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Massive photon

The electromagnetic interaction is generally assumed to be mediated by a massless photon.

Indeed, this consideration is mainly justified by

the theoretical and practical successes of the classical Maxwell’s theory of electromagnetism and its exten-
sion in the framework of quantum field theory,

the upper limits on the photon mass m≤ 10−18 eV≈ 2×10−54 kg which is currently one of the most reliable
results evaluated by the various terrestrial and extraterrestrial experiments.

However, it is interesting to consider the possibility of a massive but ultralight photon for the following rea-
sons :

despite of the incredibly small value mentioned above, it is not necessary that the photon mass is exactly
zero ;

moreover, in order to test the masslessness of the photon or, more precisely, to impose experimental
constraints on its mass, it is necessary to have a good understanding of the various massive non-Maxwellian
theories ;

furthermore, from a theoretical point of view, massive electromagnetism can be rather easily included in
the Standard Model of particle physics.

In this work, among massive non-Maxwellian theories, we discuss two particularly important theories :

de Broglie-Proca massive electromagnetism,

Stueckelberg massive electromagnetism.

*. Here, we consider a four-dimensional curved spacetime (M ,g) without boundary.
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De Broglie-Proca massive electromagnetism

De Broglie-Proca massive electromagnetism is the simplest generalization of Maxwell’s electromagnetism.

This theory is described by a vector field Aµ of mass m.

Its action S, which is directly obtained from the original Maxwell Lagrangian by adding a mass contribu-
tion, is given by

S
[
Aµ,gµν

]= ∫
M

dx
p−g

[
− 1

4
FµνFµν− 1

2
m2AµAµ

]
.

The extremization of S with respect to Aµ leads to the Proca equation

∇νFµν+m2Aµ = 0.

It is worth pointing out that, due to the mass term,

contrary to the Maxwell’s theory which is invariant under the gauge transformation

Aµ →A′
µ =Aµ+∇µΛ

for an arbitrary scalar field Λ, this gauge invariance is broken for the de Broglie-Proca theory ;

there are some important consequences when we compare, in the limit m2 → 0, the results obtained via
the de Broglie-Proca theory with those derived from Maxwell’s theory.

It is also important to recall that, in general, it is the de Broglie-Proca theory that is used to impose experi-
mental constraints on the photon mass.

*. It is interesting to note that this theory is mainly due to de Broglie but is attributed in the literature to its “PhD student” Proca.
*. The field strength is defined by Fµν =∇µAν −∇νAµ .
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Stueckelberg massive electromagnetism

Stueckelberg massive electromagnetism is the most aesthetically appealing one which, contrarily to the de
Broglie-Proca theory, preserves the local U(1) gauge invariance of Maxwell’s electromagnetism.

This theory is constructed in such a way that a massive vector field Aµ is coupled appropriately with an
auxiliary scalar field Φ.

At the classical level, its action Scl is given by

Scl
[
Aµ,Φ,gµν

]= ∫
M

d4x
p−g

[
− 1

4
FµνFµν− 1

2
m2

(
Aµ+ 1

m
∇µΦ

)(
Aµ+ 1

m
∇µΦ

)]
.

This action is invariant under the gauge transformation

Aµ →A′
µ =Aµ+∇µΛ,

Φ→Φ′ =Φ−mΛ

for an arbitrary scalar field Λ.

The extremization of Scl with respect to Aµ and Φ leads to two coupled wave equations

∇νFµν+m2Aµ+m∇µΦ= 0,

�Φ+m∇µAµ = 0.

It should be noted that the Stueckelberg action Scl can be constructed from the de Broglie-Proca action S by
using the substitution

Aµ →Aµ+ 1
m

∇µΦ.

*. The field strength is defined by Fµν =∇µAν −∇νAµ .
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Some remarks relative to both theories

It is worth noting that

the de Broglie-Proca theory can be obtained from Stueckelberg electromagnetism by taking

Φ= 0;

therefore, the de Broglie-Proca theory is nothing other than the Stueckelberg gauge theory in this particular
gauge ;

however, this is a “bad” choice of gauge leading to some complications ;

indeed, in this gauge we obtain

∇µAµ = 0.

Due to this constraint, at the quantum level, the Feynman propagator does not admit a Hadamard repre-
sentation and, as a consequence, in the de Broglie-Proca theory, we cannot deal directly with Hadamard
quantum states.

In order to treat these theories at the quantum level,

the action S of the de Broglie-Proca theory is directly relevant,

while it is necessary to add to the action Scl of the Stueckelberg theory a gauge-breaking term and the
compensating ghost contribution.

*. Applying ∇µ to the Proca equation, we obtain the Lorenz condition ∇µAµ = 0 which is a dynamical constraint (and not a gauge
condition having in mind that the de Broglie-Proca theory is not a gauge theory).
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Definition of geometrical quantities useful in the context of the renormalization

Here, we recall some important definitions concerning

the geodetic distance σ(x,x′) which is the one-half of the square of the geodesic distance between the points
x and x′ and satisfies the partial differential equation

2σ=σ;µσ;µ,

the Van Vleck-Morette determinant ∆(x,x′) which is given by

∆(x,x′)=−[−g(x)]−1/2det(−σ;µν′ (x,x′))[−g(x′)]−1/2

and satisfies the partial differential equation

�xσ= 4−2∆−1/2∆1/2
;µσ

;µ

with the boundary condition

lim
x′→x

∆(x,x′)= 1,

the bivector of parallel transport from x to x′ denoted by gµν′ (x,x′) which is defined by the partial differen-
tial equation

gµν′ ;ρσ
;ρ = 0

with the boundary condition

lim
x′→x

gµν′ (x,x′)= gµν(x).

*. We have σ(x,x′)< 0 if x and x′ are timelike related, σ(x,x′)= 0 if x and x′ are null related and σ(x,x′)> 0 if x and x′ are spacelike
related.
Stueckelberg massive electromagnetism in curved spacetime : renormalized stress-energy tensor and Casimir effect SW10 May 2016 6 / 24



Motivation Stueckelberg massive electromagnetism Renormalized stress-energy tensor Casimir effect Summary

Quantum action of Stueckelberg massive electromagnetism

The quantum action S of Stueckelberg massive electromagnetism is given by

S
[
Aµ,Φ,C,C∗,gµν

]=SCl
[
Aµ,Φ,gµν

]+SGB
[
Aµ,Φ,gµν

]+SGh
[
C,C∗,gµν

]
with

Scl
[
Aµ,Φ,gµν

]= ∫
M

d4x
p−g

[
− 1

4
FµνFµν− 1

2
m2

(
Aµ+ 1

m
∇µΦ

)(
Aµ+ 1

m
∇µΦ

)]
,

SGB
[
Aµ,Φ,gµν

]= ∫
M

dx
p−g

[
− 1

2
(∇µAµ+mΦ

)2]
,

SGh
[
C,C∗,gµν

]= ∫
M

dx
p−g

[
∇µC∗∇µC+m2 C∗C

]
.

By collecting the fields in the quantum action S, its expression can be written in the form

S
[
Aµ,Φ,C,C∗,gµν

]=SA
[
Aµ,gµν

]+SΦ
[
Φ,gµν

]+SGh
[
C,C∗,gµν

]
,

where the contributions of the Aµ and Φ fields are explicitly separated and are given by

SA
[
Aµ,gµν

]= ∫
M

dx
p−g

[
− 1

4
FµνFµν− 1

2
m2AµAµ− 1

2
(∇µAµ

)2]
,

SΦ
[
Φ,gµν

]= ∫
M

dx
p−g

[
− 1

2
∇µΦ∇µΦ− 1

2
m2Φ2

]
.

*. In second form of S two coupling terms −mAµ∇µΦ of Scl and −mΦ∇µAµ of SGB have disappeared because spacetime is
assumed with no boundary.
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Wave equations

The vanishing of the functional derivatives with respect to the fields Aµ, Φ, C and C∗ of the quantum action
S provides the wave equations

for the massive vector field Aµ
1p−g

δS
δAµ

=
[
gµν�−m2gµν−Rµν

]
Aν = 0,

for the auxiliary scalar field Φ
1p−g

δS
δΦ

=
[
�−m2

]
Φ= 0,

for the ghost fields C and C∗
1p−g

δLS
δC∗ =−

[
�−m2

]
C= 0

and
1p−g

δRS
δC

=−
[
�−m2

]
C∗ = 0.

*. Due to the fermionic behavior of the ghost fields C and C∗ , the right functional derivative
δR
δC∗ and the left functional derivative

δL
δC are introduced in order to derive the associated wave equations.
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Feynman propagators and Ward identities

From now on, we shall assume that the Stueckelberg field theory previously described has been quantized and
is in a normalized quantum state |ψ〉.

Feynman propagators :

The Feynman propagator GA
µν′ (x,x′)= i〈ψ|T Aµ(x)Aν′ (x′)|ψ〉 associated with the vector field Aµ is a solution

of the wave equation [
g ν
µ �x −R ν

µ −m2g ν
µ

]
GA
νρ′ (x,x′)=−gµρ′ δ

4(x,x′).

The Feynman propagator GΦ(x,x′)= i〈ψ|TΦ(x)Φ(x′)|ψ〉 associated with the scalar field Φ is a solution of the
wave equation [

�x −m2
]

GΦ(x,x′)=−δ4(x,x′).

The Feynman propagator GGh(x,x′) = i〈ψ|T C∗(x)C(x′)|ψ〉 associated with the ghost fields C∗ and C is a
solution of the wave equation [

�x −m2
]

GGh(x,x′)=−δ4(x,x′).

The three propagators are related by two Ward identities :

the first one relates the vector and ghost propagators in the form

∇µGA
µν′ (x,x′)+∇ν′GGh(x,x′)= 0,

while the second provides another relation between the scalar and ghost propagators given by

GΦ(x,x′)−GGh(x,x′)= 0 ⇒ G(x,x′)=GΦ(x,x′)=GGh(x,x′).

*. T denotes the time-ordered product.
*. The Ward identities can be obtained from the wave equations by using the approach of DeWitt and Brehme or from BRST

invariance.
Stueckelberg massive electromagnetism in curved spacetime : renormalized stress-energy tensor and Casimir effect SW10 May 2016 9 / 24



Motivation Stueckelberg massive electromagnetism Renormalized stress-energy tensor Casimir effect Summary

Hadamard representation of the Feynman propagator associated with the scalar field Φ or the ghost fields

We now assume that the quantum state |ψ〉 is of Hadamard type.

The Hadamard form of the Feynman propagator for the scalar field Φ or the ghost fields is given by

G(x,x′)= i
8π2

(
∆1/2(x,x′)
σ(x,x′)+ iε

+V(x,x′) ln[σ(x,x′)+ iε]+W(x,x′)
)

.

Here, σ(x,x′) is the geodetic distance, and ∆(x,x′) is the Van Vleck-Morette determinant, while V(x,x′) and
W(x,x′) are symmetric and regular biscalars given by the series expansions

V(x,x′)=
+∞∑
n=0

Vn(x,x′)σn(x,x′) and W(x,x′)=
+∞∑
n=0

Wn(x,x′)σn(x,x′),

where the Hadamard coefficients Vn(x,x′) and Wn(x,x′) are defined by recursion relations which permit us to
prove that this representation of the Feynman propagator solves the wave equation associated with the scalar
field Φ or the ghost fields.

*. The factor iε with ε→ 0+ is introduced to give a singularity structure that is consistent with the definition of the Feynman
propagator as a time-ordered product.

*. The coefficients Vn(x,x′) can be determined uniquely and are purely geometrical objects satisfying
2(n+1)(n+2)Vn+1 +2(n+1)Vn+1;aσ

;a −2(n+1)Vn+1∆
−1/2∆1/2

;aσ
;a +

[
�x −m2

]
Vn = 0 (for n ∈N)

2V0 +2V0;aσ
;a −2V0∆

−1/2∆1/2
;aσ

;a +
[
�x −m2

]
∆1/2 = 0 (boundary condition)

.

*. The coefficients Wn(x,x′) satisfy2(n+1)(n+2)Wn+1 +2(n+1)Wn+1;aσ
;a −2(n+1)Wn+1∆

−1/2∆1/2
;aσ

;a +2(2n+3)Vn+1

+2Vn+1;aσ
;a −2Vn+1∆

−1/2∆1/2
;aσ

;a +
[
�x −m2

]
Wn = 0 (for n ∈N)

.

W0(x,x′) is unrestrained by the recursion relation and can be used to encode the quantum state.
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Hadamard representation of the Feynman propagator associated with the vector field Aµ

The Hadamard form of the Feynman propagator for the vector field Aµ is given by

GA
µν′ (x,x′)= i

8π2

(
∆1/2(x,x′)
σ(x,x′)+ iε

gµν′ (x,x′)+Vµν′ (x,x′) ln[σ(x,x′)+ iε]+Wµν′ (x,x′)
)

.

Here, Vµν′ (x,x′) and Wµν′ (x,x′) are symmetric and regular bivectors given by the series expansions

Vµν′ (x,x′)=
+∞∑
n=0

Vnµν′ (x,x′)σn(x,x′) and Wµν′ (x,x′)=
+∞∑
n=0

Wnµν′ (x,x′)σn(x,x′),

where the Hadamard coefficients Vnµν′ (x,x′) and Wnµν′ (x,x′) are defined by recursion relations which permit
us to prove that this representation of the Feynman propagator solves the wave equation associated with the
vector field Aµ.

*. The coefficients Vnµν′ (x,x′) can be determined uniquely and are purely geometrical objects satisfying
2(n+1)(n+2)Vn+1µν′ +2(n+1)Vn+1µν′ ;aσ

;a −2(n+1)Vn+1µν′∆
−1/2∆1/2

;aσ
;a +

[
g ρ
µ �x −R ρ

µ −m2g ρ
µ

]
Vnρν′ = 0

(for n ∈N)

2V0µν′ +2V0µν′ ;aσ
;a −2V0µν′∆

−1/2∆1/2
;aσ

;a +
[
g ρ
µ �x −R ρ

µ −m2g ρ
µ

](
gρν′∆

1/2
)
= 0 (boundary condition)

.

*. The coefficients Wnµν′ (x,x′) satisfy
2(n+1)(n+2)Wn+1µν′ +2(n+1)Wn+1µν′ ;aσ

;a −2(n+1)Wn+1µν′∆
−1/2∆1/2

;aσ
;a +2(2n+3)Vn+1µν′

+2Vn+1µν′ ;aσ
;a −2Vn+1µν′∆

−1/2∆1/2
;aσ

;a +
[
g ν
µ �x −R ν

µ −m2g ν
µ

]
Wnρν′ = 0 (for n ∈N)

.

W0µν′ (x,x′) is unrestrained by the recursion relation and can be used to encode the quantum state.
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Singular and regular parts of the Feynman propagators represented in the Hadamard form

The Hadamard representation of the Feynman propagators permits us to straightforwardly identify their
singular and regular parts when the coincidence limit x′ → x is considered.

For the scalar field Φ or the ghost fields

a purely geometrical singular part takes the form

Gsing(x,x′)= i
8π2

(
∆1/2(x,x′)
σ(x,x′)+ iε

+V(x,x′) ln[σ(x,x′)+ iε]

)
,

while a regular state-dependent part is given by

Greg(x,x′)= i
8π2 W(x,x′).

For the vector field Aµ

a purely geometrical singular part takes the form

GA
singµν′ (x,x′)= i

8π2

(
∆1/2(x,x′)
σ(x,x′)+ iε

gµν′ (x,x′)+Vµν′ (x,x′) ln[σ(x,x′)+ iε]

)
,

while a regular state-dependent part is given by

GA
regµν′ (x,x′)= i

8π2 Wµν′ (x,x′).
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Hadamard Green functions

In the context of the regularization of the stress-energy-tensor operator, instead of working with the Feynman
propagators, it is more convenient to use the associated Hadamard Green functions.

The Feynman propagator G can be split into the average of the retarded and advanced Green functions G and
the Hadamard Green functions G(1) :

For the scalar field Φ or the ghost fields we have

G(x,x′)=G(x,x′)+ i
2

G(1)(x,x′)
with

G(x,x′)= 1
8π

(
∆1/2(x,x′)δ[σ(x,x′)]−V(x,x′)Θ[σ(x,x′)]

)
,

G(1)(x,x′)= 1
4π2

(
∆1/2(x,x′)
σ(x,x′) +V(x,x′) ln |σ(x,x′)|+W(x,x′)

)

=G(1)
sing(x,x′)+G(1)

reg(x,x′).

For the vector field Aµ we have

GA
µν′ (x,x′)=G

A
µν′ (x,x′)+ i

2
G(1)A
µν′ (x,x′)

with
G

A
µν′ (x,x′)= 1

8π

(
∆1/2(x,x′)gµν′ (x,x′)δ[σ(x,x′)]−Vµν′ (x,x′)Θ[σ(x,x′)]

)
,

G(1)A
µν′ (x,x′)= 1

4π2

(
∆1/2(x,x′)
σ(x,x′) gµν′ (x,x′)+Vµν′ (x,x′) ln |σ(x,x′)|+Wµν′ (x,x′)

)

=G(1)A
singµν′ (x,x′)+G(1)A

reg µν′ (x,x′).

*. The splitting of G into G and G(1) can be straightforwardly achieved by using the formal identities (σ+ iε)−1 =P σ−1 − iπδ(σ)
and ln(σ+ iε)= ln |σ|+ iπΘ(−σ).
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Hadamard coefficients and their covariant Taylor series expansions

The geometrical Hadamard coefficients can be determined explicitly from the associated recursion relations
up to necessary order by taking their covariant Taylor series expansions.

The expansions of the symmetric biscalar coefficients V0(x,x′) and V1(x,x′) are given by

V0 = v0 −
{
(1/2)v0;a

}
σ;a + 1

2!
v0abσ

;aσ;b +O
(
σ3/2)

and V1 = v1 +O
(
σ1/2)

.

The expansions of the symmetric bivector coefficients V0µν′ (x,x′) and V1µν′ (x,x′) are given by

V0µν = v0(µν) −
{
(1/2)v0(µν);a +v0[µν]a

}
σ;a + 1

2!

{
v0(µν)ab +v0[µν]a ;b

}
σ;aσ;b +O

(
σ3/2)

and V1µν = v1(µν) +O
(
σ1/2)

.

The state-dependent Hadamard coefficients :

Their first coefficients W0µν′ (x,x′) and W0(x,x′) are unrestrained by the recursion relations ;

This arbitrariness can be used to encode the quantum state dependence of the theory ;

Instead of working with these coefficients, we shall consider their sums Wµν′ (x,x′) and W(x,x′) ;

Their covariant Taylor series expansions up to necessary order are given by

W =w−{
(1/2)w;a

}
σ;a + 1

2!
wabσ

;aσ;b − 1
3!

{
(3/2)wab ;c − (1/4)w;abc

}
σ;aσ;bσ;c +O(σ2),

for the symmetric biscalar W(x,x′) and

Wµν = sµν−
{
(1/2)sµν ;a +aµνa

}
σ;a + 1

2!

{
sµνab +aµνa ;b

}
σ;aσ;b

− 1
3!

{
(3/2)sµνab ;c − (1/4)sµν ;abc +aµνabc

}
σ;aσ;bσ;c +O

(
σ2)

with sµνa1 ···ap ≡w(µν)a1 ···ap and aµνa1 ···ap ≡w[µν]a1 ···ap for the symmetric bivector Wµν′ (x,x′).
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Taylor coefficients of the state-dependent Hadamard coefficients

By using the Hadamard representation of the Green functions, we can rewrite, up to order σ1/2 needed to
establish some relations between the Taylor coefficients that will be useful to simplify the renormalized ex-
pectation value of the stress-energy-tensor operator,

the wave equation associated with the Green function of the scalar field Φ or the ghost fields in the form[
�x −m2

]
W =−6V1 −2V1;aσ

;a +O (σ) ,

the wave equation associated with the Green function of the vector field Aµ in the form

g ρ′
ρ

[
g ν
µ �x −R ν

µ −m2g ν
µ

]
Wνρ′ =−6V1µρ −2g ρ′

ρ V1µρ′ ;aσ
;a +O (σ) ,

the Ward identity linking the Green fonctions associated with the vector field Aµ and the ghost fields in
the form

g ν′
ν

[
W ;µ
µν′ +W;ν′

]
=−V1µνσ

;µ+V1σ;ν+O (σ) ,

while, by recalling that G(x,x′) = GΦ(x,x′) = GGh(x,x′), the Ward identity linking the Green fonctions asso-
ciated with the scalar field Φ and the ghost fields provides trivial equalities.

With practical applications in mind, it is interesting to express some of the Taylor coefficients in term of the
bitensors Wµν′ (x,x′) and W(x,x′) by inverting the associated Taylor expansions.

w(x)= lim
x′→x

W(x,x′),

wab(x)= lim
x′→x

W;(a′b′)(x,x′)
and

sµν(x)= lim
x′→x

Wµν′ (x,x′),

aµνa(x)= 1
2

lim
x′→x

[
Wµν′ ;a′ (x,x′)−Wµν′ ;a(x,x′)

]
,

sµνab(x)= 1
2

lim
x′→x

[
Wµν′ ;(a′b′)(x,x′)+Wµν′ ;(ab)(x,x′)

]
.

Stueckelberg massive electromagnetism in curved spacetime : renormalized stress-energy tensor and Casimir effect SW10 May 2016 15 / 24



Motivation Stueckelberg massive electromagnetism Renormalized stress-energy tensor Casimir effect Summary

Stress-energy tensor

The stress-energy tensor Tµν associated with the quantum action S of the Stueckelberg theory is defined by

Tµν = 2p−g
δ

δgµν
S

[
Aµ,Φ,C,C∗,gµν

]
.

Its explicit expression is given by
Tµν =Tµν

cl +Tµν

GB +Tµν

Gh,

where the contributions of the classical and gauge-breaking parts as well as that associated with the ghost
fields take the forms

Tµν

cl =FµρFνρ +m2AµAν+∇µΦ∇νΦ+2mA(µ∇ν)Φ− (1/4)gµν
{
FρτFρτ+2m2AρAρ +2∇ρΦ∇ρΦ+4mAρ∇ρΦ

}
,

Tµν

GB =−2A(µ∇ν)∇ρAρ −2mA(µ∇ν)Φ− (1/2)gµν
{
−2Aρ∇ρ∇τAτ− (∇ρAρ

)2 +m2Φ2 −2mAρ∇ρΦ
}

,

Tµν

Gh =−2∇(µ|C∗∇|ν)C+gµν
{
∇ρC∗∇ρC+m2C∗C

}
.

Another alternative expression can be written as follows :
Tµν =Tµν

A +Tµν
Φ

+Tµν

Gh

where the contributions associated with the vector field Aµ and the scalar field Φ take the forms

Tµν

A =FµρFνρ +m2AµAν−2A(µ∇ν)∇ρAρ − (1/4)gµν
{
FρτFρτ+2m2AρAρ −4Aρ∇ρ∇τAτ−2

(∇ρAρ
)2}

,

Tµν
Φ

=∇µΦ∇νΦ− (1/2)gµν
{
∇ρΦ∇ρΦ+m2Φ2

}
.

We can note the existence of terms coupling the fields Aµ and Φ in the expressions of Tµν

cl and Tµν

GB, while
their summation eliminates any reference to them.

By construction, the stress-energy tensor is conserved, i.e., ∇νTµν = 0.
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Expectation value of the stress-energy-tensor operator with respect to the Hadamard quantum state

At the quantum level, all the fields involved in the Stueckelberg theory as well as the associated stress-energy
tensor are operators. We denote

the stress-energy-tensor operator by T̂µν,
its expectation value with respect to the Hadamard quantum state |ψ〉 by 〈ψ|T̂µν|ψ〉.

The expectation value 〈ψ|T̂µν|ψ〉 can be constructed from one of the previous expressions of Tµν as follows :
〈ψ|T̂µν|ψ〉 = 〈ψ|T̂cl

µν|ψ〉+〈ψ|T̂GB
µν |ψ〉+〈ψ|T̂Gh

µν |ψ〉,
where the three contributions given by

〈ψ|T̂cl
µν(x)|ψ〉 = 1

2
lim

x′→x
T

clA
µν

ρσ′ (x,x′)
[
G(1)A
ρσ′ (x,x′)

]
+ 1

2
lim

x′→x
T

clΦ
µν (x,x′)

[
G(1)Φ(x,x′)

]
,

〈ψ|T̂GB
µν (x)|ψ〉 = 1

2
lim

x′→x
T

GBA
µν

ρσ′ (x,x′)
[
G(1)A
ρσ′(x,x′)

]
+ 1

2
lim

x′→x
T

GBΦ
µν (x,x′)

[
G(1)Φ(x,x′)

]
,

〈ψ|T̂Gh
µν (x)|ψ〉 = 1

2
lim

x′→x
T Gh
µν (x,x′)

[
G(1)Gh(x,x′)

]
with the differential operators constructed by point splitting in the form

T
clA
µν

ρσ′ = g α′
ν gρσ

′∇µ∇α′ +g ρ
µ g σ′

ν gαβ
′∇α∇β′

−2g ρ
µ g α′

ν gβσ
′∇β∇α′ +m2g ρ

µ g σ′
ν

− 1
2

gµν
{
gρσ

′
gαβ

′∇α∇β′ −gρα
′
gβσ

′∇β∇α′ +m2gρσ
′ }

,

T
clΦ
µν = g ν′

ν ∇µ∇ν′ −
1
2

gµν
{
gαβ

′∇α∇β′
}

,

T
GBA
µν

ρσ′ =−2g ρ
µ g α′

ν ∇α′∇σ
′

− 1
2

gµν
{
−∇ρ∇σ′ −2gρα

′∇α′∇σ
′ }

,

T
GBΦ
µν =− 1

2
m2 gµν,

T Gh
µν =−2g ν′

ν ∇µ∇ν′ +gµν
{
gαβ

′∇α∇β′ +m2
}

.

It should be noted that the terms coupling Aµ and Φ are not present because two-point correlation functions
involving both Aµ and Φ vanish identically.
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Renormalized expectation value of the stress-energy-tensor operator

The expectation value of T̂µν is divergent due to the singular short-distance behavior of the Green functions.

It is possible to construct the renormalized expectation value of the stress-energy-tensor operator with respect
to the Hadamard quantum state |ψ〉 by using the prescription proposed by Wald which consists

to discard the singular contributions, i.e., to make the replacements

G(1)A
µν′ (x,x′)→G(1)A

reg µν′ (x,x′)= 1
4π2 WA

µν′ (x,x′),

G(1)Φ(x,x′)→G(1)Φ
reg (x,x′)= 1

4π2 WΦ(x,x′),

G(1)Gh(x,x′)→G(1)Gh
reg (x,x′)= 1

4π2 WGh(x,x′),
to add to the result a state-independent tensor Θ̃µν which only depends on the mass parameter and on the
local geometry and which ensures the conservation of the final expression.

The renormalized expectation value of T̂µν is given by

〈ψ|T̂µν|ψ〉ren = 1
8π2

{
lim

x′→x
T

clA
µν

ρσ′ (x,x′)
[
WA
ρσ′ (x,x′)

]
+ lim

x′→x
T

clΦ
µν (x,x′)

[
WΦ(x,x′)

]}
+ 1

8π2

{
lim

x′→x
T

GBA
µν

ρσ′ (x,x′)
[
WA
ρσ′ (x,x′)

]
+ lim

x′→x
T

GBΦ
µν (x,x′)

[
WΦ(x,x′)

]}
+ 1

8π2 lim
x′→x

T Gh
µν (x,x′)

[
WGh(x,x′)

]
+ Θ̃µν.

In the order to ensure the conservation of the regular terms, it is suitable to redefine the purely geometrical
tensor Θ̃µν by introducing a new local conserved tensor Θµν which the general expression is of the form

Θµν = 1
8π2

{
αm4gµν+βm2 [

Rµν− (1/2)Rgµν
]+γ1

(1)Hµν+γ2
(2)Hµν

}
,

where the constants α, β, γ1 and γ2 can be fixed by imposing additional physical conditions on 〈ψ|T̂µν|ψ〉ren.

*. The tensor Θ̃µν is redefined by Θµν − 1
8π2

{
6v1µν −2gµν v1

ρ
ρ +2gµν v1

}
.
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Final expression of the renormalized stress-energy tensor

The explicit expression for the renormalized expectation value of the stress-energy-tensor operator 〈ψ|T̂µν|ψ〉ren
associated with the Stueckelberg theory

is obtained by expanding the Hadamard coefficients in covariant Taylor series,
is simplified by using some relations between the Taylor coefficients involved.

The main expression which only involves state-dependent and geometrical quantities associated with the
massive vector field Aµ is given by

〈ψ|T̂µν|ψ〉ren = 1
8π2

{
(1/2)s ρ

ρ ;µν+ (1/2)�sµν−s ρ

ρ(µ;ν) + (1/2)Rρ

(µsν)ρ − (1/2)a ρ

µ (ν;ρ) − (1/2)a ρ

ν (µ;ρ)

−a ρ

µ [ν;ρ] −a ρ

ν [µ;ρ] −s ρ
ρ µν+s ρ

ρ(µν) − (1/2)gµν
[
(1/2)�s ρ

ρ − (1/2)s ;ρτ
ρτ −a ρ;τ

ρτ

]
+v1µν−gµνv1

ρ
ρ

}
+Θµν.

Here, by using the Ward identities, any reference to the auxiliary scalar field Φ can be removed.

It is possible to split the renormalized expectation value of the stress-energy-tensor operator in the form

〈ψ|T̂µν|ψ〉ren =T A
µν+T Φ

µν+Θµν,

where two conserved contributions associated with the vector and scalar fields are given by

T A
µν = 1

8π2

{
(1/2)s ρ

ρ ;µν+ (1/2)�sµν−s ρ

ρ(µ;ν) −a ρ

µ [ν;ρ] −a ρ

ν [µ;ρ] −s ρ
ρ µν+2s ρ

ρ(µν)

− (1/2)gµν
[
(1/2)�s ρ

ρ −2a ρ;τ
ρτ

]
+2vA

1 µν−gµνvA
1

ρ
ρ

}
,

T Φ
µν = 1

8π2

{
(1/2)w;µν−wµν− (1/4)gµν�w−gµνv1

}
.

Here, in the limit m2 → 0, the term T A
µν reduces to the result obtained from Maxwell’s theory.

However, this is an artificial way to split the contributions of the vector and scalar fields.

*. In some sense, the auxiliary scalar field Φ plays the role of a kind of ghost field.
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General considerations for the Casimir effect

We shall consider the Casimir effect for Stueckelberg
massive electromagnetism in the Minkowski spacetime
(R4,ηµν) with ηµν = diag(−1,+1,+1,+1).

We denote by (T,X,Y,Z) the coordinates of an event in this
spacetime.

We shall provide the renormalized vacuum expectation va-
lue of the stress-energy-tensor operator 〈0|T̂µν|0〉ren out-
side of a perfectly conducting medium with a plane boun-
dary wall at Z= 0 separating it from free space.

Z
 μ

X
 μ

Y
 μ

vacuumperfectly

conducting

medium

FIGURE – Geometry of the Casimir effect

From symmetries and physical considerations, outside of the perfectly conducting medium, the renormalized
stress-energy tensor takes the form

〈0|T̂µν|0〉ren = 1
3
〈0|T̂ ρ

ρ |0〉ren
(
ηµν− ẐµẐν

)
,

where Ẑµ is the spacelike unit vector orthogonal to the wall.

As a consequence, it is sufficient to determine the trace of the renormalized stress-energy tensor given by

〈0|T̂ ρ
ρ |0〉ren = 1

8π2

{
−m2s ρ

ρ +s ρτ
ρτ + (3/2)m4

}
+Θ ρ

ρ ,

where, in the Minkowski spacetime, the term Θ
ρ

ρ reduces to

Θ
ρ

ρ = 1
8π2

{
αm4

}
with a constant α which can be fixed by imposing additional physical conditions on 〈0|T̂µν|0〉ren.
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Renormalized stress-energy tensor in the Minkowski spacetime

The renormalized stress-energy tensor 〈0|T̂ ρ
ρ |0〉ren can be evaluated by calculating the two Taylor coefficients

of the regular part of the Feynman propagator GA
µν(x,x′) corresponding to the geometry of the problem :

sµν(x)= lim
x′→x

Wµν(x,x′) and sµνab(x)= lim
x′→x

Wµν;(ab)(x,x′).

Let us first consider the renormalized stress-energy tensor in the ordinary Minkowski spacetime (i.e., without
the boundary wall).

Due to symmetry considerations, we have 〈0|T̂µν|0〉ren = 1
4
〈0|T̂ ρ

ρ |0〉ren ηµν as well as we must have
〈0|T̂µν|0〉ren = 0 which plays the role of a constraint for α.

The Feynman propagator GA
µν(x,x′) associated with the vector field Aµ satisfies the wave equation[

�x −m2
]

GA
µν(x,x′)=−ηµνδ4(x,x′),

and its explicit expression is given in term of a Hankel function of the second kind by

GA
µν(x,x′)=−m2

8π
1√

−2m2[σ(x,x′)+ iε]
H(2)

1

[√
−2m2[σ(x,x′)+ iε]

]
ηµν

with 2σ(x,x′)=−(T−T′)2 + (X −X′)2 + (Y −Y′)2 + (Z−Z′)2.

The two Taylor coefficients involved in 〈0|T̂ ρ
ρ |0〉ren are given by

sµν(x)=m2
[
−1/2+γ+ (1/2) ln(m2/2)

]
ηµν and sµνab(x)=m4

[
−5/16+ (1/4)γ+ (1/8)ln(m2/2)

]
ηµνηab.

Then, we obtain 〈0|T̂ ρ
ρ |0〉ren = m4

8π2

{
α+9/4−3γ− (3/2) ln(m2/2)

}
, and, necessarily, we have

α=−9/4+3γ+ (3/2) ln(m2/2).

*. In the Minkowski spacetime, the bivector of parallel transport g ν′
µ (x,x′) is equal to the unit matrix δ

ν′
µ (x,x′).
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Renormalized stress-energy tensor for the Casimir effect

Let us now come back to our initial geometry of the Casimir effect.

The Feynman propagator G̃A
µν(x,x′) in the presence of the plane boundary wall can be constructed by the

method of images if we assume, in order to simplify our problem, that this wall is a perfectly reflecting :

G̃A
µν(x,x′)=GA

µν(x,x′)−qνGA
µν(x, x̃′),

where GA
µν(x,x′) is the Feynman propagator previously considered in the ordinary Minkowski spacetime

with x′µ = (T′,X′,Y′,Z′) and x̃′µ = (T′,X′,Y′,−Z′), while qν = 1−2δ3ν (the index ν is not summed).

The two Taylor coefficients involved in 〈0|T̂ ρ
ρ |0〉ren are given in term of the modified Bessel functions of

the second kind K1 and K2 by
sµν =m2

[
−1/2+γ+ (1/2) ln(m2/2)

]
ηµν−qν (m/Z)K1(2mZ)ηµν,

sµνab =m4
[
−5/16+ (1/4)γ+ (1/8)ln(m2/2)

]
ηµνηab

−qν
[
(m2/Z2)K2(2mZ)ηµν

(
2η3a η3b − (1/2)ηab

)+ (m3/Z)K1(2mZ)ηµνη3aη3b
]

.

Then, we obtain the expression of the renormalized stress-energy tensor

〈0|T̂µν|0〉ren = 1
8π2

{
m2

Z2 K2(2mZ)+ m3

Z
K1(2mZ)

}(
ηµν− ẐµẐν

)
.

It is very important to note that this result coincides exactly with the result obtained by Davies and Toms
in the framework of de Broglie-Proca massive electromagnetism.

*. It should be noted that the perfectly reflecting boundary condition is questionable from the physical point of view. It is logical
for the transverse components of the electromagnetic field but much less natural for its longitudinal component. Indeed, for this
component, we could also consider perfect transmission instead of complete reflection.

*. The term GA
µν(x, x̃′) which is obtained by replacing x′ by x̃′ as well as its derivatives are regular in the limit x′ → x.
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Massless limit

In the limit m2 → 0 and for Z 6= 0, the renormalized stress-energy tensor takes the form

〈0|T̂µν|0〉ren = 1
16π2

1
Z4

(
ηµν− ẐµẐν

)
.

In the massless limit, the renormalized stress-energy tensor associated with the Stueckelberg theory di-
verges like Z−4 as the boundary surface is approached.

This result contrasts with that obtained from Maxwell’s theory where the renormalized stress-energy ten-
sor vanishes identically.

The expression of the renormalized stress-energy tensor, where we have proposed an artificial separation of
the contributions associated with the vector field Aµ and the auxiliary scalar field Φ, takes the form

〈0|T̂µν|0〉ren = 〈0|T̂A
µν|0〉ren +〈0|T̂Φµν|0〉ren,

where the stress-energy tensor associated with the vector field Aµ is such that

〈0|T̂A
µν|0〉ren = 0,

while that associated with the auxiliary scalar field Φ is given by

〈0|T̂Φµν|0〉ren = 1
8π2

{
m2

Z2 K2(2mZ)+ m3

Z
K1(2mZ)

}(
ηµν− ẐµẐν

)
.

Here, it is interesting to note that the contribution associated with the vector field Aµ vanishes identically
for any value of the mass parameter m.

The result associated with the vector field Aµ coincides exactly with that obtained from Maxwell’s theory.
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Summary

We have presented Stueckelberg massive electromagnetism on an arbitrary curved spacetime.

We have given two alternative but equivalent expressions for the renormalized expectation value of the stress-
energy-tensor operator constructed using Hadamard renormalization.

We have also presented the results concerning Casimir effect for Stueckelberg massive electromagnetism.

Bearing in mind the results obtained, we can give the following conclusions :

De Broglie-Proca and Stueckelberg approaches of massive electromagnetism are two faces of the same
theory.

However, we can note that, with regularization and renormalization in mind, it is much more interesting
to work in the framework of the Stueckelberg formulation of massive electromagnetism which permits us
to have at our disposal the machinery of the Hadamard formalism.

One of our perspectives is the application of the general formalism developed to cosmological problems and,
in particular, the study of Stueckelberg massive electromagnetism in de Sitter spacetime and in Friedman-
Lemaître-Robertson-Walker spacetimes.

THANKS FOR YOUR ATTENTION
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