

Abelian Symmetry Breaking and Modified Gravity

Javier Chagoya

Collaborations with Gustavo Niz and Gianmassimo Tasinato

College of Science Coleg Gwyddoniaeth

Swansea University
Prifysgol Abertawe

Outline

- Context
* Abelian Galileon-Higgs vortices
* Black holes in generalised Proca

GR \& Λ CDM

Lovelock's theorem

The only second-order, local gravitational field equations derivable from an action containing solely the 4D metric tensor (plus related tensors) are the Einstein field equations with a cosmological constant.

In order to modify GR we must consider at least one of the following:

* New degrees of freedom,
* Higher order derivatives,
* Extra dimensions,
* Non-locality.

Screening Mechanisms

Additional degrees of freedom must be screened:
*Chameleon The mass of the scalar mode becomes large in dense regions.
Khoury \& Weltman, Phys. Rev. Lett. 93 (2004) 171104

$$
\square \phi+M^{2}(\rho) \phi=\frac{g}{M_{p l}} \rho
$$

* Symmetron The mass of the scalar mode becomes large in dense regions.

Hinterbichler \& Khoury, Phys. Rev. Lett. 104, 231301

$$
\square \phi+m^{2} \phi=\frac{g(\rho)}{M_{p l}} \rho
$$

* Vainshtein NL derivative self-interactions become large in dense regions.

Massive Gravity, DGP, Galileons...

$$
K(\phi) \square \phi+m^{2} \phi=\frac{g}{M_{p l}} \rho
$$

Theoretical Consistency

* Higher order operators are negligible if $E / \Lambda \ll 1$. Background-dependent functions in front of kinetic terms, couplings and potentials may lead to a strong coupling problem.
*Try to avoid fine tunings - technical naturalness.
*Take care of the sign of the kinetic term - ghost free.

Reviews of the properties of MG models:
S. Tsujikawa, Lect.Notes Phys. 800:99-145, 2010

Clifton et al.,
Physics Reports 513, 1 (2012)
A. Barreira et al., arXiv:1504.01493

Some aspects of Galileons

* Scalar Galileons in strong gravity.

JC, K. Koyama, G. Niz, G. Tasinato, JCAP10(2014)055

* Vortices in Higgs vector Galileons.

JC, G. Tasinato, JHEP02(2016)063

* Black holes in generalised Proca action.

JC, G. Niz, G. Tasinato, arXiv:1602.08697

(No)Scalarisation

Toy model

Neglecting curvature and imposing

$$
T=-M\left(\frac{4}{3} \pi R^{3}\right)^{-1}
$$

Match Φ and Φ^{\prime} at R and r_{v} :

$$
\phi_{c}-\phi_{0}=\frac{\Lambda^{3}}{\alpha}\left[\frac{3}{16} r_{V}^{2}\left(\frac{R^{1 / 2}}{r_{V}^{1 / 2}}-1\right)+\frac{3 \beta R r_{s}}{320},\right]
$$

The difference between the central and asymptotic values of the scalar field is always suppressed.

(No)Scalarisation

Binding energy of a polytropic compact star

Fixing an asymptotic value of the scalar field, deviations from GR inside a compact star get smaller as the density increases.
No hair? Scalar field solution breaks down near the maximum observed density of neutron stars.

Vector Galileons

* Use new fields to drive acceleration.
* Vectors have been less explored than scalars in DE models with derivative self-interactions.
* Can be relevant in cosmology.

Tasinato, CQG31(2014)225004

* Can be obtained from spontaneous symmetry breaking

Hull, Koyama, Tasinato, JHEP03(2015)154

Higgs Mechanism for Vector Galileons

* Gauge invariant action for a complex scalar field with higher order derivative couplings:

$$
\begin{gathered}
\mathcal{L}=-\left(\mathcal{D}_{\mu} \phi\right)\left(\mathcal{D}^{\mu} \phi\right)^{*}-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-V(\phi)+\underbrace{\mathcal{L}_{(8)}+\mathcal{L}_{(12)}+\mathcal{L}_{(16)}} \\
\mathcal{D}_{\mu}=\partial_{\mu}-i g A_{\mu} \quad \begin{array}{r}
\text { Gauge invariant operators of dimension 8, } \\
12 \text { and } 16 \text { that describe derivative self- } \\
\text { interactions of the Higgs field. }
\end{array} \\
V=-\mu^{2} \phi \phi^{*}+\frac{\lambda}{2}\left(\phi \phi^{*}\right)^{2} \\
v=\sqrt{\frac{\mu^{2}}{\lambda}}
\end{gathered}
$$

Higgs Mechanism for Vector Galileons

* Demand that the Lagrangian is invariant under a $\mathrm{U}(1)$ gauge symmetry:

$$
\begin{aligned}
& \phi \rightarrow \phi e^{i \xi} \quad \text { Gauge invariant combinations: } \\
& A_{\mu} \rightarrow A_{\mu}+\frac{1}{g} \partial_{\mu} \xi
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{16}=\frac{1}{\Lambda^{12}} \varepsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \varepsilon_{\nu_{1} \nu_{2} \nu_{3} \nu_{4}}\left[\alpha_{(16)} L_{\mu_{1}}^{\nu_{1}} P_{\mu_{2}}^{\nu_{2}} P_{\mu_{3}}^{\nu_{3}} P_{\mu_{4}}^{\nu_{4}}+\beta_{(16)} L_{\mu_{1}}^{\nu_{1}} Q_{\mu_{2}}^{\nu_{2}} Q_{\mu_{3}}^{\nu_{3}} Q_{\mu_{4}}^{\nu_{4}}\right]
\end{aligned}
$$

Higgs Mechanism for Vector Galileons

* Extract the physical content:

Gauge invariants

* Covariant derivatives can be expressed in terms of these fields, e.g.
* L, P and Q are symmetric:

$$
\begin{aligned}
L_{\mu \nu} & =\partial_{\mu} \varphi \partial_{\nu} \varphi+g^{2} \varphi^{2} \hat{A}_{\mu} \hat{A}_{\nu} \\
P_{\mu \nu} & =\varphi \partial_{\mu} \partial_{\nu} \varphi-g^{2} \varphi^{2} \hat{A}_{\mu} \hat{A}_{\nu} \\
Q_{\mu \nu} & =\frac{g}{2}\left[\partial_{\mu}\left(\varphi^{2} \hat{A}_{\nu}\right)+\partial_{\nu}\left(\varphi^{2} \hat{A}_{\mu}\right)\right]
\end{aligned}
$$

* \mathcal{L}^{\prime} s manifestly gauge invariant:

$$
\mathcal{L}_{8}=-\frac{g \beta_{(8)}}{\Lambda^{4}}\left(\partial_{\mu} \varphi \partial^{\nu} \varphi+g^{2} \varphi^{2} \hat{A}_{\mu} \hat{A}^{\nu}\right) \partial_{\rho}\left(\varphi^{2} \hat{A}^{\sigma}\right)\left(\delta_{\nu}^{\mu} \delta_{\sigma}^{\rho}-\delta_{\nu}^{\rho} \delta_{\sigma}^{\mu}\right)
$$

Higgs Mechanism for Vector Galileons

* Around the minimum of the potential: $\quad \varphi=v+\frac{h}{\sqrt{2}}$

$$
\mathcal{L}_{t o t}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-(g v)^{2} \hat{A}^{2}-\frac{3 g^{3} \beta_{(8)} v^{4}}{2 \Lambda^{4}} \hat{A}_{\mu} \hat{A}^{\mu} \partial_{\rho} \hat{A}^{\rho}
$$

+ gauge field interactions + new interactions between \hat{A}_{μ} and $h+$
The remaining two Lagrangians come from $\mathcal{L}_{(12)}$ and $\mathcal{L}_{(16)}$

Effects yet to be analysed. However they're suppressed by appropriate powers of $m_{A}=g v$

Vortices

* A simple way to study effects induced by vector Galileon interactions.

Vortices in the Abelian Higgs model
$\mathcal{L}_{A H}\left[\Phi, A_{a}\right]=\left(D_{a} \Phi\right)^{\dagger} D^{a} \Phi-\frac{1}{4} F_{a b} F^{a b}-\frac{\lambda}{4}\left(\Phi^{\dagger} \Phi-\eta^{2}\right)^{2}$
Introduce gauge inv. quantities, X and \hat{A}

$$
\Phi\left(x^{\alpha}\right)=\eta X\left(x^{\alpha}\right) e^{i \chi\left(x^{\alpha}\right)}, \quad A_{a}\left(x^{\alpha}\right)=\frac{1}{e}\left[\hat{A}_{a}\left(x^{\alpha}\right)-\partial_{a} \chi\left(x^{\alpha}\right)\right]
$$

χ drops out from the Lagrangian \downarrow

$$
\mathcal{L}_{A H}\left[X, \hat{A}_{a}\right]=\eta^{2} \partial_{a} X \partial^{a} X+\eta^{2} X^{2} \underbrace{\hat{A}_{a} \hat{A}^{a}}_{\text {massive }}-\frac{1}{4 e^{2}} F_{a b} F^{a b}-\frac{\lambda \eta^{4}}{4}\left(X^{2}-1\right)^{2}
$$

Vortices

Vortices in the Abelian Higgs model

The physical degrees of freedom obey

$$
\begin{aligned}
\square X-X \hat{A}_{a} \hat{A}^{a}+\frac{\lambda \eta^{2}}{2}\left(X^{2}-1\right) X & =0 \\
\partial_{a} F^{a b}+2 e^{2} \eta^{2} X^{2} \hat{A}^{b} & =0
\end{aligned}
$$

Static solution: Nielsen-Olesen vortex, characterised by a winding number.

$$
\begin{aligned}
& \text { At infinity: } \\
& X \rightarrow 1 \\
& \left.D_{a} \Phi \rightarrow 0 \Rightarrow A_{a} \rightarrow-\frac{N}{e} \partial_{a} \theta\right\} \text { Flux }=2 \pi N \\
& \text { Furthermore: } \\
& \chi=N \theta \\
& \text { At } r=0 \text { : } \\
& A_{a}(r \rightarrow 0)=0, \quad X(r \rightarrow 0)=0 \\
& \text { It turns out to be consistent } \\
& \text { to set } A_{r}=0 \text { everywhere. }
\end{aligned}
$$

Vortices

Vortices in the Abelian Higgs model

The solution is uniquely determined by:
*Rotational symmetry

$$
\begin{aligned}
& \hat{A}_{i} d x^{i}=\left[-\epsilon_{i j} \frac{x_{j}}{r} \hat{A}_{\theta}(r)+\frac{x_{i}}{r} \hat{A},(r)\right] d x^{i} \\
& d A_{1}(r, \theta)=-A_{1}(r,-\theta) \\
& A_{2}(r, \theta)=A_{2}(r,-\theta)
\end{aligned}
$$

* Invariance under reflection accompanied

$$
\begin{array}{r}
r \eta^{2} \lambda X\left(1-X^{2}\right)-\frac{2 \hat{A}_{\theta}^{2} X}{r}+2\left(X^{\prime}+r X^{\prime \prime}\right)=0 \\
-2 e^{2} r \eta^{2} \hat{A}_{\theta} X^{2}-\hat{A}_{\theta}^{\prime}+r \hat{A}_{\theta}^{\prime \prime}=0
\end{array}
$$

Vortices

Now with Galileons

Same gauge invariant fields and asymptotic as before,

$$
\Phi\left(x^{\alpha}\right)=\eta X\left(x^{\alpha}\right) e^{i \chi\left(x^{\alpha}\right)}, \quad A_{a}\left(x^{\alpha}\right)=\frac{1}{e}\left[\hat{A}_{a}\left(x^{\alpha}\right)-\partial_{a} \chi\left(x^{\alpha}\right)\right]
$$

Consider only new contributions from vector field derivatives:

$$
\begin{gathered}
\mathcal{L}_{A H G}=\eta^{2} \partial_{a} X \partial^{a} X+\eta^{2} X^{2} \hat{A}_{a} \hat{A}^{a}-\frac{1}{4 e^{2}} F_{a b} F^{a b}-\frac{\lambda \eta^{4}}{4}\left(X^{2}-1\right)^{2} \\
+\beta \eta^{4}\left(\partial_{a} X \partial_{b} X+X^{2} \hat{A}_{a} \hat{A}_{b}\right)\left[\eta^{a b} \partial^{c}\left(X^{2} \hat{A}_{c}\right)-\partial^{a}\left(X^{2} \hat{A}^{b}\right)\right] \\
r \eta^{4} \lambda X\left(1-X^{2}\right)-\frac{2 \eta^{2} \hat{A}_{\theta}^{2} X}{r}+2 \eta^{2} X^{\prime}+2 r \eta^{2} X^{\prime \prime} \\
+16 \beta \eta^{4} X^{3} \hat{A}_{r}\left[\hat{A}_{r}^{2}+\frac{2 \hat{A}_{\theta}^{2}}{r^{2}}+\frac{\hat{A}_{\theta}^{2} \hat{A}_{r}^{\prime}}{r \hat{A}_{r}}-\frac{\hat{A}_{\theta} \hat{A}_{\theta}^{\prime}}{r}-\frac{\hat{A}_{r}^{\prime} X^{\prime}}{2 X \hat{A}_{r}}-\frac{X^{\prime 2}}{2 X^{2}}-\frac{X^{\prime \prime}}{2 X}\right]=0, \\
-2 e^{2} r \eta^{2} \hat{A}_{\theta} X^{2}-\hat{A}_{\theta}^{\prime}+r \hat{A}_{\theta}^{\prime \prime}+12 \beta e^{2} \eta^{4} X^{4} r \hat{A}_{\theta}\left[\frac{\hat{A}_{r}}{r}+\hat{A}_{r}^{\prime}+\frac{4 \hat{A}_{r} X^{\prime}}{3 X}\right]=0, \\
-r \eta^{2} \hat{A}_{r} X^{2}+6 \beta \eta^{4} X^{4}\left[\hat{A}_{r}^{2}+\frac{\hat{A}_{\theta}^{2}}{r^{2}}-\frac{\hat{A}_{\theta} \hat{A}_{\theta}^{\prime}}{r}-\frac{4 \hat{A}_{\theta}^{2} X^{\prime}}{3 X r}+\frac{X^{\prime 2}}{3 X^{2}}\right]=0 .
\end{gathered} \quad \mathcal{L}_{6} \supset \frac{4 \beta \eta^{4}}{r^{3}} X^{2} \hat{A}_{r}\left(2 \hat{A}_{\theta}^{2} X^{2}-.\right.
$$

Vortices

Now with Galileons

$$
\hat{A}_{r}=\frac{r}{12 \beta \eta^{2} X^{2}}\left[1-\sqrt{1-\left(\frac{12 \beta \eta^{2} X^{2}}{r}\right)^{2}\left[\frac{\hat{A}_{\theta}}{r^{2}}\left(\hat{A}_{\theta}-r \hat{A}_{\theta}^{\prime}\right)+\frac{X^{\prime}}{3 X}\left(\frac{X^{\prime}}{X}-\frac{4 \hat{A}_{\theta}^{2}}{r}\right)\right]}\right]
$$

* Only \hat{A}_{θ} and X are "dynamical"

Vortices

Now with Galileons

X, \hat{A}_{θ} and \hat{A}_{r}

$\beta=0.10$

* Given β, \hat{A}_{r} constraints the allowed values for the vorticity

Vortices

Visual trick

$$
\hat{A}_{r}=e A_{r}+\partial_{r} \chi
$$

*The non-trivial profile of \hat{A}_{r} can be attributed either to A_{r} or to the phase

* Gauge choice: $A_{r}=0, \chi=N \theta+\tilde{\chi}(r)$

Vortices

Minimal (and weak) coupling to gravity

* Is the geometry of the vortex reflected on the spacetime?

* Further assumption: small β limit $\Rightarrow \hat{A}_{r} \sim \mathcal{O}\left(\beta \eta^{2}\right)$
* Only $T^{(\text {AH) }}$ contributes at the lowest order, however it does contain Galileon effects.
* Asymptotically: $\quad X \approx 1-x_{0} \frac{e^{-\eta \sqrt{\lambda} r}}{\sqrt{r}}, \quad \hat{A}_{\theta} \approx a_{0} \sqrt{r} e^{-\sqrt{2} e \eta r} \quad$ N-O

$$
\Rightarrow \hat{A}_{r} \approx \frac{b_{0}}{r} e^{-2 \sqrt{2} e \eta r}, \quad \omega \approx-\frac{1}{r^{3 / 2}} e^{-2 \sqrt{2} e r \eta} \quad \text { New fields }
$$

Vortices

Minimal (and weak) coupling to gravity

* Diff. invariance

$$
d \theta \rightarrow d \theta-\frac{\beta \omega}{2 \alpha^{2}} e^{2 \psi} d r
$$

This redefinition effectively eats up the Galileon contribution that would source an off-diagonal component of the EMT.

The coordinate system adapts to the vortex, and the derivative interactions modulate the radial dependence of A_{θ} and X.

The Galileon effects can be seen as a further contribution to the angular deficit of the cosmic string. However, in the end it is only seen in the curvature invariants.

Some aspects of Galileons

* Scalar Galileons in strong gravity.

JC, K. Koyama, G. Niz, G. Tasinato, JCAP10(2014)055

* Vortices in Higgs vector Galileons.

JC, G. Tasinato, JHEP02(2016)063

* Black holes in generalised Proca action.

> JC, G. Niz, G. Tasinato, arXiv:1602.08697

Generalised Proca

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{2}+\sum_{n=2}^{5} \beta_{n} \mathcal{L}_{n}
$$

$\mathcal{L}_{3}=G_{3}(X)\left(D_{\mu} A^{\mu}\right)$
$\mathcal{L}_{4}=G_{4}(X) R+G_{4, X}\left[\left(D_{\mu} A^{\mu}\right)^{2}+c_{2} D_{\rho} A_{\sigma} D^{\sigma} A^{\rho}-\left(1+c_{2}\right) D_{\rho} A_{\sigma} D^{\sigma} A^{\rho}\right]$
$\mathcal{L}_{5}=\ldots$

* C's are arbitrary functions,
* The non-minimal couplings to gravity keep the eqs. of motion 2nd order,
* 3 degrees of freedom (+ gravity).

Black holes in gen. Proca

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g}\left\{\frac{M_{p l}^{2}}{2} R-\frac{1}{4} F^{2}-\Lambda+\beta\left[\left(D_{\mu} A^{\mu}\right)^{2}-D_{\mu} A_{\nu} D^{\nu} A^{\mu}-\frac{1}{2} A^{2} R\right]\right\} \\
& * \text { GR }+ \text { Maxwell + c.c. + particular choice } G_{4}=X \text { and } c_{2}=0 \\
& \text { * } C_{2} \text { would lead to a redefinition of the coupling to } F \text {. }
\end{aligned}
$$

Total derivative in flat space

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M_{p l}^{2}}{2} R-\frac{1}{4} F^{2}-\Lambda+\beta G_{\mu \nu} A^{\mu} A^{\nu}\right]
$$

New contributions excited only by the coupling to gravity

Black holes in gen. Proca

$$
\begin{gathered}
\frac{M_{p l}^{2}}{2} G_{\mu \nu}=\frac{1}{2}\left[F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} g_{\mu \nu} F^{2}\right]-\beta\left[\frac{1}{2} g_{\mu \nu}\left(D_{\alpha} A^{\alpha}\right)^{2}-2 A_{(\mu} D_{\nu)} D^{\alpha} A_{\alpha}+g_{\mu \nu} A_{\alpha} D^{\alpha} D^{\beta} A_{\beta}\right. \\
+\frac{1}{2} g_{\mu \nu} D_{\alpha} A_{\beta} D^{\beta} A^{\alpha}-2 D^{\alpha} A_{(\mu} D_{\nu)} A_{\alpha}+D_{\alpha}\left(A_{(\nu} D_{\mu)} A^{\alpha}+A_{(\mu} D^{\alpha} A_{\nu)}-A^{\alpha} D_{(\mu} A_{\nu)}\right) \\
\left.-\frac{1}{2}\left(A^{2} G_{\mu \nu}+A_{\mu} A_{\nu} R-D_{\mu} D_{\nu} A^{2}+g_{\mu \nu} \square A^{2}\right)\right] \\
D^{\mu} F_{\mu \nu}=-2 \beta G_{\mu \nu} A^{\mu}
\end{gathered}
$$

Key to avoid Bekenstein's "no Proca-hair" theorem

$$
D^{\mu} F_{\mu \nu}=m^{2} A_{\nu}
$$

* A_{t} and A_{i} cannot be turned on simultaneously without violating timereversal symmetry.
* There are only purely electrical and purely magnetic cases, for which one can show that certain integral identity is violate, concluding that the vector field profiles are not supported.

Black holes in gen. Proca

 Asymptotically flat configurations without c.c.* The coupling to $G_{\mu \nu}$ can switch off the terms that would violate time-reversal symmetry.

$$
\begin{aligned}
d s^{2} & =-f(r) d t^{2}+h(r)^{-1} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2} \\
A_{\mu} & =\left(A_{0}(r), \pi(r), 0,0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \text { Plug in the field equations } \\
& R=\frac{\left(2 f-r f^{\prime}\right)\left(2 f^{\prime}+r f^{\prime \prime}\right)}{2 r\left(f+r f^{\prime}\right)^{2}} \\
& \text { Asymptotically, if } f \sim r^{n}, \mathrm{R} \sim r^{-2}
\end{aligned}
$$

Black holes in gen. Proca

Asymptotically flat configurations without c.c.

* Asymptotic flatness can be recovered for non-trivial profiles only if

$$
\beta=\frac{1}{4}
$$

Plug back to the exact field equations

$$
\begin{aligned}
f & =h=1-\frac{2 M}{r} \\
A_{0} & =\frac{Q}{r}+P \\
\pi & =\frac{\sqrt{Q^{2}+2 P Q r+2 M P^{2} r}}{r-2 M}
\end{aligned}
$$

* Unique solution
* Asymptotic flatness not imposed
* The new integration constant, P, controls the asymptotic profile of π :

$$
\begin{aligned}
& \pi \sim \frac{1}{r} \text { if } P=0 \\
& \pi \sim \frac{1}{\sqrt{r}} \text { otherwise }
\end{aligned}
$$

Black holes in gen. Proca

Asymptotically flat configurations without c.c.

* Abelian symmetry breaking terms completely screen the geometry from the vector fields. (Similar to stealthy Schwarzschild configurations in scalar-tensor gravity, Babichev, Charmousis JHEP1408(2014))
* $G_{\mu \nu}=0$ avoids Bekenstein's theorem.
* All curvature invariants and the EMT are well behaved for $r>0$.
* π does not contribute to $F_{\mu \nu}$. No violation of no-hair conjecture.
* However, an object coupled to A_{μ} can probe the longitudinal profile.
* Stable under spherical symmetric, but time dependent, perturbations provided that the charges are small. More general perturbations not tested yet.

Black holes in gen. Proca

Inclusion of c.c.

* Interestingly, we can impose asymptotic flatness again with

\[

\]

Black holes in gen. Proca

Inclusion of c.c.

* The electric charge is still screened from the geometry.
* A_{0} and π do not vanish at infinity.
* If $\mathrm{Q}=\mathrm{P}=0$ the electric field is turned off, but the longitudinal profile is still sourced by the cosmological constant.
* Additional essential singularity if $\Lambda_{\mathrm{p}}<0$

$$
R=-\frac{8 \Lambda_{P}\left(15 M-5 r+4 \Lambda_{P}^{2} r^{5}\right)}{5 r\left(1+2 \Lambda_{P} r^{2}\right)^{3}} \quad \text { (Vanishes at infinity) }
$$

* $\mathrm{G}_{\mathrm{rr}}=0$, this avoids Bekenstein's no-go arguments.
* $f=1-\frac{2 M}{r}+\frac{4 r^{2} \Lambda_{P}}{3}+\frac{4}{5} r^{4} \Lambda_{P}^{2} \Rightarrow 1$ real zero \Rightarrow Only 1 horizon
* The horizon covers the sing. if $\sqrt{-2 \Lambda_{P}} M>4 / 15$

Black holes in gen. Proca

Generalisations, conclusions, ...

* Without cosmological constant it is easy to include slow rotation.
* The metric is the slow rotation limit of Kerr (not Kerr-Newman).
* The time and angular components of the vector field are the slow rotation limit of Kerr-Newman.
* Also without Λ, generalisation to arbitrary dimensions is straightforward

$$
\begin{array}{rlr}
d s^{2}=-f(r) d t^{2}+h(r)^{-1} d r^{2}+r^{2} d \Omega_{(d-2)}^{2}, & \beta=\frac{d-3}{2 d-4} \\
A_{\mu}=\left(A_{0}(r), \pi(r), 0, \ldots, 0\right) & \text { Different asymptotic? (fix different } \beta \text {) } \\
f=h=1-\frac{2 M_{d}}{r^{d-3}} & \text { More general Lagrangians } \\
A_{0}=\frac{Q_{d}}{r^{d-3}+P_{d}} & \text { Complete study of stability } \\
\pi=\frac{\sqrt{Q_{d}^{2}+2 M_{d} P_{d}^{2} r^{d-3}+2 P_{d} Q_{d} r^{d-3}}}{r^{d-3}-2 M_{d}} & \text { Astrophysical consequences }
\end{array}
$$

