them in κ. The first non-zero terms of the κ expansions of these couplings are:

yt =
1

2

(
g̃4 + 2g42

)1/4
, λH = −3

4
κ

[
g42 log

g22
4

+
g̃4

2
log

g̃2

4
− 8y4t

(
log

y2t
2

− 2

3

)]
.

(4.18)

As before, the couplings in these expressions are implicitly evaluated at the scale of the

plateau.

Using the two-loop RG improvement of the one-loop effective potential and assuming

a Higgs mass mh = 125.09GeV [73], we find that the plateau requires mt = 171.75GeV

and is located at h0 = 1.8× 1018GeV, with yt(h0) = 0.3815, see [40]. The simple formulae

above can reproduce this result to within ∼ 1% accuracy. In appendix C we provide the

O(κ) corrections, which reduce the difference to just ∼ 0.01%.

At the plateau, λ(0) and λ(1) vanish and the first non-zero contribution to λ comes

from

λ(2) = 72 y4t g
2
3 −

81

2
y6t +

g̃4

64

(
297 g̃2 − 462g22

)
+

g42
32

(
117 g̃2 − 84 g22

)
. (4.19)

As we have seen in section 3, a successful quartic inflationary plateau requires φ0 ∼
10MP and

λ(µ0) ∼ |βλ(µ0)| ∼ β′λ(µ0) ∼ 10−13 , (4.20)

where the renormalization scale µ0 is proportional to the plateau location φ0 by some

small (' 1) positive constant whose precise value can be chosen according to the induced

inflaton-dependent masses. Substituting in (4.19) the RG values of the couplings, choosing

µ0 = 0.1MP , leads to λ(µ0) ∼ 10−5, which is many orders of magnitude above the value

of 10−13 yielding successful inflation. This confirms the well-known result that the plateau

scenario in the SM fails to provide adequate inflation [38].

21Throughout this paper, we use the GUT normalization of the SM hypercharge coupling.
22Since the SM gauge couplings are much better constrained by experimental measurements than the top

Yukawa coupling, this is a convenient choice.
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evaluating the original couplings of the Lagrangian (and their beta functions) at ε φ0 since

we have chosen our renormalization scale to be µ0 = ε φ0. It is also important to stress

that βλ, the beta function of the effective quartic coupling λ(φ), is not the same as the one

of its tree-level counterpart, because λ(φ) absorbs the loop corrections from the Coleman-

Weinberg expansion.8 In the large field limit, a logarithmic expansion of the tree-level

quartic coupling around φ0 would obviously lead to an expression for the potential with

the same functional form as (2.4), but failing to reproduce the loop effects appropriately.

Coming back to the choice of renormalization scale, µ, it should be pointed out that

the Callan-Symanzik equation guarantees that the the effective potential is independent of

it, when computed to all loop orders. The truncation of the loop expansion (needed for

practical computations) introduces a marginal scale dependence which is never worse than

the precision of the truncation. In other words, upon truncation, the effective potential

remains scale-invariant up to subleading terms. However, as we mentioned before, the

numerical effect of these subleading terms at large field values can actually be better

accounted for with the choice µ ∝ φ, because it can suppress the potentially large logarithms

of the form (logM2
i (φ)/µ

2) [68]. It is worth remarking that the energies of the virtual

fluctuations inside loops are related to their inflaton-dependent masses, which may remain

well below the Planck mass even if the field takes Planckian values (as it is generically

the case in chaotic large-field inflation) if the couplings are sufficiently small. This will

be ensured in our concrete examples, for which successful inflation demands a very flat

potential, which implies that η ≡ M2
PV

′′/V # 1, where MP denotes the reduced Planck

mass, MP = mP /
√
8π. Concerning couplings along orthogonal directions, the masses

sourced by the inflaton will be under the Planck scale as long as the mixed scalar couplings

between the inflaton and the additional scalars are suppressed, as it will be the case in

the examples that we study later. Similarly, the inflaton field can source fermionic masses

through Yukawa couplings, which again will be suppressed if the latter are small. In the

examples of section 4, it is indeed possible to have inflaton excursions of the order of 10MP

with inflaton-sourced masses well below mP . Moreover, the overall height of the potential

(which is a most relevant scale for inflation) remains below m4
P .

A plateau supporting slow-roll inflation may also appear in a regime in which the

potential can be approximated by an effective quadratic term with positive mass squared:

V (φ) % 1

2
m2(φ)φ2. (2.10)

In terms of the beta function of the effective mass squared, the conditions for the existence

of the plateau in this case are:

β′m2(φ0) = −2βm2(φ0) = 4m2(φ0) . (2.11)

Expanding the effective mass around φ0, the potential can be written as

V (φ) % m2(φ0)

2

(
1− log

φ2

φ20
+

1

2

(
log

φ2

φ20

)2

+ · · ·
)
φ2 . (2.12)

8In concrete examples, it is nonetheless straightforward to obtain βλ and β′
λ from the expression of λ(φ)

in terms of the rest of the couplings and their beta functions.
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Figure 3. Examples of radiatively corrected quartic inflationary potentials. The parameters of
the potentials and their predictions for inflation are listed in table 1. Left : potentials in the high-r
branch illustrated in figure 1. Potentials of this kind predict high r, high Ne and low ns. Still,
they are currently allowed by the data. The vertical line (at 16.5MP ) indicates the (approximate)
common location of φi. For comparison we show a potential with an evident false vacuum (green,
long-dashed) and an unstable potential (brown, long-dashed). All these potentials have similar pre-
dictions independently of their shapes at higher field values. The dots in the exact plateau examples
(continuous-blue (1) and dotted-black (3), see table 1) locate φ0 for those cases. Right : two exam-
ples of potentials in the low-r branch, as in figure 2. Potentials of this type provide a comfortable
fit to current data. The dots indicate the field values φ0, φi and φe in each case, from right to left.
For comparison, black dotted lines represent the corresponding quartic monomials (without the ra-
diative corrections). The potentials of both panels have As(φi) = 2.13×10−9 and vanish at φ = 0.

# φ0/MP b1 b2 λ× 1013 ns α× 10−4 r φi/MP φe/MP Ne

1 (continuous) 30 0 0 1.37 0.961 −5.8 0.088 16.94 1.88 61.7

2 (short-dashed) 30 0.30 0.25 1.26 0.961 −5.8 0.077 16.56 1.85 61.7

3 (dotted) 27 0 0 1.55 0.960 −5.5 0.074 16.47 1.85 61.7

4 (dot-dashed) 30 −0.30 0.20 1.10 0.960 −5.6 0.084 16.87 1.87 61.6

5 (long-dashed) 30 0 −0.10 1.58 0.960 −6.3 0.096 16.84 1.87 59.7

6 (long-dashed) 30 −0.30 −0.20 1.04 0.962 −5.1 0.088 17.61 1.87 64.7

7 (continuous) 12 0.25 0.28 4.88 0.966 −28.1 0.012 10.21 1.65 49.5

8 (dashed) 8.5 0.033 0 3.10 0.966 −29.3 0.002 8.20 1.57 53.1

Table 1. Examples of radiatively corrected quartic potentials. The potentials 1–6 and 7, 8 corre-
spond to the left and right panels of figure 3, respectively. The primordial functions ns, r and α are
evaluated at φi. In all cases, As(φi) = 2.13 × 10−9. The quartic coupling λ and the deformation
parameters b1 and b2 are given at the plateau scale φ0. The quantity Ne denotes the number of
e-folds from φi to φe, where inflation ends.
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Figure 3. Examples of radiatively corrected quartic inflationary potentials. The parameters of
the potentials and their predictions for inflation are listed in table 1. Left : potentials in the high-r
branch illustrated in figure 1. Potentials of this kind predict high r, high Ne and low ns. Still,
they are currently allowed by the data. The vertical line (at 16.5MP ) indicates the (approximate)
common location of φi. For comparison we show a potential with an evident false vacuum (green,
long-dashed) and an unstable potential (brown, long-dashed). All these potentials have similar pre-
dictions independently of their shapes at higher field values. The dots in the exact plateau examples
(continuous-blue (1) and dotted-black (3), see table 1) locate φ0 for those cases. Right : two exam-
ples of potentials in the low-r branch, as in figure 2. Potentials of this type provide a comfortable
fit to current data. The dots indicate the field values φ0, φi and φe in each case, from right to left.
For comparison, black dotted lines represent the corresponding quartic monomials (without the ra-
diative corrections). The potentials of both panels have As(φi) = 2.13×10−9 and vanish at φ = 0.

# φ0/MP b1 b2 λ× 1013 ns α× 10−4 r φi/MP φe/MP Ne

1 (continuous) 30 0 0 1.37 0.961 −5.8 0.088 16.94 1.88 61.7

2 (short-dashed) 30 0.30 0.25 1.26 0.961 −5.8 0.077 16.56 1.85 61.7

3 (dotted) 27 0 0 1.55 0.960 −5.5 0.074 16.47 1.85 61.7

4 (dot-dashed) 30 −0.30 0.20 1.10 0.960 −5.6 0.084 16.87 1.87 61.6

5 (long-dashed) 30 0 −0.10 1.58 0.960 −6.3 0.096 16.84 1.87 59.7

6 (long-dashed) 30 −0.30 −0.20 1.04 0.962 −5.1 0.088 17.61 1.87 64.7

7 (continuous) 12 0.25 0.28 4.88 0.966 −28.1 0.012 10.21 1.65 49.5

8 (dashed) 8.5 0.033 0 3.10 0.966 −29.3 0.002 8.20 1.57 53.1

Table 1. Examples of radiatively corrected quartic potentials. The potentials 1–6 and 7, 8 corre-
spond to the left and right panels of figure 3, respectively. The primordial functions ns, r and α are
evaluated at φi. In all cases, As(φi) = 2.13 × 10−9. The quartic coupling λ and the deformation
parameters b1 and b2 are given at the plateau scale φ0. The quantity Ne denotes the number of
e-folds from φi to φe, where inflation ends.
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evaluating the original couplings of the Lagrangian (and their beta functions) at ε φ0 since

we have chosen our renormalization scale to be µ0 = ε φ0. It is also important to stress

that βλ, the beta function of the effective quartic coupling λ(φ), is not the same as the one

of its tree-level counterpart, because λ(φ) absorbs the loop corrections from the Coleman-

Weinberg expansion.8 In the large field limit, a logarithmic expansion of the tree-level

quartic coupling around φ0 would obviously lead to an expression for the potential with

the same functional form as (2.4), but failing to reproduce the loop effects appropriately.

Coming back to the choice of renormalization scale, µ, it should be pointed out that

the Callan-Symanzik equation guarantees that the the effective potential is independent of

it, when computed to all loop orders. The truncation of the loop expansion (needed for

practical computations) introduces a marginal scale dependence which is never worse than

the precision of the truncation. In other words, upon truncation, the effective potential

remains scale-invariant up to subleading terms. However, as we mentioned before, the

numerical effect of these subleading terms at large field values can actually be better

accounted for with the choice µ ∝ φ, because it can suppress the potentially large logarithms

of the form (logM2
i (φ)/µ

2) [68]. It is worth remarking that the energies of the virtual

fluctuations inside loops are related to their inflaton-dependent masses, which may remain

well below the Planck mass even if the field takes Planckian values (as it is generically

the case in chaotic large-field inflation) if the couplings are sufficiently small. This will

be ensured in our concrete examples, for which successful inflation demands a very flat

potential, which implies that η ≡ M2
PV

′′/V # 1, where MP denotes the reduced Planck

mass, MP = mP /
√
8π. Concerning couplings along orthogonal directions, the masses

sourced by the inflaton will be under the Planck scale as long as the mixed scalar couplings

between the inflaton and the additional scalars are suppressed, as it will be the case in

the examples that we study later. Similarly, the inflaton field can source fermionic masses

through Yukawa couplings, which again will be suppressed if the latter are small. In the

examples of section 4, it is indeed possible to have inflaton excursions of the order of 10MP

with inflaton-sourced masses well below mP . Moreover, the overall height of the potential

(which is a most relevant scale for inflation) remains below m4
P .

A plateau supporting slow-roll inflation may also appear in a regime in which the

potential can be approximated by an effective quadratic term with positive mass squared:

V (φ) % 1

2
m2(φ)φ2. (2.10)

In terms of the beta function of the effective mass squared, the conditions for the existence

of the plateau in this case are:

β′m2(φ0) = −2βm2(φ0) = 4m2(φ0) . (2.11)

Expanding the effective mass around φ0, the potential can be written as

V (φ) % m2(φ0)

2

(
1− log

φ2

φ20
+

1

2

(
log

φ2

φ20

)2

+ · · ·
)
φ2 . (2.12)

8In concrete examples, it is nonetheless straightforward to obtain βλ and β′
λ from the expression of λ(φ)

in terms of the rest of the couplings and their beta functions.
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2 Radiative plateaus

Radiative corrections to a renormalizable tree-level potential can induce an inflection point

with vanishing first derivative along some direction. This can favour slow-roll inflation in

the approximately flat region of the potential around that point. Considering the potential

on the direction φ relevant for inflation, such a plateau will be characterized by the existence

of a field value φ0 which solves the two equations

dV

dφ
= 0 ,

d2V

dφ2
= 0 . (2.1)

In the limit of large field values, only the quartic part of the potential matters and

the radiative corrections can be accounted for through the running of the quartic coupling.

The potential can be well approximated in this situation by

V (φ) ! λ(φ)

4!
φ4 , (2.2)

where λ(φ) is an effective field-dependent coupling. The simplest way of understanding the

field dependence of the potential (2.2) is using the Coleman-Weinberg form [65]:

V (φ) = Ω(µ) + V0(φ) +
1

64π2

∑

i

M4
i (φ)

(
log

M2
i (φ)

µ2
− Ci

)
+ · · · , (2.3)

recalling that the effective squared masses M2
i of the particles running in the loops are

proportional to φ2 for large values of the field.6 In this expression, V0(φ) is the tree-level

potential and Ω(µ) is the field-independent loop contribution to the cosmological constant.

The third term on the right hand side is due to one-loop diagrams and the ellipsis stands

for higher order loops. At large values of φ, the effective quartic coupling will be of the form

λ(φ) = λ̃(µ) +
1

2
c̃1(µ) log

φ2

µ2
+

1

8
c̃2(µ)

(
log

φ2

µ2

)2

+ · · · , (2.4)

where the logarithm squared comes from two-loop and higher order terms in the

Coleman-Weinberg expansion (2.3). Without loss of generality, we absorb in λ̃0(µ) all

non-logarithmic terms that come from the constants Ci. The field independent part Ω(µ)

is irrelevant in the large field limit.

It is convenient to choose the renormalization scale µ to be proportional to the location

of the plateau, i.e. µ = µ0 ≡ ε φ0, where generically ε$ 1. The (positive) constant ε comes

from M2
i (φ) ∝ φ2 (which is valid in the large field limit) and parametrizes the smallness of

the couplings implicit in these proportionality relations. One can choose ε to correspond,

for instance, to the smallest of the couplings appearing for the masses M2
i (φ). A different

choice does not make any practical difference in the computations if all the couplings are

approximately of the same order of magnitude.7

6We assume that either φ is the only scalar of the model or, in a more general situation, that the

field-dependent masses Mi are dominated by the φ contribution.
7If the model contained widely dissimilar energy thresholds or particle masses, a treatment such as those

of [66] and [67] could be implemented. For simplicity, we assume throughout that this is not required.
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With this choice of renormalization scale, a straightforward redefinition of the coeffi-

cients of (2.4) allows to write this expression as follows:

λ(φ) = λ(φ0) +
1

2
c1(φ0) log

φ2

φ20
+

1

8
c2(φ0)

(
log

φ2

φ20

)2

+ · · · , (2.5)

where the coefficients λ0(φ0), c1(φ0), . . . , are functions of the original λ̃0(µ), c̃1(µ), etc.

evaluated at µ0. Thus, the equations (2.1) are solved at φ = φ0 if

c2(φ0) = −4 c1(φ0) = 16λ(φ0) . (2.6)

The reason for the relative signs in (2.6) can be easily understood. Since the potential

has to be positive at the plateau, i.e. around the inflection point φ0, the effective quartic

coupling λ0(φ0) has to be positive. A negative first derivative of λ(φ) with respect to log φ

at the plateau, i.e. c1(φ0), tends to drive the effective quartic coupling to negative values,

flattening the potential. In order to avoid the appearance of an instability, c2(φ0) has to

be positive.

Using the conditions (2.6) into the expression (2.5), the effective potential becomes

V (φ) " λ(φ0)

4!

(
1− 2 log

φ2

φ20
+ 2

(
log

φ2

φ20

)2

+ · · ·
)
φ4 , (2.7)

where the ellipsis stand for higher powers of the logarithm, coming from higher order loops,

which we are neglecting. Therefore, we see that a plateau may arise from the interplay of the

one- and two-loop corrections to the effective potential. Actually, the expression (2.7) shows

that a plateau can arise already at the two-loop leading log level, as we will discuss next.

Another way of understanding the potential is the following. Starting anew with the

Coleman-Weinberg expansion (2.3), we choose the renormalization scale to be µ = ε φ and

keep only the terms involving powers of φ4. With this choice, the logarithms are effectively

resummed into an effective quartic coupling λ(φ), which multiplies φ4, as we anticipated

in (2.2). This effective coupling λ(φ) includes the quartic terms at all orders, arising from

the the Coleman-Weinberg potential in the large field limit. Then, we expand λ(φ) around

the location of the plateau, φ0, obtaining an expression analogous to (2.5), i.e.

λ(φ) = λ(φ0) +
1

2
βλ(φ0) log

φ2

φ20
+

1

8
β′λ(φ0)

(
log

φ2

φ20

)2

+ · · · . (2.8)

This shows explicitly that the coefficients c1, c2, etc. of (2.5) are related to the beta function

of the effective quartic coupling,

βλ =
∂λ

∂ log µ
, (2.9)

and its logarithmic derivatives, indicated with primes in (2.8). Therefore, the condi-

tions (2.6) can be interpreted in terms of the variation of the beta function of the effective

quartic coupling at the plateau. The need of including two loops to describe a plateau

also becomes automatically apparent in this way, since β′λ is of order two in the loop ex-

pansion. By construction, evaluating the effective quartic coupling λ at φ0 corresponds to

– 5 –
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As discussed in section 2, the coefficients c1(φ0) and c2(φ0) of the radiatively corrected

quartic potential are related to the beta function of the effective quartic coupling and its

derivative with respect to the renormalization scale µ, so the plateau conditions (2.6) can

be rewritten as

βλ(φ0) = −4λ(φ0), β′λ(φ0) = −4βλ(φ0). (4.7)

These two equations can in principle be used to determine two of the couplings of any

model in terms of the rest of the couplings. In what follows, we will drop again φ0 from

the notation for brevity.

Since any beta function βγi = ∂γi/∂ log µ is zero at order κ0 by definition, the quantity

β(1)λ is just a function of the lowest order couplings γ(0)i , whereas β(2)λ depends on both γ(0)i

and γ(1)i , see (4.4). Analogously, β′λ is zero at order κ (and κ0) because β′λ = ∂βλ/∂ log µ =
∑

i βγi ∂βλ/∂γi . Then, using β
′ (1)
λ = 0 in (4.7) we obtain that β(1)λ = 0 and thus λ(1) = 0.

This enforces an algebraic relation among all the zeroth order couplings γ(0)i . Similarly,

the first equation in (4.7) implies λ(0) = 0, because β(0)λ = 0, as we have just explained.

Moreover, since the tree-level quartic coupling λ̂(0) coincides with the zeroth order effective

quartic coupling λ(0), we conclude that also λ̂(0) = 0. As λ̂ and λ differ already at order κ,

their beta functions can start to be different only at order κ2, and so β(1)λ = β(1)
λ̂

= 0.

The conditions (4.7) imply as well that β′λ = 16λ, that in turn leads to β′(2)λ = 16λ(2),

which is the first non-zero contribution to the effective quartic coupling. In addition, given

that β′λ is zero below the order κ2, we know that β′(2)λ depends only on the lowest order cou-

plings γ(0)i . Besides, the derivatives β′λ and β′
λ̂
differ only by terms of order κ3 and higher,

which means that β′(2)λ = β′(2)
λ̂

. Furthermore, β′λ̂ = ∂βλ̂/∂ log µ =
∑

i βγi ∂βλ̂/∂γi and so,

using β′(2)λ = 16λ(2), we see that the one-loop beta functions β(1)γi are sufficient to com-

pute the first (non-zero) contribution to the effective quartic coupling at the plateau. This

amounts to a one-loop RG-improvement of the tree-level potential, which captures c2(φ0) =

β′λ(φ0) and c1(φ0) = βλ(φ0) with leading log precision, i.e. at orders κ2 and κ, respectively.

The previous discussion shows that in order to establish whether a model admits a

plateau it is necessary to check that β(1)λ = 0 should have a non-trivial solutions for which

λ(2) = β′(2)λ /16 is positive. The tree level effective potential plus the one-loop beta functions

are sufficient for this purpose. However, describing the plateau in terms of the couplings

of the Lagrangian, requires additional corrections to the potential or the beta functions, as

discussed next.

As we mentioned before, the equations (4.7) allow to express two couplings of the model

in terms of the rest of them. For convenience, we select one to be λ̂ (or m̂2 in the quartic

case) and the other can be arbitrarily chosen. In order to obtain the first non-zero contri-

bution to the tree-level quartic coupling that is needed for a plateau, λ̂(1), we can use the

equation λ(1) = 0. This requires knowing the order κ relation between λ̂ and λ, which can be

obtained from the one-loop effective potential. The second equation in (4.7) involves β(2)λ ,

which depends on the zeroth and first order contributions to the couplings. This second

equation allows to express the order κ contribution to any coupling we choose in terms of
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to keep track of the perturbative order of the expansion:12

γi = γ(0)i + κγ(1)i + κ2γ(2)i + · · · . (4.1)

In this expression the couplings of the model are understood to be evaluated at the scale

µ0 = εφ0. For simplicity, we remove µ0 from the notation, but it has to be remembered

that the conditions that we will obtain on them refer only to their values at this scale.

We also remind the reader that, as discussed in section 2, the effective quartic coupling

and its derivatives: λ(φ0), βλ(φ0) and β′λ(φ0) are defined at φ0 by construction, but in the

following we will denote them simply as λ, βλ and β′λ.
13 We use the same notation with

superscripts to expand the beta functions of the couplings:

βγi =
∂γi

∂ log µ
= β(0)γi + κβ(1)γi + κ2β(2)γi + · · · , (4.2)

where each β(N)
γi can be written as a function of the γ(M)

i . We can express the beta function

βγi as a sum of its loop contributions: βγi = β1lγi + β2lγi + · · · , where βnlγi carries n powers of

κ. Then, expanding in Taylor series:

βγi

[
γ(0)q + κγ(1)q + · · ·

]
= βγi

[
γ(0)q

]
+ κ

∑

j

∂βγi
∂γj

∣∣∣∣∣
γ(0)
q

γ(1)j + · · · (4.3)

we obtain

β(0)γi = 0 , β(1)γi = β1lγi

[
γ(0)q

]
, β(2)γi = β2lγi

[
γ(0)q

]
+
∑

j

∂β1lγi
∂γj

∣∣∣∣∣
γ(0)
q

γ(1)j , . . . . (4.4)

Similarly, we can expand in powers of κ the effective quartic coupling, λ, and the effective

mass squared, m2, of the potentials (2.2) and (2.10). For concreteness, we will focus now

on a quartic plateau; but analogous arguments apply to the quadratic case. We define λ(N)

through the relation

λ = λ(0) + κλ(1) + κ2λ(2) + · · · . (4.5)

We stress that the coupling λ is different from the nominal quartic coupling of the La-

grangian, which we denote by λ̂ and which we can also expand as

λ̂ = λ̂(0) + κλ̂(1) + κ2λ̂(2) + · · · . (4.6)

As any other couplings, λ and λ̂ are implicitly evaluated in these expressions at the scale

µ0. The coupling λ̂ is by definition just one among all the γi introduced earlier. At lowest

order in κ, the two couplings, λ and λ̂, coincide, i.e. λ(0) = λ̂(0), but they differ at linear

order in κ and beyond.

12An N -th loop term in a loop expansion of the potential comes with a factor κN and, analogously, each

contribution to a beta function coming from an N -loop term appears with the same power of κ.
13At any other scale, the RG equations (even at just one-loop order) generically mix the coefficients of

different orders in κ. Therefore, care must be taken to avoid misinterpreting the expression (4.1) as an

expansion of the couplings in loops.
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Figure 6. Examples of radiatively corrected quadratic inflation. The parameters of the potentials
and their predictions for inflation are given in table 2. Left: potentials in the high r branch
illustrated in figure 3. The vertical line (at 9.7 MP ) indicates the (approximate) common location
of φi. These potentials provide a comfortable fit to the data. The vertical line (at 9.7MP ) indicates
the (approximate) common location of φi. The potentials have similar predictions independently
of their shapes at higher field values. The dots in the exact plateau examples (continuous-blue (1)
and orange long-dashed (5), see table 2) locate the inflection point φ0 for those cases. Right: two
examples of potentials in the low r branch, as in figure 1. The dots indicate the field values φ0, φi
and φe in each case, from right to left For comparison, black dotted lines represent the corresponding
quartic monomials (without the radiative corrections). The potentials of both panels have As(φi) =
2.13× 10−9 and vanish at φ = 0. Both branches provide good fits to current CMB data.

# φ0/MP b1 b2 m2/M2
P × 1012 ns α× 104 r φi/MP φe/MP Ne

1 (continuous) 20 0 0 5.89 0.966 −5.2 0.031 9.69 0.66 56.8

2 (short-dashed) 20 0.2 0.1 6.30 0.966 −5.8 0.031 9.38 0.65 55.1

3 (dotted) 22 -0.3 0.2 3.99 0.966 −4.5 0.029 9.97 0.67 59.4

4 (dot-dashed) 26 0.2 -0.2 8.43 0.966 −6.6 0.054 10.10 0.68 51.1

5 (long-dashed) 26 0 0 6.10 0.966 −6.0 0.046 10.09 0.68 53.1

6 (continuous) 7 0.075 -0.2 7.86 0.966 −10.5 0.0060 6.50 0.57 55.4

7 (dashed) 7 0.075 0.1 4.68 0.966 −12.5 0.0036 5.79 0.55 55.1

Table 2. Examples radiatively corrected quadratic potentials. The potentials 1–5 and 6, 7 corre-
spond to the left and right panels of figure 6, respectively. The primordial functions ns, r and α
are evaluated at φi. In all cases, As(φi) = 2.13× 10−9. The mass squared m2 and the deformation
parameters b1 and b2 are given at the plateau scale φ0. The quantity Ne denotes the number of
e-folds from φi to φe, where inflation ends.

one-loop potential and the one-loop beta functions. Getting both couplings with the same

level of precision requires the two-loop improvement of the one-loop effective potential,

which gives each coefficient of the logarithmic expansion at next-to-leading log order [68],

i.e. the N -th log in the effective potential is given with N + 1 loop precision.

Once we have chosen a specific particle physics model, we may look for solutions of the

plateau conditions (2.6) or (2.11) in a perturbative expansion. For this it is convenient to

write the couplings γi of the Lagrangian11 as a formal series in κ = 1/(16π2), which helps

11In practice, at the end of our computations, we will only express in this way the two couplings of the

Lagrangian that we choose to solve for and the effective quartic or quadratic coupling of the potential.
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Particle physics realizations

Sufficient conditions for a plateau.
The inflaton must couple to fermions and to: 

another scalar (with weak fermionic couplings) or a U(1) gauge field

Examples of quartic plateaus:
1. Singlet inflaton coupled to the Higgs and new fermions

hypercharge

another U(1)
2. As in 1. but also charging 
the fermions under a U(1)

fermions could be 
WIMPS (TeV)

3. Standard Model Higgs: �H � 10�13

4. Inflaton and two pairs of (Weyl) fermions charged under a U(1)
(the role of the extra scalar is now played by a vector gauge boson)

(U(1) could be hypercharge if the fermion charges are ~ 0.01 )
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Conclusions ( for the first part)
Monomial chaotic inflation is ruled-out by CMB data.

However, QFT loop corrections implied by the need of reheating 
can actually “rescue” these models
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A plateau of this type is only viable if the cubic and quartic corrections to the potential

remain suppressed for the field values around φ0. The potential (2.12) assumes that those

interactions vanish at the scale φ0 of the plateau. Clearly, a similar assumption is needed

for a standard φ2 chaotic model of inflation. In concrete implementations of the quadratic

plateau, it has to be checked that the cubic and quartic corrections induced through loops

are suppressed for the range of fields relevant for inflation.

Plateaus may also occur in a region of a potential that is dominated by a linear

or cubic term. However, whereas the radiatively corrected φ2 and φ4 potentials have a

vanishing absolute minimum V (0) ! 0 (under the assumption that the odd terms are

negligible at all scales), the situation is more complicated for odd monomials. For linear

and cubic plateaus the minimum can only appear once the quadratic or quartic terms

start to be relevant, which happens away from φ = 0 and necessarily breaks the monomial

approximation. Unless the potential has a tuned field-independent piece, the minimum

will then be negative. We recall that the stages of the universe following inflation require

a long-lived minimum with a small and positive cosmological constant. As it is usually

done, we will assume that this is achieved by some mechanism for which inflation has no

bearing. For simplicity, we will focus our attention on φ2 and φ4 plateaus, avoiding in this

work the the complications of odd monomials.

3 Inflation

Before searching for concrete particle physics models giving rise to successful inflationary

plateaus, we are going to study the generic properties of the potentials (2.7) and (2.12).

As discussed in the introduction, the appearance of a plateau from radiative corrections

is a possibility for completing and rendering viable the classical quadratic and quartic

chaotic models of inflation, which are now either under strong tension (in the case of φ2) or

completely ruled out (φ4), mostly due to Planck CMB data [14, 15]. In this section we will

show how radiative corrections to standard monomial chaotic inflation make these models

compatible with the data.

3.1 Quartic plateau

The potential (2.7) can be generalized to allow small deformations of the plateau, alleviating

the tuning implied by the conditions (2.6). This may also serve the purpose of parametrizing

the effect of higher order radiative corrections altering the shape of the plateau. We will

then consider the potential

V (φ) =
λ

4!

(
1− 2

(
1− b1

)
log

φ2

φ20
+ 2
(
1 + b2

)(
log

φ2

φ20

)2
)
φ4 , (3.1)

where the absolute values of b1 and b2 are assumed to be smaller than 1.

Notice that the running of the couplings is constrained, in such a way that the truncated

potential is approximately scale invariant. Formally, the potential (3.1) has just three

parameters, which are combinations of λ, b1, b2 and the logarithm of φ0/MP . In appendix A

– 7 –

Three-parameter general description of 
radiatively corrected monomial inflation: 

Concrete examples of plateaus require couplings of the inflaton to fermions 
and to another scalar (e.g. the Higgs) or a gauge group
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- What is the interplay between inflation and the SM?

Second part of the talk:

Example: stability of the SM effective potential
(arXiv:1505.07476)
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Summary of part two

Can the inflaton stabilize the effective potential?

Fact 1: Quantum fluctuations of the Higgs during inflation 
that are of the order of the Hubble scale (large!)

Fact 2: Given the Higgs and top quark masses, the SM potential
might be negative for large Higgs values

Problem: the Higgs is likely to end up in the instability
instead of in the right EW vacuum
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Implications of Mt (and Mh) for vacuum stability

1. The metastability of the electroweak vacuum after the first LHC run

In the first LHC run we have learned that the Higgs boson exists; it is light, with mass Mh '
125 GeV [1]; and it has SM-like couplings (still with room for significant deviations). Moreover,
no trace of BSM physics has showed up, leading to bounds on the mass scale L of new physics in
the TeV range for the main BSM scenarios, supersymmetric or not. For those of us willing to hold
on to the naturalness paradigm, the hierarchy problem affecting electroweak symmetry breaking
implies that new physics should be around the corner, likely on the reach of the second LHC run.
However, it is also possible that naturalness has mislead us and we are just seeing evidence that
the SM is all there is up to very high energy scales, possibly up to L ⇠ MP. Figure 1 (left plot)
shows how the most relevant SM couplings evolve when extrapolated to very high scales [2]. It was
not guaranteed but the theory stays weakly coupled up to MP but it does. We see the three gauge
couplings almost unifying at µ ⇠ 1014 GeV. The top Yukawa coupling decreases at high energy
(due to as effects) and eventually becomes smaller than all gauge couplings. The Higgs quartic
coupling evolves in a very interesting way: it is small at the EW scale, l (Mt)⇠ 1/8, as the Higgs
boson is light, and it decreases when run to higher scales. The zoomed-in right plot in Fig. 1 shows
l becoming negative at µ ⇠ 1010 GeV.

The steep slope of l (µ) is caused by one-loop top corrections, that give the dominant contribu-
tion to bl = dl/d log µ , which dictates the evolution of l with scale. One has bl =�6y4

t /(16p2)+

... where yt is the sizable top Yukawa coupling. This dependence of bl on the fourth power of yt

explains the crucial sensitivity of the running of l on the top quark mass Mt , illustrated by the gray
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Figure 1: Left: Extrapolation of SM couplings from the Fermi scale to MPl. Right: Zoom-in on the evolution
of the Higgs quartic coupling, l (µ), for Mh = 125.7 GeV. The 3s uncertainties in Mt , as and Mh are shown
by the colored intervals as indicated. (Taken from Ref. [2]).
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt, Mh and ↵s by ±3�.

the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
2
s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓

Mt [GeV]� 173.1

0.7

◆

� 0.5

✓

↵s(MZ)� 0.1184

0.0007

◆

± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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dependence of � around the weak scale, caused by the �32y4t g
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s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.
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From this result we conclude that vacuum stability of the SM up to the Planck scale is
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Although the central values of Higgs and top masses do not favor a scenario with a
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Inflation and the Higgs

Quantum fluctuations of the Higgs:
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Figure 4. Corrections beyond the leading one-dimensional approximation to the mass parameter
(left) and to the quartic coupling (right), in terms of the field S along the h-line for the same
scenario as in figure 3, with mt = 171.7GeV, λS = 3.82 · 10−13, λSH = 3.67 · 10−10, and m2

S =
−1.06·1026 GeV2. The left red points mark the beginning of observable inflation, and the right points
mark the end of inflation. The corrections to the mass and quartic parameters were estimated with
the tree-level potential, while the cosmological parameters were calculated with the RG-improved
effective potential. Notice that the corrections to the quartic coupling are much smaller than λS .

Equations (4.5) and (4.6) can be used, together with the tree-level formulae of the pre-

vious sections, to estimate the validity of the one-dimensional approximation for inflation

along the h-valley in the SMS. Doing so, we find that the approximation works with high

accuracy, as the corrections to the couplings (4.5) and (4.6) are many orders of magnitude

below the values obtained by simply considering the potential along the projection of the

bottom of the valley as a function of the length σ. Figure 4 shows the corrections evaluated

along the h-line (which, as shown in section 3.3, is a good approximation to the projection

of the valley’s floor for large h) at tree-level, for a concrete choice of parameters which

gives successful inflation. The peak in the size of the relative mass correction happens

when the valley potential crosses an inflection point, so that V ′′ = 0. Away from this peak

the relative corrections are very strongly suppressed.

4.2 Slow-roll approximation

In the one-dimensional and slow-roll approximation, we compute the primordial spectra

produced during inflation in terms of the first three slow-roll (potential) parameters ε, η

and ξ, defined as

ε =
M2

P

2

(
V ′

V

)2

, η = M2
P
V ′′

V
, ξ = M4

P
V ′V ′′′

V 2
, (4.7)

where MP = 1/
√
8πG # 2.435 · 1018GeV is the reduced Planck mass. In these expressions

the potential is understood to be evaluated along the projection of the bottom of a valley

in field space and, for simplicity, the primes denote derivatives with respect to the field

σ, which parametrizes the valley’s length. If the orthogonal corrections to the dynamics

and the primordial spectra where not negligible, we would need a two-field description

and similar parameters for the orthogonal direction as well, see e.g. [46]. However, as

– 20 –
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Inflation and the Higgs

h

�V (h,�)

Recall:
The inflaton must couple to the SM for reheating

If the inflaton couples directly to the Higgs,
 the inflationary trajectory is (in general) two-dimensional

Another complication:
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Higgs = inflaton?

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χCOBE χ

0
λ v4/4

0 v

Fig. 1. Effective potential in the Einstein frame.

Analysis of the inflation in the Einstein frame 3 can
be performed in standard way using the slow-roll ap-
proximation. The slow roll parameters (in notations of
[28]) can be expressed analytically as functions of the
field h(χ) using (4) and (6) (in the limit of h2 !
M2

P /ξ ! v2),

ε =
M2

P

2

(

dU/dχ

U

)2

"
4M4

P

3ξ2h4
, (9)

η = M2
P

d2U/dχ2

U
" −

4M2
P

3ξh2
, (10)

ζ2 = M4
P

(d3U/dχ3)dU/dχ

U2
"

16M4
P

9ξ2h4
. (11)

Slow roll ends when ε " 1, so the field value at
the end of inflation is hend " (4/3)1/4MP /

√
ξ "

1.07MP/
√

ξ. The number of e-foldings for the change
of the field h from h0 to hend is given by

N =

h0
∫

hend

1

M2
P

U

dU/dh

(

dχ

dh

)2

dh "
6

8

h2
0 − h2

end

M2
P /ξ

.(12)

We see that for all values of
√

ξ ≪ 1017 the scale of
the Standard Model v does not enter in the formulae,
so the inflationary physics is independent on it. Since
interactions of the Higgs boson with the particles of
the SM after the end of inflation are strong, the re-
heating happens right after the slow-roll, and Treh "
( 2λ
π2g∗

)1/4MP /
√

ξ " 2×1015 GeV, where g∗ = 106.75
is the number of degrees of freedom of the SM. So,
the number of e-foldings for the the COBE scale enter-
ing the horizon NCOBE " 62 (see [28]) and hCOBE "
9.4MP/

√
ξ. Inserting (12) into the COBE normaliza-

tion U/ε = (0.027MP )4 we find the required value for
ξ

3 The same results can be obtained in the Jordan frame [26, 27].
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Fig. 2. The allowed WMAP region for inflationary parameters (r,
n). The green boxes are our predictions supposing 50 and 60 e–
foldings of inflation. Black and white dots are predictions of usual
chaotic inflation with λφ4 and m2φ2 potentials, HZ is the Har-
rison-Zeldovich spectrum.

ξ "

√

λ

3

NCOBE

0.0272
" 49000

√
λ = 49000

mH
√

2v
. (13)

Note, that if one could deduce ξ from some fundamen-
tal theory this relation would provide a connection be-
tween the Higgs mass and the amplitude of primordial
perturbations. The spectral index n = 1 − 6ε + 2η cal-
culated for N = 60 (corresponding to the scale k =
0.002/Mpc) is n " 1− 8(4N + 9)/(4N + 3)2 " 0.97.
The tensor to scalar perturbation ratio [8] is r = 16ε "
192/(4N+3)2 " 0.0033. The predicted values are well
within one sigma of the current WMAP measurements
[8], see Fig. 2.

3. Radiative corrections

An essential point for inflation is the flatness of
the scalar potential in the region of the field values
h ∼ 10MP/

√
ξ, what corresponds to the Einstein

frame field χ ∼ 6MP . It is important that radiative
corrections do not spoil this property. Of course, any
discussion of quantum corrections is flawed by the non-
renormalizable character of gravity, so the arguments
we present below are not rigorous.
There are two qualitatively different type of correc-

tions one can think about. The first one is related to the
quantum gravity contribution. It is conceivable to think
[29] that these terms are proportional to the energy den-
sity of the field χ rather than its value and are of the
order of magnitude U(χ)/M4

P ∼ λ/ξ2. They are small
at large ξ required by observations. Moreover, adding
non-renormalizable operators h4+2n/M2n

P to the La-
grangian (2) also does not change the flatness of the

3

p
�g ⇠ h2 R ⇢ L

⇠ ⇠ 104

Bezrukov and Shaposhnikov arXiv:0710.3755

Requires a stable potential
and has a unitarity 

breakdown problem 
for large ⇠

(    suppresses quantum fluctuations)⇠
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Can the inflaton stabilize the potential? 
A simple Higgs portal inflation model
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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relevant potential is then given by (3.22) and (3.20) and can be written as

V (S) = ϑ
(
S2 − v2S

)2
, (4.29)

where ϑ > 0 is the dimensionless coupling

ϑ =
λS
4!

λ̃

λ
. (4.30)

This type of potential, with positive ϑ and v2S , has been studied in the context of inflation

in various works and is known to be capable of providing a good fit to Planck data, see

e.g. [53]. The potential (4.29) was probably first studied in [54] as a specific implementation

of slow-roll inflation (back then called as well new inflation). It was pointed out there that

a phase of accelerated expansion occurs if the symmetry breaking scale vS is of the order

of the Planck mass (or larger), see also [55, 56]. Later, it was also considered in [57–

59] and more recently in [60–63]. Here we will give a detailed analysis, including some

remarks about the slow-roll approximation and reheating, and discuss the implications for

the Standard Model of particle physics, extended with the singlet S.

Due to the Z2 symmetry of the potential (4.29), we can focus exclusively on the region

S ≥ 0 without loss of generality. The possible inflationary dynamics can be separated

in two cases that turn to give rather different predictions. The first one corresponds to

S < vS , with the inflaton rolling from smaller to larger values, and corresponds to a sort

of “hilltop” model [64]. The second case is S > vS , with Ṡ < 0 and may behave as a

(displaced) quartic or quadratic potential depending on the concrete values of ϑ and vS
and the field range. We will study in turn the two cases.

Both possibilities share a property that is useful to highlight now. Of the two pa-

rameters on which the potential depends, only vS determines the amount of inflation that

is produced. Since V is proportional to ϑ, the dependence on this parameter factors out

from any expression involving the potential slow-roll parameters, which are homogeneous

functions of V of degree zero, see (4.7). Therefore, the coupling ϑ does not affect the

prediction for the number of e-folds, as (4.17) shows. It does not intervene either in any of

the primordial parameters that we have defined, except As, see (4.8), and thus it can be

fixed solely from this number.

We will denote by S∗ the value of S for which a total of Ne inflationary e-folds are pro-

duced. Then, given v2S and S∗ such that the slow-roll parameters and Ne take appropriate

values, ϑ is determined by the amplitude of the scalar perturbations through the expression

ϑ = 192π2As
S2
∗M

6
P(

S2
∗ − v2S

)4 . (4.31)

The primordial scalar amplitude at k∗ = 0.05 Mpc−1 is approximately17

log(1010As) = 3.06± 0.03 (4.32)

17The precise central value and range depend on the concrete data set and assumptions on parameters [65].
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fixed solely from this number.

We will denote by S∗ the value of S for which a total of Ne inflationary e-folds are pro-

duced. Then, given v2S and S∗ such that the slow-roll parameters and Ne take appropriate

values, ϑ is determined by the amplitude of the scalar perturbations through the expression

ϑ = 192π2As
S2
∗M

6
P(

S2
∗ − v2S

)4 . (4.31)

The primordial scalar amplitude at k∗ = 0.05 Mpc−1 is approximately17

log(1010As) = 3.06± 0.03 (4.32)

17The precise central value and range depend on the concrete data set and assumptions on parameters [65].
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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range of Higgs and top quark masses [4, 12]. This effect may also change qualitatively the

potential around the lines of minima in the SMS, the h- and S-lines that were described in

section 3. In particular, it may destabilize the h-valley, that was shown to be able support

inflation at tree-level. Naively, this could ruin the possibility of obtaining inflation, as the

energy density could become negative inside the valley were the field should roll. Since

the valley acts as an attractor for the dynamics of fields rolling in its vicinity, inflation

would then have to be discarded for initial conditions in a wide region around the valley.

In addition to this geometrical effect, there is also the crucial issue of large quantum

fluctuations of the Higgs field induced by inflation, which can displace it directly into the

instability region. It is therefore important to know under which conditions a potential

SM instability can be cured in the SMS, which we analyze now.

For values of S below the VEV of S in the Higgs vacuum, and in the limit in which h

is larger than the other mass scales, a well motivated choice for the renormalization scale

is µ ∼ h [29]. Then, using the tree-level potential, neglecting terms other than the quartic

Higgs coupling and ignoring the field-renormalization factor, we have that for S = 0

∂V

∂h
" 1

2

(
λ(h) +

1

4
βλ(h)

)
h3 . (5.15)

For βλ(h) < 0, which causes λ(h) to be a decreasing function, the derivative of the potential

can become negative at high enough values of h, triggering an instability. In the SM, for

mt = 173.15GeV and mh = 125.09GeV, after matching the experimental measurements

to the SM parameters as detailed in appendix B, the scale at which the potential becomes

negative is around ΛI ∼ 5·1011GeV. This effect is absent in the other two quartic couplings

of the SMS, since their beta functions lack the top-Yukawa driven contributions present in

λ. Indeed, the one-loop beta functions in the SMS are the following:

βλ =
1

16π2

[
−12y4t + λ

(
−9

5
g21 − 9g22 + 12y2t

)
+

27

100
g41 +

9

10
g22g

2
1 +

9

4
g42 + 12λ2 + λ2SH

]
,

(5.16)

βλS =
1

16π2
[
3λ2S + 12λ2SH

]
, (5.17)

βλSH =
1

16π2

[
λSH

(
− 9

10
g21 −

9

2
g22 + 6λ+ λS + 6y2t

)
+ 4λ2SH

]
. (5.18)

Notice that the negative contribution to βλ coming from y4t may in principle be compensated

by λ2SH (and this possibility is of course absent in the SM). However, this will typically

require rather large values of λSH .

If the S- and h-lines of minima extend to values of h that are large enough to sense the

instability, there will be a value of the top quark mass, mt, above which the potential along

them will end up developing a runaway behavior. It will be seen in the next section that

for the large values of vS needed for successful tree-level inflation along the h-valley, see

section 4.4, small values of λSH suffice to make the h-valley reach values of h larger than

the instability scale. The lower bound of λSH for which this happen is given by (5.29).

An example is provided by the choice of parameters shown in figures 3 and 4, for which

inflation takes place at tree-level for h > 1014GeV with λSH ∼ 10−10.
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range of Higgs and top quark masses [4, 12]. This effect may also change qualitatively the

potential around the lines of minima in the SMS, the h- and S-lines that were described in

section 3. In particular, it may destabilize the h-valley, that was shown to be able support

inflation at tree-level. Naively, this could ruin the possibility of obtaining inflation, as the

energy density could become negative inside the valley were the field should roll. Since

the valley acts as an attractor for the dynamics of fields rolling in its vicinity, inflation

would then have to be discarded for initial conditions in a wide region around the valley.

In addition to this geometrical effect, there is also the crucial issue of large quantum

fluctuations of the Higgs field induced by inflation, which can displace it directly into the

instability region. It is therefore important to know under which conditions a potential

SM instability can be cured in the SMS, which we analyze now.

For values of S below the VEV of S in the Higgs vacuum, and in the limit in which h

is larger than the other mass scales, a well motivated choice for the renormalization scale

is µ ∼ h [29]. Then, using the tree-level potential, neglecting terms other than the quartic

Higgs coupling and ignoring the field-renormalization factor, we have that for S = 0

∂V

∂h
" 1

2

(
λ(h) +

1

4
βλ(h)

)
h3 . (5.15)

For βλ(h) < 0, which causes λ(h) to be a decreasing function, the derivative of the potential

can become negative at high enough values of h, triggering an instability. In the SM, for

mt = 173.15GeV and mh = 125.09GeV, after matching the experimental measurements

to the SM parameters as detailed in appendix B, the scale at which the potential becomes

negative is around ΛI ∼ 5·1011GeV. This effect is absent in the other two quartic couplings

of the SMS, since their beta functions lack the top-Yukawa driven contributions present in

λ. Indeed, the one-loop beta functions in the SMS are the following:

βλ =
1

16π2

[
−12y4t + λ

(
−9

5
g21 − 9g22 + 12y2t

)
+

27

100
g41 +

9

10
g22g

2
1 +

9

4
g42 + 12λ2 + λ2SH

]
,

(5.16)

βλS =
1

16π2
[
3λ2S + 12λ2SH

]
, (5.17)

βλSH =
1

16π2

[
λSH

(
− 9

10
g21 −

9

2
g22 + 6λ+ λS + 6y2t

)
+ 4λ2SH

]
. (5.18)

Notice that the negative contribution to βλ coming from y4t may in principle be compensated

by λ2SH (and this possibility is of course absent in the SM). However, this will typically

require rather large values of λSH .

If the S- and h-lines of minima extend to values of h that are large enough to sense the

instability, there will be a value of the top quark mass, mt, above which the potential along

them will end up developing a runaway behavior. It will be seen in the next section that

for the large values of vS needed for successful tree-level inflation along the h-valley, see

section 4.4, small values of λSH suffice to make the h-valley reach values of h larger than

the instability scale. The lower bound of λSH for which this happen is given by (5.29).

An example is provided by the choice of parameters shown in figures 3 and 4, for which

inflation takes place at tree-level for h > 1014GeV with λSH ∼ 10−10.
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range of Higgs and top quark masses [4, 12]. This effect may also change qualitatively the

potential around the lines of minima in the SMS, the h- and S-lines that were described in

section 3. In particular, it may destabilize the h-valley, that was shown to be able support

inflation at tree-level. Naively, this could ruin the possibility of obtaining inflation, as the

energy density could become negative inside the valley were the field should roll. Since

the valley acts as an attractor for the dynamics of fields rolling in its vicinity, inflation

would then have to be discarded for initial conditions in a wide region around the valley.

In addition to this geometrical effect, there is also the crucial issue of large quantum

fluctuations of the Higgs field induced by inflation, which can displace it directly into the

instability region. It is therefore important to know under which conditions a potential

SM instability can be cured in the SMS, which we analyze now.

For values of S below the VEV of S in the Higgs vacuum, and in the limit in which h

is larger than the other mass scales, a well motivated choice for the renormalization scale

is µ ∼ h [29]. Then, using the tree-level potential, neglecting terms other than the quartic

Higgs coupling and ignoring the field-renormalization factor, we have that for S = 0

∂V

∂h
" 1

2

(
λ(h) +

1

4
βλ(h)

)
h3 . (5.15)

For βλ(h) < 0, which causes λ(h) to be a decreasing function, the derivative of the potential

can become negative at high enough values of h, triggering an instability. In the SM, for

mt = 173.15GeV and mh = 125.09GeV, after matching the experimental measurements

to the SM parameters as detailed in appendix B, the scale at which the potential becomes

negative is around ΛI ∼ 5·1011GeV. This effect is absent in the other two quartic couplings

of the SMS, since their beta functions lack the top-Yukawa driven contributions present in

λ. Indeed, the one-loop beta functions in the SMS are the following:

βλ =
1

16π2

[
−12y4t + λ

(
−9

5
g21 − 9g22 + 12y2t

)
+

27

100
g41 +

9

10
g22g

2
1 +

9

4
g42 + 12λ2 + λ2SH

]
,

(5.16)

βλS =
1

16π2
[
3λ2S + 12λ2SH

]
, (5.17)

βλSH =
1

16π2

[
λSH

(
− 9

10
g21 −

9

2
g22 + 6λ+ λS + 6y2t

)
+ 4λ2SH

]
. (5.18)

Notice that the negative contribution to βλ coming from y4t may in principle be compensated

by λ2SH (and this possibility is of course absent in the SM). However, this will typically

require rather large values of λSH .

If the S- and h-lines of minima extend to values of h that are large enough to sense the

instability, there will be a value of the top quark mass, mt, above which the potential along

them will end up developing a runaway behavior. It will be seen in the next section that

for the large values of vS needed for successful tree-level inflation along the h-valley, see

section 4.4, small values of λSH suffice to make the h-valley reach values of h larger than

the instability scale. The lower bound of λSH for which this happen is given by (5.29).

An example is provided by the choice of parameters shown in figures 3 and 4, for which

inflation takes place at tree-level for h > 1014GeV with λSH ∼ 10−10.
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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consider are mt, m2
S , λS and λSH . Since we restrict the parameter space of the high energy

model to the region which reproduces the measured Higgs mass, the Higgs quartic and

quadratic couplings in the SMS are not independent of the parameters m2
S ,λS and λSH .

Given the decoupling of the singlet at low energies, in order to match the SM and

the SMS one should demand the equality of the flat spacetime Green functions computed

on both sides of the threshold at which the heavy singlet decouples. When it comes

to the parameters in the scalar potential V (which encodes the Green functions at zero

momentum) the decoupling of S amounts to integrating it out using the zero-momentum

equation of motion. This means that at sufficiently low scales, when quantum fluctuations

of the singlet are suppressed, the field S sits (on average) at the value which minimizes

the potential energy for every h ≡
√
2H0, where H0 is the neutral component of the Higgs

doublet. As mentioned before, we are going to assume that m2
S < 0, which means that

this minimum happens for S2 #= 0. Notice that in principle the Higgs field could also be

stabilized with m2
S > 0 (with S = 0 at the minimum), but in this case the valley supporting

inflation would not extend to large values of h. Inflation would then be exclusively driven

by the field S alone (as in a standard independent single-field model) with no role played

by the Higgs.6 We will later see that for m2
S < 0 successful inflation is actually mostly

driven by S as well, however the couplings of the effective potential that drives inflation in

a single field approximation to the dynamics are affected by those of the Higgs in that case.

After these considerations, the matching of the parameters in the potential can be

done in practice by considering the potential V when the field S is set at the value Smin

that satisfies
dV

dS

∣∣∣∣
S=Smin(h)

= 0 , (2.2)

and demanding

V SM (h; δ̃) = V (h, Smin(h); δ) +O(h6/|m2
S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as

V SM = m̃2
H H†H +

λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
H = m2

H − 3λSH
λS

m2
S , λ̃ = λ− 3λ2SH

λS
, (2.5)

6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial

gravitational waves.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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Problem with scales

1013GeV ⇠
q

|m2
S | > ⇤I ⇠ 1011GeV

hierarchy of scales forbids
Higgs portal threshold stabilization with singlet inflaton

ways out: 
- small enough top mass (marginally possible with current data)
- another scalar (not the Higgs)
- non-minimal couplings to the scalar curvature (with caveats)
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Figure 17:
fig:mtmh
Values of mh and mt giving rise to a plateau in the two-loop improvement of the one-loop (left)

and two-loop (right) e↵ective potential in the SM. The black points indicate cases in which the lower bound
for the tensor-to-scalar ratio, eq. (5.42), is given by an integer power of ten. The red point corresponds to
the measured value of the Higgs mass, 125.09 GeV.

valley is approximately

Vmt(S) = V0 +
1

2

✓

m̃2
H + 3

�SH

�S
m2

S

◆

h2t +
1

8

✓

�̃+ 3
�2
SH

�S

◆

h4t +
1

2
m2

Se↵ S2 +
�S

4!
S4 , (5.40) {eq:Vmt}

where V0 is given in (2.5) and

m2
Se↵ = m2

S +
�SH

2
h2t . (5.41) {Sefft}

In contrast to the S- and h-valleys, the top-valley is not guaranteed to be connected with the vacuum
of eq. (3.1) along a line of decreasing potential energy. For this to happen, a first condition is that
the top-valley should slope downwards away from S = 0, which will occur if there is a negative
e↵ective mass for S near h = ht, i.e. m2

Se↵ < 0. Secondly, the false vacuum in the h-direction
should disappear while the value of the potential at the bottom of the valley is still decreasing,
allowing the fields to roll down to the present vacuum. The disappearance of the false vacuum in h
is controlled by the portal coupling since, as explained before, the coupling acts like a mass for the
field h for a fixed value of S. If the two conditions are met, one could in principle have inflation
starting along the top-valley, with the fields ending in the current Higgs vacuum. The possibility
that inflation could be generated inside the top-valley was studied in [25] and [26, 37], the latter
works concluding that this was not possible for the measured value of the Higgs mass. Studies
focused on the gravitational waves sourced by false-vacuum inflation were done in refs. [33, 43],
which concluded that it is possible to achieve values of the tensor-to-scalar-ratio r . 0.2 for values
of the Higgs and top masses compatible with current measurements.

It is straightforward to obtain a rough estimate of the expected amount of gravitational waves
that are produced in this scenario. We just have to use the expression

r =
2V

3⇡2AsM4
P

, (5.42) {eq:rbound}

53

Tuning the top quark mass for given values of the Higgs mass and 
a plateau appears in the Higgs direction and fades gradually as S grows.

↵s
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Final remarks

Inflation needs to explain how the universe reheats.

These couplings may affect the dynamics of inflation 
and are essential to understand the SM-inflaton interplay.

Generically, this implies couplings to other fields, 
and in particular to the SM.
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