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L ovelock’s theorem

The only second-order, local gravitational field equations derivable from an action
containing solely the 4D metric tensor (plus related tensors) are the Einstein field

equations with a cosmological constant.

In order to modify GR we must consider at least one of the following:
* New degrees of freedom,

* Higher order derivatives,

* Extra dimensions,

* Non-locality.
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Screening Mechanisms

Additional degrees of freedom must be screened:

* Chameleon The mass of the scalar mode becomes large in dense regions.
Khoury & Weltman, Phys. Rev. Lett. 93 (2004) 171104

O¢ + M?(p)¢ = Milp
p

* Symmetron The mass of the scalar mode becomes large in dense regions.
Hinterbichler & Khoury, Phys. Rev. Lett. 104, 231301

(¢ +m?*¢ = %p?p
p

* Vainshtein NL derivative self-interactions become large in dense regions.

Massive Gravity, DGP, Galileons...

K(6)06 +m’¢ = 31
p



Theoretical Consistency

* Higher order operators are negligible if E/A < 1. Background-dependent
functions in front of kinetic terms, couplings and potentials may lead to a
strong coupling problem.

* Try to avoid fine tunings — technical naturalness.

* Take care of the sign of the kinetic term — ghost free.
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Some aspects of Galileons

* Scalar Galileons in strong gravity.
JC, K. Koyama, G. Niz, G. Tasinato, JCAP10(2014)055

* Vortices in Higgs vector Galileons.
JC, G. Tasinato, JHEP02(2016)063

* Black holes in generalised Proca action.
JC, G. Niz, G. Tasinato, arXiv:1602.08697



(No)Scalarisation

Toy model

\ Neglecting curvature and imposing

‘ —1
(I)fr<7“v : (I)r>7°v JEE =] (%WR3>
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TV Match ® and ®’ at R and r:
D429 = —4rZoT TN T R R
A My e T v )

The difference between the central and asymptotic values of the scalar field is
always suppressed.
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(No)Scalarisation

Binding energy of a polytropic compact star
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Fixing an asymptotic value of the scalar field, deviations from GR inside a
compact star get smaller as the density increases.
No hair? Scalar field solution breaks down near the maximum observed density
of neutron stars.
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Vector Galileons

* Use new fields to drive acceleration.

* Vectors have been less explored than scalars in DE models with derivative
self-interactions.

* Can be relevant in cosmology.
Tasinato, CQG31(2014)225004

* Can be obtained from spontaneous symmetry breaking
Hull, Koyama, Tasinato, JHEP03(2015)154
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Higgs Mechanism for Vector Galileons

Hull, Koyama, Tasinato, JHEP03(2015)154

* Gauge invariant action for a complex scalar field with higher order
derivative couplings:

1
=D = —FWFW SV O) el e st B

/ R
Gauge invariant operators of dimension 8,
= 0, —igA, 12 and 16 that describe derivative self-

interactions of the Higgs field.

V=—ppd" + - (¢¢)

1k



Higgs Mechanism for Vector Galileons

Hull, Koyama, Tasinato, JHEP03(2015)154

* Demand that the Lagrangian is invariant under a U(1) gauge symmetry:

6 g
1
A,U = AM - Eﬁwf

Gauge invariant combinations:

L = 5 (D) (Do) + (Do) (D)
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Higgs Mechanism for Vector Galileons

Hull, Koyama, Tasinato, JHEP03(2015)154

* Extract the physical content: ¢ = pe'd

.

Gauge invariants

M_A 6,“

* Covariant derivatives can be expressed

D¢ = (D0 — igpA,)e' ™
in terms of these fields, e.g. a9 Dutesidadiie

* |, P and Q are symmetric: e —92902121#121,,
g . A
Quv = 5[0u(¢* A1) + 8, (¢°A,)
* L£'s manifestly gauge invariant: H
Ls S (3u%03'/90+9290214u14”)8( AT
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Higgs Mechanism for Vector Galileons

Hull, Koyama, Tasinato, JHEP03(2015)154
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Same as the first two Lagrangians in generalised Proca action
L. Heisenberg, JCAP 1405 (2014) 015

39° Bs)v*
2A4

= >

A, Ard, Ar

The remaining two Lagrangians come from L(i2) and L(i¢)

Effects yet to be analysed. However theyre suppressed by
appropriate powers of ma = gv
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Vortices

* A simple way to study effects induced by vector Galileon interactions.

Vortices in the Abelian Higgs model

1 A
Lanl®, Ac] = (D,9)'D"® — TFuF™ — 7 (810 —1?)’

l Introduce gauge inv. quantities, X and A

A

2(z%) = nX(@)e*E),  Ay(a®) = - [Aa(a®) - dax(a®)]

€

v drops out from the Lagrangian l

A A ” 1 )\ 4
‘CAH [Xa Aa] o UzaaXﬁa’X E 772X2AaAa = EFabFab — %
(&

k massive

sty
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Vortices

Vortices in the Abelian Higgs model

The physical degrees of freedom obey

e )\772 2
DX—XAaA“nLT(X S PRe—

OB o e )
Static solution: Nielsen-Olesen vortex, characterised by a winding number.

At infinity: \
= At r=0:

D,®—0= A4, >—Naa9 Ao(r—=0)=0, X(r—>0)=0

e } [ b = ,
It turns out to be consistent

Furthermore: to set A- = 0 everywhere.

=S J

18



Vortices

Vortices in the Abelian Higgs model

The solution is uniquely determined by:

A - Lozian Gt z’
* Rotational symmetry Aidns— [—eij 77 Ag(r) + — r)} dx

* Invariance under reflection accompanied dileioi=s A=t
by complex conjugation of ®

AN

242X
i
—2e?rn? AgX?% — AY +rAY =0

rPAX (1 — X7) — e )

1E2,



Vortices

Now with Galileons

Same gauge invariant fields and asymptotic as before,

s I
D) = nX(27)eX@),  Ay(a®) = = | Aa(a®) — Bax(a®)]
&
Consider only new contributions from vector field derivatives:
o 1 An?
e =l e e el R O T
4e2 4

+ B (aaxa,,X i X221a21b) [nabaC(XMC) 2 aa(XMb)}

2 A2 . S . 0 .
rn*AX (1 - X?) — 22 DR X D 2l (> Setting Ar = 0 is inconsistent.
; s 242 A2 A Aa A Al x! X2 X//_ T
+168n X3A, A2 =0 p 0 00 e o — | 2,
i rA, r I e 2X_ 45774 : 2
Gt e B DR (2A92X2 —)
—2ernt AgX S — Ay T A n XAy TT + A+ =7 =T} T

3X
e e b e 25 /

S s 27 T T

A
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Vortices

Now with Galileons

2 —(Ag —rAY) +

ST
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Vortices

Now with Galileons
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Vortices

Visual trick

A

T = A R 0 e
* The non-trivial profile of A can be attributed either to A, or to the phase

* Gauge choice: A, =0, x = N9+X()

Lines of constant phase for N-O, B=0.4 and B=0.5
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Vortices

Minimal (and weak) coupling to gravity
* |s the geometry of the vortex reflected on the spacetime?

Gy = 87G(TAH) 4 T(9))

}

Contains r-6 component

}

ds? = 20— (@2 _ qr?) — e2¥d2? — a(r)2e2Ydh? — Bw(r)drdf
* Further assumption: small B limit = A, ~ O(6n?)

* Only T contributes at the lowest order, however it does contain Galileon
effects.

B 5
* Asymptotically: X=~1-— :1:06 s A e N-O
~ b 1
= A, = —06_2\/58777”, BES —3—/26_2\/56“7 New fields
T /f
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Vortices

Minimal (and weak) coupling to gravity

* Diff. invariance

AR
2 o2
This redefinition effectively eats up the Galileon contribution that would

source an off-diagonal component of the EMT.

The coordinate system adapts to the vortex, and the derivative interactions
modulate the radial dependence of Asand X

The Galileon effects can be seen as a further contribution to the angular
deficit of the cosmic string. However, in the end it is only seen in the
curvature invariants.

2o



Some aspects of Galileons

* Scalar Galileons in strong gravity.
JC, K. Koyama, G. Niz, G. Tasinato, JCAP10(2014)055

* Vortices in Higgs vector Galileons.
JC, G. Tasinato, JHEP02(2016)063

* Black holes in generalised Proca action.
JC, G. Niz, G. Tasinato, arXiv:1602.08697
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Generalised Proca

L. Heisenberg, JCAP 1405 (2014) 015

= _Zij Ex Zﬁn

Lo :GQ(X§\>X — —%AMAM

L3 =G3(X)(D,A")
L4 =G4(X)R+ Gy x [(D,A")? + 2D, A,D° A? — (14 c2)D, Ay D7 A?]
Ls=...

* G's are arbitrary functions,

* The non-minimal couplings to gravity keep the egs. of motion 2nd
order,

* 3 degrees of freedom (+ gravity).

27



Black holes in gen. Proca

S /d%\/*{ My R— iFQ A+p [EDMA“)Q = DMA,,D”Aa— %AQR]}
r__/

* GR + Maxwell + c.c.+ particular choice[{ G4 = X and c2= 0

* ¢, would lead to a redefinition of the |coupling to F.

v

Total derivative in flat space
1

M?
pl 2 v
—PR-F? - A+fG,,4"4

S:/d%\/?g

New contributions excited only by the coupling to gravity
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Black holes in gen. Proca

1 1 1
3 [Fuos? = 30 F?| = B | 30(Dad?) = 24,0, D" A + 4D D A;
1
+59uDaAgDP A* = 2D A(, D,y Ao + Da (A Dy A + A, D*A,) — A*D(, A,))
1
_5 (AQG,UJ/ == AMAVR P DMDVA2 g glﬂ/DA2)]

Dt g B e

l

Key to avoid Bekenstein's “no Proca-hair” theorem
D*F,, = m*A,

* Ar and A cannot be turned on simultaneously without violating time-
reversal symmetry.

* There are only purely electrical and purely magnetic cases, for which
one can show that certain integral identity is violate, concluding that
the vector field profiles are not supported.
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Black holes in gen. Proca

Asymptotically flat configurations without c.c.

* The coupling to Gy, can switch off the terms that would violate time-reversal
symmetry.

e = = o A 7 Gl e A i e el
A,u T (AO(T)7 7'('(7‘), 0, O)

l Plug in the field equations

2 )
2 rrs

4
Asymptotically, if f~r", R~r=

g
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Black holes in gen. Proca

Asymptotically flat configurations without c.c.

* Asymptotic flathess can be recovered for non-trivial profiles only if

1
Lo

j Plug back to the exact field equations

=il
o0 * Unique solution
e S = * Asymptotic flatness not imposed
Al :Q D * The new integration constant, P,
: controls the asymptotic profile of
V@2+2PQr+2MP2%r 2
fi— -
r—2M 1
T ()
(&
1 :
m ~ —— otherwise

\/F
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Black holes in gen. Proca

Asymptotically flat configurations without c.c.

* Abelian symmetry breaking terms completely screen the geometry from the

vector fields. (Similar to stealthy Schwarzschild configurations in scalar-tensor gravity,
Babichev, Charmousis JHEP1408(2014))

* G, = 0 avoids Bekenstein's theorem.
* All curvature invariants and the EMT are well behaved for r > O.
* m does not contribute to F,,. No violation of no-hair conjecture.

* However, an object coupled to A, can probe the longitudinal profile.

* Stable under spherical symmetric, but time dependent, perturbations
provided that the charges are small. More general perturbations not tested
yet.

52



Black holes in gen. Proca

IHellisieontef G

* Interestingly, we can impose asymptotic flatness again with

4
G e e A
= P e =t A2 —
r A AT S 4M?,
e (22
0 5 P? £ 4M?
Ag = ——I—P<1+—7“2AP> :
7 3
s AL RG2S Ve
fh h
1/2
T e el B :
e P éﬂf S P?(1+2rAp) + 8Mm° Ap
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Black holes in gen. Proca

IBeltisionrer e

* The electric charge is still screened from the geometry.

* Ap and © do not vanish at infinity.

*If Q = P = 0 the electric field is turned off, but the longitudinal profile is
still sourced by the cosmological constant.

* Additional essential singularity if Ap < O

8Ap(15M — 51 + 4A275)

e e

(Vanishes at infinity)

* G+=0, this avoids Bekenstein’s no-go arguments.

I A e

w f=1= e 55 3 i 57“4/\?3 i ¥ real zero i Only 1 horizon

* The horizon covers the sing. if +/—2ApM > 4/15
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Black holes in gen. Proca

Generalisations, conclusions, ...

* Without cosmological constant it is easy to include slow rotation.

* The metric is the slow rotation limit of Kerr (not Kerr-Newman).

* The time and angular components of the vector field are the slow
rotation limit of Kerr-Newman.

* Also without A, generalisation to arbitrary dimensions is straightforward

dst— i S O e g
Ami=lhnlEl el @ U o 0 el
2M 4 Different asymptotic? (fix different B)
G P More general Lagrangians
Ay = T?_d?) A Complete study of stability
= VO e R Astrophysical consequences

Td_3 s 2Md
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