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The only second-order, local gravitational field equations derivable from an action 
containing solely the 4D metric tensor (plus related tensors) are the Einstein field 
equations with a cosmological constant.

Lovelock’s theorem

4

In order to modify GR we must consider at least one of the following: 

New degrees of freedom, 

Higher order derivatives, 

Extra dimensions, 

Non-locality.
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Screening Mechanisms

Additional degrees of freedom must be screened: 

Chameleon The mass of the scalar mode becomes large in dense regions. 
  Khoury & Weltman, Phys. Rev. Lett. 93 (2004) 171104 

Symmetron The mass of the scalar mode becomes large in dense regions. 
  Hinterbichler & Khoury, Phys. Rev. Lett. 104, 231301 

Vainshtein  NL derivative self-interactions become large in dense regions. 
Massive Gravity, DGP, Galileons...
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Theoretical Consistency

Higher order operators are negligible if         . Background-dependent 
functions in front of kinetic terms, couplings and potentials may lead to a 
strong coupling problem. 

Try to avoid fine tunings — technical naturalness. 

Take care of the sign of the kinetic term — ghost free.
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Reviews of the 
properties of MG 
models: 

S. Tsujikawa,  
Lect.Notes Phys.
800:99-145, 2010 

Clifton et al., 
Physics Reports 
513, 1 (2012) 

A. Barreira et al., 
arXiv:1504.01493 



Some aspects of Galileons

Scalar Galileons in strong gravity. 
  JC, K. Koyama, G. Niz, G. Tasinato, JCAP10(2014)055 

Vortices in Higgs vector Galileons. 
  JC, G. Tasinato, JHEP02(2016)063 

Black holes in generalised Proca action. 
  JC, G. Niz, G. Tasinato, arXiv:1602.08697
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(No)Scalarisation
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The difference between the central and asymptotic values of the scalar field is 
always suppressed. 

Toy model



(No)Scalarisation
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Fixing an asymptotic value of the scalar field, deviations from GR inside a 
compact star get smaller as the density increases. 

No hair? Scalar field solution breaks down near the maximum observed density 
of neutron stars.

Binding energy of a polytropic compact star 
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Vector Galileons

Use new fields to drive acceleration.  

Vectors have been less explored than scalars in DE models with derivative 
self-interactions. 

Can be relevant in cosmology. 
  Tasinato, CQG31(2014)225004  

Can be obtained from spontaneous symmetry breaking 
  Hull, Koyama, Tasinato, JHEP03(2015)154 
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Gauge invariant action for a complex scalar field with higher order 
derivative couplings:

Higgs Mechanism for Vector Galileons 
  Hull, Koyama, Tasinato, JHEP03(2015)154 
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Gauge invariant operators of dimension 8, 
12 and 16 that describe derivative self-

interactions of the Higgs field.

L = �(Dµ�)(Dµ�)⇤ � 1

4
Fµ⌫Fµ⌫ � V (�) + L(8) + L(12) + L(16){
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Demand that the Lagrangian is invariant under a U(1) gauge symmetry:

Higgs Mechanism for Vector Galileons 
  Hull, Koyama, Tasinato, JHEP03(2015)154 
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Covariant derivatives can be expressed 
in terms of these fields, e.g. 

Extract the physical content:

Higgs Mechanism for Vector Galileons 
  Hull, Koyama, Tasinato, JHEP03(2015)154 
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L, P and Q are symmetric:

    manifestly gauge invariant:L0s
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ig⇡

Lµ⌫ = @µ'@⌫'+ g2'2ÂµÂ⌫
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Around the minimum of the potential:

Higgs Mechanism for Vector Galileons 
  Hull, Koyama, Tasinato, JHEP03(2015)154 
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Same as the first two Lagrangians in generalised Proca action
L. Heisenberg, JCAP 1405 (2014) 015  

The remaining two Lagrangians come from      and  L(12) L(16)

L
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µ
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Effects yet to be analysed. However they’re suppressed by 
appropriate powers of  mA = g v



A simple way to study effects induced by vector Galileon interactions.

Vortices
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Vortices in the Abelian Higgs model
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Vortices
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Vortices in the Abelian Higgs model

The physical degrees of freedom obey

⇤X �XÂaÂ
a +

�⌘2

2
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@aF
ab + 2e2⌘2X2Âb = 0

Static solution: Nielsen-Olesen vortex, characterised by a winding number. 

At infinity:
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e
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Furthermore: } Flux = 2⇡N

At r=0:
Aa(r ! 0) = 0, X(r ! 0) = 0

It turns out to be consistent 
to set Ar = 0 everywhere. 



The solution is uniquely determined by: 

Invariance under reflection accompanied 
by complex conjugation of F

Vortices
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Vortices in the Abelian Higgs model
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Same gauge invariant fields and asymptotic as before,

Vortices
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✓

r
� Â0
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X2Âr

⇣
2Â✓
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Vortices
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Now with Galileons
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Vortices
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Now with Galileons
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Vortices
Visual trick

Âr = eAr + @r�

The non-trivial profile of Âr can be attributed either to Ar or to the phase
Gauge choice: Ar = 0, � = N✓ + �̃(r)
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Vortices
Minimal (and weak) coupling to gravity

Is the geometry of the vortex reflected on the spacetime?

Gab = 8⇡G(T (AH)
ab + T (6)

ab )

Contains r-q component

ds2 = e2(�(r)� (r))(dt2 � dr2)� e2 dz2 � ↵(r)2e�2 d✓2 � � !(r)drd✓

Further assumption: small b limit 

Only T(AH) contributes at the lowest order, however it does contain Galileon 
effects. 
Asymptotically:  
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Vortices
Minimal (and weak) coupling to gravity

Diff. invariance

d✓ ! d✓ � � !

2↵2
e2 dr

This redefinition effectively eats up the Galileon contribution that would 
source an off-diagonal component of the EMT. 

The coordinate system adapts to the vortex, and the derivative interactions 
modulate the radial dependence of Aq and X.

The Galileon effects can be seen as a further contribution to the angular 
deficit of the cosmic string. However, in the end it is only seen in the 
curvature invariants.
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Some aspects of Galileons

Scalar Galileons in strong gravity. 
  JC, K. Koyama, G. Niz, G. Tasinato, JCAP10(2014)055 

Vortices in Higgs vector Galileons. 
  JC, G. Tasinato, JHEP02(2016)063 

Black holes in generalised Proca action. 
  JC, G. Niz, G. Tasinato, arXiv:1602.08697
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Generalised Proca 
  L. Heisenberg, JCAP 1405 (2014) 015

L2 =G2(X)

L3 =G3(X)(DµA
µ)

L4 =G4(X)R+G4,X
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2
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µ

G’s are arbitrary functions, 

The non-minimal couplings to gravity keep the eqs. of motion 2nd 
order, 

3 degrees of freedom (+ gravity).
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Black holes in gen. Proca
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GR + Maxwell + c.c. + particular choice G4 = X and c2 = 0
c2  would lead to a redefinition of the coupling to F.

Total derivative in flat space
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New contributions excited only by the coupling to gravity
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Black holes in gen. Proca
M2

pl

2
Gµ⌫ =

1

2


Fµ⇢F⌫

⇢ � 1

4
gµ⌫F

2

�
� �


1

2
gµ⌫(D↵A

↵)2 � 2A(µD⌫)D
↵A↵ + gµ⌫A↵D

↵D�A�

+
1

2
gµ⌫D↵A�D

�A↵ � 2D↵A(µD⌫)A↵ +D↵

�
A(⌫Dµ)A

↵ +A(µD
↵A⌫) �A↵D(µA⌫)

�

�1

2

�
A2Gµ⌫ +AµA⌫R�DµD⌫A

2 + gµ⌫⇤A2
��

DµFµ⌫ = �2�Gµ⌫A
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Key to avoid Bekenstein’s “no Proca-hair” theorem

DµFµ⌫ = m2A⌫

At and Ai cannot be turned on simultaneously without violating time-
reversal symmetry. 
There are only purely electrical and purely magnetic cases, for which 
one can show that certain integral identity is violate, concluding that 
the vector field profiles are not supported.
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Black holes in gen. Proca

The coupling to Gµn can switch off the terms that would violate time-reversal 
symmetry.

ds2 = �f(r)dt2 + h(r)�1dr2 + r2d✓2 + r2 sin2 ✓d'2,

Aµ = (A0(r),⇡(r), 0, 0).

Plug in the field equations

R =
(2f � rf 0) (2f 0 + rf 00)

2r (f + rf 0)2

Asymptotically, if f~rn, R~r-2

Asymptotically flat configurations without c.c.
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Black holes in gen. Proca
Asymptotically flat configurations without c.c.

Black holes in gen. Proca

Asymptotic flatness can be recovered for non-trivial profiles only if

� =
1

4
Plug back to the exact field equations

f =h = 1� 2M

r

A0 =
Q

r
+ P

⇡ =

p
Q2 + 2P Qr + 2M P 2 r

r � 2M

Unique solution 
Asymptotic flatness not imposed 
The new integration constant, P, 
controls the asymptotic profile of 
p:

⇡ ⇠ 1

r
if P = 0

⇡ ⇠ 1p
r
otherwise
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Asymptotically flat configurations without c.c.

Black holes in gen. Proca

Abelian symmetry breaking terms completely screen the geometry from the 
vector fields. (Similar to stealthy Schwarzschild configurations in scalar-tensor gravity, 
Babichev, Charmousis JHEP1408(2014)) 

        avoids Bekenstein’s theorem. 

All curvature invariants and the EMT are well behaved for r > 0. 

  does not contribute to    . No violation of no-hair conjecture.  

However, an object coupled to Aµ can probe the longitudinal profile. 

Stable under spherical symmetric, but time dependent, perturbations 
provided that the charges are small. More general perturbations not tested 
yet.

Gµ⌫ = 0

⇡ Fµ⌫
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Inclusion of c.c.

Black holes in gen. Proca

Interestingly, we can impose asymptotic flatness again with
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Inclusion of c.c.

Black holes in gen. Proca

The electric charge is still screened from the geometry. 

A0 and p do not vanish at infinity. 

If Q = P = 0 the electric field is turned off, but the longitudinal profile is 
still sourced by the cosmological constant.  

Additional essential singularity if LP < 0

R = �8⇤P (15M � 5r + 4⇤2
P r

5)

5r(1 + 2⇤P r2)3
(Vanishes at infinity)

Grr=0, this avoids Bekenstein’s no-go arguments.

f = 1� 2M

r
+

4r2⇤P

3
+

4

5
r4⇤2

P                             ) 1 real zero ) Only 1 horizon
p
�2⇤PM > 4/15The horizon covers the sing. if                       
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Black holes in gen. Proca
Generalisations, conclusions, …

Without cosmological constant it is easy to include slow rotation.  

The metric is the slow rotation limit of Kerr (not Kerr-Newman). 
The time and angular components of the vector field are the slow 
rotation limit of Kerr-Newman. 

Also without L, generalisation to arbitrary dimensions is straightforward

ds2 =� f(r) dt2 + h(r)�1 dr2 + r2 d⌦2
(d�2) ,

Aµ =(A0(r), ⇡(r), 0, . . . , 0)
� =

d� 3

2 d� 4

f = h = 1� 2Md

rd�3

A0 =
Qd

rd�3
+ Pd

⇡ =

p
Q2

d + 2Md P 2
d rd�3 + 2Pd Qd rd�3

rd�3 � 2Md

Different asymptotic? (fix different b)

More general Lagrangians

Complete study of stability

Astrophysical consequences


