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Motivation
°

Massive photon

@ The electromagnetic interaction is generally assumed to be mediated by a massless photon.

@ Indeed, this consideration is mainly justified by

o the theoretical and practical successes of the classical Maxwell’s theory of electromagnetism and its exten-
sion in the framework of quantum field theory,

o the upper limits on the photon mass m < 10718 eV~ 2x 10754 kg which is currently one of the most reliable
results evaluated by the various terrestrial and extraterrestrial experiments.
@ However, it is interesting to consider the possibility of a massive but ultralight photon for the following rea-
sons :

o despite of the incredibly small value mentioned above, it is not necessary that the photon mass is exactly
zero;

e moreover, in order to test the masslessness of the photon or, more precisely, to impose experimental
constraints on its mass, it is necessary to have a good understanding of the various massive non-Maxwellian
theories ;

o furthermore, from a theoretical point of view, massive electromagnetism can be rather easily included in
the Standard Model of particle physics.
@ In this work, among massive non-Maxwellian theories, we discuss two particularly important theories :
o de Broglie-Proca massive electromagnetism,

o Stueckelberg massive electromagnetism.

*. Here, we consider a four-dimensional curved spacetime (.#,g) without boundary.
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Motivation
o

De Broglie-Proca massive electromagnetism

@ De Broglie-Proca massive electromagnetism is the simplest generalization of Maxwell’s electromagnetism.
o This theory is described by a vector field A, of mass m.

o Its action S, which is directly obtained from the original Maxwell Lagrangian by adding a mass contribu-
tion, is given by

1 1
S[Apaguv] :fﬂdxv*g [*ZF‘WF‘W*E mZA“Au

o The extremization of S with respect to A, leads to the Proca equation

VVFuy+m?A, = 0.

@ It is worth pointing out that, due to the mass term,
o contrary to the Maxwell’s theory which is invariant under the gauge transformation
Ay —~A;l =A,+VuA
for an arbitrary scalar field A, this gauge invariance is broken for the de Broglie-Proca theory ;
o there are some important consequences when we compare, in the limit m2 — 0, the results obtained via

the de Broglie-Proca theory with those derived from Maxwell’s theory.

@ It is also important to recall that, in general, it is the de Broglie-Proca theory that is used to impose experi-
mental constraints on the photon mass.

*, It is interesting to note that this theory is mainly due to de Broglie but is attributed in the literature to its “PhD student” Proca.
*. The field strength is defined by Fy = VuA'V VyAy.
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Motivation
L]

Stueckelberg massive electromagnetism

@ Stueckelberg massive electromagnetism is the most aesthetically appealing one which, contrarily to the de
Broglie-Proca theory, preserves the local U(1) gauge invariance of Maxwell’s electromagnetism.

o This theory is constructed in such a way that a massive vector field A, is coupled appropriately with an
auxiliary scalar field ®.

o At the classical level, its action S is given by

Sa [Au, Q:gpv] = fﬂ d4x\/—g

1 14 1 1
—ZF“ Fuv—gm (A“+;V”¢)(A#+;Vu®)].

o This action is invariant under the gauge transformation
I
Ay—Al =Au+ VA,
O—d' =d-mA
for an arbitrary scalar field A.

o The extremization of S with respect to A, and @ leads to two coupled wave equations

VVFy+m2A, +mV,® =0,

Oo+mVHA, =0.

@ It should be noted that the Stueckelberg action S can be constructed from the de Broglie-Proca action S by
using the substitution

1
Ay —Au+—V,0.
M wt Ve

*. The field strength is defined by Fy = VuA'V VyAy.
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Motivation
[ ]

Some remarks relative to both theories

@ It is worth noting that
o the de Broglie-Proca theory can be obtained from Stueckelberg electromagnetism by taking
d=0;
o therefore, the de Broglie-Proca theory is nothing other than the Stueckelberg gauge theory in this particular
gauge;
e however, this is a “bad” choice of gauge leading to some complications;
o indeed, in this gauge we obtain
VHA, =0.
Due to this constraint, at the quantum level, the Feynman propagator does not admit a Hadamard repre-
sentation and, as a consequence, in the de Broglie-Proca theory, we cannot deal directly with Hadamard
quantum states.
@ In order to treat these theories at the quantum level,

o the action S of the de Broglie-Proca theory is directly relevant,

o while it is necessary to add to the action S of the Stueckelberg theory a gauge-breaking term and the
compensating ghost contribution.

*_ Applying VH to the Proca equation, we obtain the Lorenz condition V“Au =0 which is a dynamical constraint (and not a gauge
condition having in mind that the de Broglie-Proca theory is not a gauge theory).
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Motivation
°

Definition of geometrical quantities useful in the context of the renormalization

@ Here, we recall some important definitions concerning

the geodetic distance o(x,x’) which is the one-half of the square of the geodesic distance between the points
x and ' and satisfies the partial differential equation

20 =otoy,
the Van Vleck-Morette determinant A(x,x’) which is given by
A2 = ~[-g@] 2 det(-0,, (x5 N-g)1 ™2
and satisfies the partial differential equation
Oyo = 4—2A_1/2A1/2;HU;H
with the boundary condition

lim Ax,x’)=1,
x’qx

the bivector of parallel transport from x to x” denoted by ! (x,x") which is defined by the partial differen-
tial equation

-
Euv'ipo =0
with the boundary condition

I’im 8! (x,x) =guv(x).
X' —Xx

* We have o(x,x') <0 if x and / are timelike related, o(x,x’) = 0 if x and «’ are null related and o(x,x’) > 0 if x and x’ are spacelike

related.
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Stueckelberg massive electromagnetism

Quantum action of Stueckelberg massive electromagnetism

@ The quantum action S of Stueckelberg massive electromagnetism is given by
S [AH,CD,C,C* ,guv] =Sa [Au,q),guv] +SgB [Au,q),guv] +SGh [C,C* ,guv]
with

_ 4 1 1 o 1 1
S [Ay:q),gyv] *fﬂd XV -8 [_ZFHVF/JV_ ém (A”+;VH(I> A#+ ;V”CD s
1
SaB [Au, ®.guv] :fﬂdx\/—g [—5 (VAL +mr1>)2} ,

San[C,C* guv] = L{ dxv—g [v“c*vpc+m2 c*c] )

@ By collecting the fields in the quantum action S, its expression can be written in the form
S [A}Jv(I)vaC*’g}lV] =Sy [Ayvgyv] +Sq [‘D,gyv] +SGh [C,C*xguv] s
where the contributions of the A, and ® fields are explicitly separated and are given by

1 1 1 9
SalAu-gur] :L{dx\/% [—ZFWFW—EmzA“Au‘g(V“Au)

B

1 1
So [@.guv] = L, dx /=g [— EV”!DVMD -3 m? qﬂ] .

*. In second form of S two coupling terms 7m.A“VuCD of 8¢ and 7m<DV”AH of Sgp have disappeared because spacetime is
assumed with no boundary.
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Stueckelberg
L]

Wave equations

@ The vanishing of the functional derivatives with respect to the fields A, ®, C and C* of the quantum action

S provides the wave equations

o for the massive vector field A,

1
[0 R, o,
FﬁAu
o for the auxiliary scalar field ®
\/%%:ID—mﬂdD:O,
o for the ghost fields C and C*
Lol
and
1 6RS "
—_———[D—mQ]C =0
Nar e

and the left functional derivative

&
*. Due to the fermionic behavior of the ghost fields C and C*, the right functional derivative 5 Cl'{*

3
616 are introduced in order to derive the associated wave equations.

netism in curv



Stueckelberg
[ ]

Feynman propagators and Ward identities

@ From now on, we shall assume that the Stueckelberg field theory previously described has been quantized and
is in a normalized quantum state |y).
@ Feynman propagators :
o The Feynman propagator G‘:V, (x,x") = i(w\TAH(x)Av;(x’ )lw) associated with the vector field A, is a solution
of the wave equation

[guVDx R, ’m2gﬂv] va‘p’(x’x/) = B! 8t

o The Feynman propagator G®(x,x") = i(y|T ®(x)®(')|y) associated with the scalar field @ is a solution of the
wave equation
[Oe-m?| 62 = 4.

o The Feynman propagator GOh(x,x) = i(w|TC* (x)C(x")ly) associated with the ghost fields C* and C is a
solution of the wave equation
[Dx —m2] GGh(x,x') = 5%, x").
@ The three propagators are related by two Ward identities :
o the first one relates the vector and ghost propagators in the form
V”G‘:v, (@) +V,G%x,x) =0,
o while the second provides another relation between the scalar and ghost propagators given by

GPax)-GMa)=0 = Gax)=G%wx)=G,2).

*. T denotes the time-ordered product.

* The Ward identities can be obtained from the wave equations by using the approach of DeWitt and Brehme or from BRST
invariance.
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Stueckelberg
L]

Hadamard representation of the Feynman propagator associated with the scalar field ® or the ghost fields

@ We now assume that the quantum state |y) is of Hadamard type.

@ The Hadamard form of the Feynman propagator for the scalar field ® or the ghost fields is given by

P AV2q
Gl = — | 2200 |y nfote, ) +iel+ Wee )]

872 | olx,x') +ie
Here, o(x,x') is the geodetic distance, and A(x,x’) is the Van Vleck-Morette determinant, while V(x,x’) and
W(x,x') are symmetric and regular biscalars given by the series expansions

, _+oo " n , , _+oo " n ,
Vie,x)= Y Vale,x)o™,x') and W)= Y Wule,a)o™kx,x),
n=0 n=0

where the Hadamard coefficients V,, (x,x’) and W, (x,x') are defined by recursion relations which permit us to
prove that this representation of the Feynman propagator solves the wave equation associated with the scalar
field @ or the ghost fields.

*, The factor ie with € — 04 is introduced to give a singularity structure that is consistent with the definition of the Feynman
propagator as a time-ordered product.

*. The coefficients Vy (x,x’) can be determined uniquely and are purely geometrical objects satisfying
2+ D+ 2V 1 + 20+ DVpy 1000 =20+ DV  ATV2A12, 50 4 [Dx 7m2] Vy=0 (for n € N)

2V +2Vpq0°* - 2V0A_1/2A1/2;aa;“ + [Dx - mQ} AV2 - (boundary condition)

*_The coefficients Wy, (x,x) satisfy
2n+ 1)+ 2Wyy1 + 200+ DWys1.00°% = 2n + DWpp1 A V202, 059 4 220 + 3)V,
n+1 n+1; n+l K n+1

+2V, 4 1500% — 2V, ATVEAV2 oy [Dx 7m2] Wy =0 (forneN)

Wo(x,x’) is unrestrained by the recursion relation and can be used to encode the quantum state.
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Stueckelberg
[ ]

Hadamard representation of the Feynman propagator associated with the vector field A,

@ The Hadamard form of the Feynman propagator for the vector field A, is given by

i AV2(0) .
Gﬁv/(x,x’) = 502 | oG ric S (5, )+ VG MnloGe,a ) +icl + W, (ex') |

Here, VHV’ (x,x") and Wlﬂ" (x,x") are symmetric and regular bivectors given by the series expansions
! sy ! / ! e / !
Vwr(x,x =3 Vnﬂvr(x,x Yo" (x,x’) and W/W/(x,x =3 Wn”v/ (,x") o™ (x,x),
n=0 n=0
where the Hadamard coefficients V;, ! (x,x') and W, w'! (x,x') are defined by recursion relations which permit

us to prove that this representation of the Feynman propagator solves the wave equation associated with the
vector field A,.

*. The coefficients Vi, ! (x,x") can be determined uniquely and are purely geometrical objects satisfying
3 —1/2,12 2
200+ D0+ 2V 1y + 200+ DVt 11,40 =200+ DVp1 ,p A2A2009 4 [gp" Oy -R”" —m guf’ iy =0
(for n e N)
; —1251/2 p__2_p 1/2) _ o
2V0 101 +2V0 41,0 @ =2V ATFA o @ 4 [g”p\:‘x -R," -m%g, ] (gpvrA ) =0 (boundary condition)
*, The coefficients Wp, ! (x,x') satisfy

2n+Dn+ 2)W,H1W + 200+ DWi 11,40 =200+ DWpi1 JATVZAV2 50y oon + Vsl !

+2v, ~ 2V 1, A2V 0k (g, T -R, - mPg," | Wiy =0 (for neN)

Wo Wl (x,x) is unrestrained by the recursion relation and can be used to encode the quantum state.

1l g O
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Stueckelberg
L ]

Singular and regular parts of the Feynman propagators represented in the Hadamard form

@ The Hadamard representation of the Feynman propagators permits us to straightforwardly identify their
singular and regular parts when the coincidence limit x’ — x is considered.

@ For the scalar field @ or the ghost fields
e a purely geometrical singular part takes the form
i AV 2(x,x' )

. N~ |2t / ’ .
Gging(x,x") 522 | oG ie +V(x,x)In[o(x,x') +i€l|,

o while a regular state-dependent part is given by

i
Greglx,x") = o2 Wx,x').

@ For the vector field Ay
o a purely geometrical singular part takes the form

GA i AI/Z(x,x’)

! P pn— _
singyy! (%) = 872 | oGoa) +ie Y

166,) 4+ V2 ) Inloe,x) +iel |,

o while a regular state-dependent part is given by

i
G?eguv/ (x,x") = a2 WIW/ (x,x").
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Stueckelberg massive electromagnetism

Hadamard Green functions

@ In the context of the regularization of the stress-energy-tensor operator, instead of working with the Feynman
propagators, it is more convenient to use the associated Hadamard Green functions.

@ The Feynman propagator G can be split into the average of the retarded and advanced Green functions G and
the Hadamard Green functions GV :
o For the scalar field @ or the ghost fields we have
Glx,x') = Gla,x) + ;G“’(x,x’)
with _ 1
Glea) = o (A2 8lo 2] - Vi, )Olo ')l

1
P = —
X,X 47[2

1/2 /
AT | v ) Inlote )] + W)
olx,x")
=G o)+ G,
o For the vector field A, we have
" _ 7 N b AMA,
Gﬁv,(x,x )= Gﬁv/(x,x )+ QGW' (x,x')
with EA ’ 1 1/2 ’ ’ ’ ’ ’
! (6,2) = = [A (e,x)g 1 (6,27)0L0 (e, 201 = V1 (e, 27) B0, )]),
AI/Z(x,x’)

1
G(l)A ’ L
v o(x,x")

8 @2) 4V, @ x ) Ino(e,2) + er(x,xﬂ)

= Ggﬁ;uv’ (x,x/) + G%)gAm/r (x,x/).

*. The splitting of G into G and G can be straightforwardly achieved by using the formal identities (o + i l=gpo=1- ind(o)
and In(o +i€) = In|o| +inO(-0).
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Stueckelberg
L ]

Hadamard coefficients and their covariant Taylor series expansions

@ The geometrical Hadamard coefficients can be determined explicitly from the associated recursion relations
up to necessary order by taking their covariant Taylor series expansions.

o The expansions of the symmetric biscalar coefficients V(x,x') and V1 (x,x) are given by
. 1 -
Vo=vo— {(1/2)v0;a }U‘a + 57 V0ab oo 4 0(0'3/2] and Vi=vi+ 0(01/2).

o The expansions of the symmetric bivector coefficients VOlW' (x,x") and \%41 ! (x,x') are given by

. 1 q -
Vouv =v0(uv) — {(1/2)U0(pv);a + vouwja}a’“ +50 {UO(pv)ab +V0[uvla ;b}a’“ﬂ’b +0(0%%) and Vigy =v1(u)+0(c"?).
@ The state-dependent Hadamard coefficients :

o Their first coefficients Wy w! (x,x") and Wy(x,x') are unrestrained by the recursion relations ;
o This arbitrariness can be used to encode the quantum state dependence of the theory;
o Instead of working with these coefficients, we shall consider their sums WW/ (x,x") and W(x,x');
o Their covariant Taylor series expansions up to necessary order are given by
W=w-{12we} o+ % Wap %0 - é {B2)wap e ~ (1w gpe f 0P 0 + 0P,
for the symmetric biscalar W(x,x') and .

Wy =spv —{(1/2)spv;q +apva} o + o {Suvab +awa;b}a;ao;

b

1 o o] o
T3 {(3/2)suvab;c =4 spv abe +a;wabc}0’a0‘b0"c +O[02]

with suvaq--ap = W(viag -ap 204 Guvay--ap = Wipvlag ~ap fOr the symmetric bivector W,/ (x,x").

normalized stre and fec SW10



Stueckelberg massive electromagnetism

Taylor coefficients of the state-dependent Hadamard coefficients

@ By using the Hadamard representation of the Green functions, we can rewrite, up to order 12 needed to

establish some relations between the Taylor coefficients that will be useful to simplify the renormalized ex-
pectation value of the stress-energy-tensor operator,

o the wave equation associated with the Green function of the scalar field ® or the ghost fields in the form
[Dx —m2] W=—-6Vy -2V140% +0(0),

o the wave equation associated with the Green function of the vector field A, in the form
! !
gpp [guv Oe 7Ruv —m2guv] W ==6Vipp —2gpp Vlyp’;u”’a +0(0),

o the Ward identity linking the Green fonctions associated with the vector field A;, and the ghost fields in
the form

! . .
2, [WW, ey W;v;] = Vot +Vio, +0(0),

o while, by recalling that G(x,x’) = G®(x,x) = GN(x,x'), the Ward identity linking the Green fonctions asso-
ciated with the scalar field ® and the ghost fields provides trivial equalities.

@ With practical applications in mind, it is interesting to express some of the Taylor coefficients in term of the
bitensors va’ (x,x") and W(x,x') by inverting the associated Taylor expansions.

spv(®) = lim er(x,x’ ),
xf —x
wlx) = I’im Wix,x'), 1
oo and apvalx) = 3 lim [er;ar(x,x/)fWW/;a(x,x/)} ,
Wep () = l/im W;(a’b’)(x’x’) xf—x
X —Xx
/br)(x,x’)+ Wuv’;(ab)(x,x’)] )

1.
Suvab®) = 5 xlllglx [WW, e
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Renormalized stress-energy tensor

Stress-energy tensor

@ The stress-energy tensor T,y associated with the quantum action S of the Stueckelberg theory is defined by

2 0 (Au®.C.C" ).

.
V=8 0guv

@ Its explicit expression is given by

uv _ v Hv Il
=Ty +Tag +Tqy

where the contributions of the classical and gauge-breaking parts as well as that associated with the ghost
fields take the forms

T =FH PP + m2AKAY + VHOVY O+ 2mAHYY @ - (Ua)gh” {Fyr FP +2m?ApAP +2V,@VP D+ 4mA, VP 0},
Ty = 244V AP —2m AUV 0 - (112)g"" {24 VP VAT - (VpAP) +m? 0% ~2mA, VP 0},
Thy = -2V¥ vV e+ gt {v,ct v e +mPcrch.
@ Another alternative expression can be written as follows :
T =T + 10 + ThY
where the contributions associated with the vector field A, and the scalar field @ take the forms
T =FF F*P 4 m2AKAY — 241V AP - (Ua)gh” {FprFPT +2m?ApAP — 44,V VAT -2 (VAP ],
Th = VOV & - (12)g" {V,ovP o+ m? 92}

@ We can note the existence of terms coupling the fields A, and ® in the expressions of Té‘lv and ThY,, while

GB’
their summation eliminates any reference to them.

@ By construction, the stress-energy tensor is conserved, i.e., V, THY = 0.
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Renormalized stress-energy tensor
L]

Expectation value of the stress-energy-tensor operator with respect to the Hadamard quantum state

@ At the quantum level, all the fields involved in the Stueckelberg theory as well as the associated stress-energy
tensor are operators. We denote

o the stress-energy-tensor operator by TW,
o its expectation value with respect to the Hadamard quantum state |y) by (u/ﬁ'uv\u/).
@ The expectation value @P\TWW/) can be constructed from one of the previous expressions of Ty as follows :
W) = WITL 1) + ITSE 1) + @I TSR 1y,
where the three contributions given by
(u/\TCI @ly) = = l/im Apg (x,x )[G(I)A(x x )] hm J @ (x,x )[G(l)q)(x x )l

u(iBApU’(x’xr)[G(l)A ,)] 1 hmJG cp(“)[Ga)cp(“)]

7GB
WITEP ) = po

E
2
(u/\T (x)hl/) 1 hm “"Gh(x x )lG(l)Gh(x x )]

with the differential operators constructed by point splitting in the form

T =g, P VY 8,L 8, 6 Va Ty A0~ _og Pe, v v
~2g, 8, 7' V5V +mPe, g, - %guv{—v”v”/ ~2g°7' v},
- %gw {677 e VoV y 2" &P VgV 4 meP | a0 = —%ng”v,
T =8," V9, - %g,w 16 Vavy}, T = 26, VY, + g g VeV +m?).

@ It should be noted that the terms coupling A;, and @ are not present because two-point correlation functions
involving both A, and ® vanish identically.

SW10  May
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Renormalized stress-energy tensor

Renormalized expectation value of the stress-energy-tensor operator

@ The expectation value of Tm is divergent due to the singular short-distance behavior of the Green functions.

@ It is possible to construct the renormalized expectation value of the stress-energy-tensor operator with respect
to the Hadamard quantum state |y) by using the prescription proposed by Wald which consists

o to discard the singular contributions, i.e., to make the replacements

1
G(DA( x)—»Gﬁe’gA“v/(x,xU:w jjv,(x,x’x

1
G(l)(b(x,x’) G(l)d)(x x)= — 5 W(I)(x,x’),
4

1
G(l)Gh(x’x/) . Gg)gGh(x,x’) _ e WGh(x,x’),

o to add to the result a state-independent tensor (:)W which only depends on the mass parameter and on the
local geometry and which ensures the conservation of the final expression.

@ The renormalized expectation value of Tﬂv is given by
Py 1
WITpy|W)ren = 8—{ 11m T v cla po’ (x,x )lWA S (o, )l + llm (D(x x )[W‘D(x x )”
72

+ iz{thﬂ— BA oo (xx)lWA ,(xx)]+11m 738 (D(xx)[WQ(xx)”+—xllinx°—Gh(xx)[WGh(xx)]+®W.

@ In the order to ensure the conservation of the regular terms, it is suitable to redefine the purely geometrical
tensor Oy by introducing a new local conserved tensor ©, which the general expression is of the form

1
Ow=53 {am4gw/ +pm? [Ruy —(U2Rguv] +11 VHyy +72 (Z)H,W},

where the constants a, 8, y1 and y9 can be fixed by imposing additional physical conditions on (W\Tpvh//)ren-

*, The tensor (:)‘W is redefined by ©yyv — 87%2 {leuv -2guv vlpp +2guv vy }

sm in curved etime : renormalized y and ir effec SW10 May



Renormalized stress-energy tensor

Final expression of the renormalized stress-energy tensor

@ The explicit expression for the renormalized expectation value of the stress-energy-tensor operator (u/lf’“y |[¥)ren
associated with the Stueckelberg theory
o is obtained by expanding the Hadamard coefficients in covariant Taylor series,
o is simplified by using some relations between the Taylor coefficients involved.

@ The main expression which only involves state-dependent and geometrical quantities associated with the
massive vector field A, is given by

7 _ ! P o o o p
WITyy W)ren = Q{(IQ)‘% v +(1/2)Ospy =S p(us) +(1/2)R @0 *(1/2)(1“ i) -(12)a,, e

p p P p P ot ;T p
= 0] "% [usp) 5P w,+sp(“v) -(12)guv (I/Z)Dsp —(I/Z)Spr —apr +V1pv —8uvv1p }+®H‘/'

o Here, by using the Ward identities, any reference to the auxiliary scalar field ® can be removed.
@ It is possible to split the renormalized expectation value of the stress-energy-tensor operator in the form

(Vfﬁ'pv“l/)ren :%A{/‘*g—pq\)/"'@pv, ‘

where two conserved contributions associated with the vector and scalar fields are given by

A_ 1 P f
Th = W{(mmp v + (U2 Ospy — =Sp uv+28

p__ P P p
sp(p;v) au [v;pl ay [usp1 p(uv)
~ W2 [(12) 05, - 20,7 | 4208 1y - gt}

1
7= g{(m)w;uV ~ w0y = (Vg D —gyuvs }.

o Here, in the limit m2 — 0, the term - }ﬁ, reduces to the result obtained from Maxwell’s theory.
o However, this is an artificial way to split the contributions of the vector and scalar fields.

*. In some sense, the auxiliary scalar field @ plays the role of a kind of ghost field.
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Casimir effect
°

General considerations for the Casimir effect

@ We shall consider the Casimir effect for Stueckelberg NANNNANN
massive electromagnetism in the Minkowski spacetime \ perfectly
R, nuy) with nuy = diag(=1,+1,+1,+1). <) conducting

vacuum

@ We denote by (T',X,Y,Z) the coordinates of an event in this O medium
spacetime.

@ We shall provide the renormalized vacuum expectation va-
lue of the stress-energy-tensor operator (OIT,WIO)lren out- k
side of a perfectly conducting medium with a plane boun-
dary wall at Z = 0 separating it from free space. FIGURE — Geometry of the Casimir effect

@ From symmetries and physical considerations, outside of the perfectly conducting medium, the renormalized
stress-energy tensor takes the form
~ 1 A A
(0T 103ren = < OIT° 10)ren (1v ~Zyu2v).

where ZH is the spacelike unit vector orthogonal to the wall.

@ As a consequence, it is sufficient to determine the trace of the renormalized stress-energy tensor given by
~ 1
4 _ 2. P pT 4 o
O, 0ren = 5 {-m?s,” +5,:" + @D} 10,7,
where, in the Minkowski spacetime, the term @pp reduces to
1
p_ 4
O =52 {am}

with a constant @ which can be fixed by imposing additional physical conditions on (OITWIO)ren.
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Casimir effect
L]

Renormalized stress-energy tensor in the Minkowski spacetime

@ The renormalized stress-energy tensor (OIf"pp |0)ren can be evaluated by calculating the two Taylor coefficients
of the regular part of the Feynman propagator Gﬁv(x,x’ ) corresponding to the geometry of the problem :
suv(@) = xl/iglxww(x,xf) and 5,05 :xlliLanW;(ab)(x,x/).
@ Let us first consider the renormalized stress-energy tensor in the ordinary Minkowski spacetime (i.e., without
the boundary wall).
° Duf to symmetry considerations, we have (01T |0)ren = i (0@,)’) [0)rennuv as well as we must have
(0ITuv|0)ren = 0 which plays the role of a constraint for a.
o The Feynman propagator Gﬁv(x,x/) associated with the vector field A, satisfies the wave equation
[Dx - m2] G‘;}V(x,x’) = —nyv64(x,x’),

and its explicit expression is given in term of a Hankel function of the second kind by

m2
A ea=-TC L g® [V-2m2lo62)+iel| nuy
8n om2 "o
\/ —2m?[o(x,x") +ie]

with 20(x,x) = ~(T-T' 2 + X X2 +(Y-Y'2 +(Z-Z')%.
o The two Taylor coefficients involved in (O\TA"pp |0)ren are given by
sy =m? [~1/2+7 +(1/2) ln(m2/2)] Nuv and spygp@=mt [—5/16 +(U/4)y + W8 In(m2/2)| nuvigp.-
4
o Then, we obtain (OITPPIO)ren = ;n? {a +9/4-3y—-(3/2) 1n(m2/2)} , and, necessarily, we have
@ =-9/4+3y+(3/2) In(m?/2).

’ /
*. In the Minkowski spacetime, the bivector of parallel transport guV (x,x') is equal to the unit matrix & uv (x,x).
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Renormalized stress-energy tensor for the Casimir effect

@ Let us now come back to our initial geometry of the Casimir effect.

o The Feynman propagator f}ﬁv(x,x’) in the presence of the plane boundary wall can be constructed by the

method of images if we assume, in order to simplify our problem, that this wall is a perfectly reflecting :
(}ﬁv(x,x') = Gﬁv(x,x/) -qv Gﬁv(x,ic/),

where G‘ﬁv(x,x’) is the Feynman propagator previously considered in the ordinary Minkowski spacetime
with x'# =(T",X',Y',Z") and 'V = (T",X',Y',-Z'), while q, = 1 - 283, (the index v is not summed).

o The two Taylor coefficients involved in (Olf'pp |0)ren are given in term of the modified Bessel functions of
the second kind K7 and Ky by

sy =m2 [71/2 +r+(1/2) 1n(m2/2)] v =@y (MIZ) K1 2mZ) v,
suvab =m* [~5/16+ (V)Y +(U8)In0n/2)| nyuv iy
~av [n*12*) Ky@mZ)nuy (2130 135 ~ (U2)1ap) + (n 1)Ky @mZ)muvmzansy -

o Then, we obtain the expression of the renormalized stress-energy tensor

m2

~ 1 m3 PR
(0IT v 10)ren = 2 { 72 Ko(2mZ)+ 7K1(2mZ)} (nuv —2ZuZy).

o Itis very important to note that this result coincides exactly with the result obtained by Davies and Toms
in the framework of de Broglie-Proca massive electromagnetism.

*, It should be noted that the perfectly reflecting boundary condition is questionable from the physical point of view. It is logical
for the transverse components of the electromagnetic field but much less natural for its longitudinal component. Indeed, for this
component, we could also consider perfect transmission instead of complete reflection.

*. The term Gﬁv(x,fc/) which is obtained by replacing x’ by &' as well as its derivatives are regular in the limit x" — x.
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Casimir effect
°

Massless limit

o In the limit m2 — 0 and for Z # 0, the renormalized stress-energy tensor takes the form

1 PN
=1 v =2uZy).

PN 1
OITyv|0)ren = —5
|Tuv10)ren 1672 74

o In the massless limit, the renormalized stress-energy tensor associated with the Stueckelberg theory di-
verges like Z~% as the boundary surface is approached.

o This result contrasts with that obtained from Maxwell’s theory where the renormalized stress-energy ten-
sor vanishes identically.
@ The expression of the renormalized stress-energy tensor, where we have proposed an artificial separation of
the contributions associated with the vector field A;, and the auxiliary scalar field @, takes the form
(OIT1v10)ren = OIT4, [0ren + (01T, [0ren,
where the stress-energy tensor associated with the vector field A, is such that

(OIT%, 10)ren =

while that associated with the auxiliary scalar field @ is given by
o~ 1 m2 m3 A A
D
(01T 4y |0)ren = P { 72 Ko(2mZ)+ -z K1(2mZ)} (nuv —ZuZy).

o Here, it is interesting to note that the contribution associated with the vector field A, vanishes identically
for any value of the mass parameter m.

o The result associated with the vector field A coincides exactly with that obtained from Maxwell’s theory.
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Summary
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Summary

@ We have presented Stueckelberg massive electromagnetism on an arbitrary curved spacetime.

@ We have given two alternative but equivalent expressions for the renormalized expectation value of the stress-
energy-tensor operator constructed using Hadamard renormalization.

@ We have also presented the results concerning Casimir effect for Stueckelberg massive electromagnetism.

@ Bearing in mind the results obtained, we can give the following conclusions :

o De Broglie-Proca and Stueckelberg approaches of massive electromagnetism are two faces of the same
theory.

o However, we can note that, with regularization and renormalization in mind, it is much more interesting
to work in the framework of the Stueckelberg formulation of massive electromagnetism which permits us
to have at our disposal the machinery of the Hadamard formalism.

@ One of our perspectives is the application of the general formalism developed to cosmological problems and,
in particular, the study of Stueckelberg massive electromagnetism in de Sitter spacetime and in Friedman-
Lemaitre-Robertson-Walker spacetimes.

THANKS FOR YOUR ATTENTION
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