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l. Scalar Galileon

l. 1 Flat space-time Galileonin4 D

@ Galileon

Originally (Nicolis, Rattazzi, Trincherini 2009) defined in flat space-time as
the most general scalar theory which has (strictly) second order
fields equations

@ In 4D, there is only 4 non trivial such theories
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Simple rewriting of those Lagrangians with epsilon tensors
(up to integrations by part):
(C.D., S.Deser, G.Esposito-Farese, 2009)
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g This leads to (exactly) second order field equations



Indeed, consider e.qg.
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Hence the field equations are proportional tolled by the epsilon tensor
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Which does only contain second derivatives
NB: the field equations are linear in time derivatives (Cauchy problem ?)



l. 2 Flat space-time Galileon in arbitrary Dimension

In D dimensions, D non trivial Galileons can be defined as
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Only the Lagrangians with ) > n. are non vanishing.

Using the tensors
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Up to total derivatives, the following Lagrangians are equivalent

E(}all o Hy-o P41V - V41 o =

N o (2n+2) Tpni1Tvngr ) Tpgvq - - Tppy,
[Gal2 _ H1-BnpV1eVn X\ _ _

N — (2n) My TN 1 ";1-21/2 « o ”“‘nyn
£(}‘dl,3 L H1---HnV1..-Vn - _)\ — —

N = (2n) W\ M#lyl .« o ”H-n.’/n

One has the exact relation

‘AT Gal,2 (ml 3 Gal,1
(_A\ - Z)C*\ — E ,Ci,\r



I. 3 Curved space-time Galileon

A naive covariantization leads to the loss of the distinctive properties of the Galileon
Indeed, consider now in curved space-time (with 7, =V mandr, 6, =V V, m)
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@ Variation yields in particular
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Third derivatives generate
now Riemann tensors ...
and fourth derivatives,
derivatives of the Riemann

Indeed the (naively covariantized) £(410) has the field equations
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Similarly, varying w.r.t. the metric
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Yields third order derivatives of the scalar = in the energy momentum tensor

Do not vanish in flat space-time !
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This can be cured by a non minimal coupling to the metric

Adding to
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@ Yields second order field equations for the scalar and the metric
(but loss of the « Galilean » symmetry)

e.g. one has now the energy momentum tensor
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This can be generalized to arbitrary Galileons
(arbitrary number of fields and dimensions)

Introducing E('H-i-l.p) — —./4(*_).,,')71'137272(],)8((1)
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Yields second order field equations.

@ Heuristically, one needs to replace sucessively
pairs of twice differentiated = by Riemanns
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Note that the extraterm [ ) = 1“4((*)7172 (I_‘/\j_(,\) Ras g Tos.

Does not generate unwanted derivatives of the curvature thanks to Bianchi identity

@ Indeed one has A sy R3546;7 = 0
Ag)R3546.8 = 0

Similarly to A(8)87W35 — ()
A(8)687T46 =0

< -

@ Yields an easy generalization to p-forms



l. 4 Generalization to p-forms

C.D., S.Deser, G.Esposito-Farese,

arXiv 1007.5278 [gr-gc] (PRD)
E.g. consider
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With A,... a p-form of field strength  wWxuw... = I Ay
In the field equations, Bianchi identities annihilate any 0, J,ws-..

@ E.o.m. are (purely) second order

E.g. for a 2-form
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@ Note that one must go to 7 dimensions (in general one has D > 2p + 3)
and that this construction does not work for odd p as we show now



1.4.2. The case of (odd p)-forms

For odd p the previous construction does not work

Indeed, the action

I = \/\{/D"o S - w;.w...w(_\.-j...(()/_PU’}-(S... i 3 )(()ewa'r... . » a

With A,.. an (odd p)-form of field strength  @Wihw.. = IpnA,
Yields vanishing e.o.m. (the action is a total derivaijve)

Integration by part
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Is there an (odd p) Galileon ?

C. D., A. E. Gumrukcuoglu, S. Mukohyama and
Y.Wang, [arXiv:1312.6690 [hep-th]], JHEP 2014.

C.D., S. Mukohyama, V. Sivanesan
[arXiv:1601.01287[hep-th]], PRD 2016.

C.D., S. Mukohyama, V. Sivanesan
In preparation



We start from the field equations

'S
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We ask these field equations
(i) To derive from an action

S = /{'ED.,{' ﬁ[AB: d,Ag:d, .. -abAB]
(i) To depend only on second derivatives

(iii) to be gauge invariant

p—1
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Hypothesis (i) (that field equations derive from an action S) leads to

J J S_0 Vanish as a consequence of
0Ag(y) 0AA(z) Hypothesis (ii) (that field
5 5 , equations only depend on
Which upon usin : _» — second order derivatives
P J 0Ap(y) 0.A—" 0AB (U )

Leads to the « integzaoility conditions »
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Hypothesis (iii) (gauge invariance of the field equations)

g.4|:5' -0
Leadto { gAlblp—1](bs.e) _ g

g.‘fl b[p—1](by,cd) _ 0

These symmetries extend in particular to
derivatives of the field equations



Defining then
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Hypothesis (i) (ii) and (iii) lead to the following symmetries for the tensor £™

1.1. Antisymmetry within each group of p indices A and B;
1.2. Invariance under interchange of groups of indices B;and B,

as well as A and any B;

2.1. Symmetry of each pair of indices (c; d)
2.2. Invariance under interchange (c;, dj) and (c;, d)

3. Symmetrizing over any 3 indices yields zero




NB: (Sm)ABlcldl"'Bm—lcm—ldm.—l
Isa (pm+ 2(m-1)) tensor

For p=1,
Conditions 1.1, 1.2, 2.1, 2.2 and 3

are enough to show that £3 — £AIB.ablC.cd yanishes identically
(i.e. field equations are at most linear into the second derivatives)

No vector Galileons (with gauge invariance)

C.D., A. E. Gumrukcuoglu, S. Mukohyama and Y.Wang,
[arXiv:1312.6690 [hep-th]].



For (odd)p>17? C.D., S. Mukohyama, V. Sivanesan,
1601.01287 [hep-th]

@ Decompose (£") ABicidi...Bm—1¢m—1dm—1

into components belonging to irreducible representations of
the symmetric group S, 2m-1)= S,

, 1.1. Antisymmetry w  Condition 3. implies that only Young
Using | 1.2, Invariance unde  Tableaux with 1 or 2 column will yield a
well as A and any B, non zero component of £

2.1. Symmetry of each»— €S (C;, d)
2.2. Invariance~—_omiterchange (c;, d) and (c; d)

3. Symmetrizing over any 3 indices yields zero

anti

This amounts to act with the Young symmetrizers 5, / ¥y, appearing in the
decomposition of the group algebra of S, into irreducibles given by

RISk] = @ @ R[Sn] yii:nl/ anti

AFEn AL eSTy

Partitions of n . -
Standard Young Young symmetrizers ¥,/ =7y, x €,

tableaux



1.1. Antisymmetry within each group of p indices A and B,
1.2. Invariance under interchange of groups of indices B; and B;, as
well as A and any B,

2.1. Symmetry of each pair of indices (c; d)
2.2. Invariance under interchange (c; d) and (c;, d)

3. Symmetrizing over any 3 indices yields zero

Conditions 1.1,1.2., 2.1. and 2.2. then imply th £€™
belongs to the « Plethysm »

Sym'" (/\p)@)Sym(m_l) (Sym?)

@ Next step: find out the content of this Plethysm.

in the representations of S, indexed by up-to-two
columns Young diagrams [T7]

.



By the use of Schur functions , [the multiplicity 72(mp+2(m—1)—a,a)

(which allows to count the max number of possibly non trivial theories

fixing 1 and allowing a to vary) i }
a

of the representations indexed by mp+2(m—1)—a - ...... ......

nside  Sym”™ (AP)@Sym ™™D (Sym?)

Is given by . . -
m Nag—m+1,m — '\"(a m),m ?f P is Even
(mp+2(m—1)—a,a) — *dzqtzrwt rdistinct : e

a—m-+1,m :\ a—1m),m ?'f p s (')dd

Where NT?S is the number of partitions of r into s number within
(0,...,p) with repetition allowed.
N;f?_ff‘f'”‘-‘-t is the same with repetitions not allowed.



Next step: try to construct explicit theories

E.g.form=4,p=3 = mp+2(m-1)=18

We look at Young diagrams with 18 boxes

e.g. has multiplicity 1 inside
Sym*(A®)®@Sym? (Sym?)

No clear method to constuct the corresponding theory



Start with the filling

f1lo1

f2192| Atensor with these symmetries can be constructed
fa| g3 from the metric corresponding to

aq | bs

Efi fofsaiasasbybacy 919293 bscocadidads
s | Co |

s Then act on it with projectors corresponding to the
by | d1 symmetries of

E}Q dg

C1 (1].3 .Syrﬂ4 (/\3 ) ®Sy1113 (Syrﬂg )

This gives a non trivial

8 8{1 31b[3], f1g1|c[3], f292|d[3],f393



This can be integrated to yield the following action density for a
3 form (in D=9 dimensions)

9, 4102 6162--* 3,9,
/”’ € fl{lﬁlgbl,a-g 4‘"1{}263(141{)4 O{I.L-UB ()b"-'“;—l

To be contrasted with the p-form action constructed in

C.D., S.Deser, G.Esposito-Farese,
arXiv 1007.5278 [gr-qc] (PRD)

9 {11(12 5159-“ AN
/d € *'_1{110,2{13,(14 flblbgbg._r’_u (){I.‘-“B Ob'*-"‘-"rl



This can be generalized .....

...... classification on the way



l. 5 From k-essence to generalized Galileons

C.D. Xian Gao, Daniele Steer, George Zahariade
arXiv:1103.3260 [hep-th] (PRD)

What is the most general scalar theory which has
(not necessarily exactly) second order field
equations in flat space ?

Specifically we looked for the most general scalar theory such
that (in flat space-time)

i/ Its Lagrangian contains derivatives of order 2 or less of
the scalar field =

ii/ Its Lagrangian is polynomial in second derivatives of =
(can be relaxed: Padilla, Sivanesan; Sivanesan)

iii/ The field equations are of order 2 or lower in
derivatives

(NB: those hypothesis cover k-essence, simple Galileons ,... )



Answer: the most general such theory is given by a linear
combination of the Lagrangians £,{f}

Free function of 7 and X

: Gal,:
defined by Ln{ f } = @ X L N_,iLg,-

K- U V1...Vp,
= f(m, X) x (X‘A(sz) n My 'W“”V”)



Our most general flat space-time theories can easily be
« covariantized » using the previously described technology

The covariantized theory is given by a linear combination of the Lagrangians

/J],UZ ‘UnV1V2:*Un
n p{f} 73 R(P)S(QE”—QP)

( q—1
S(qEn—')p] = | I (TR,
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I
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Xo Xo Xo
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\ - f(ﬂ-a X) X X-A(Qn)
Specifically thLe cjovariantized theory is given by
1\” n!
cov I — -
‘C {f} ZO Cn pﬁn p{f} with C”-P _ ( 8) (n L 2p)'p|
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l. 6 Some previous and recent results and other approaches

* Flat space-time Galileons and flat-space time generalized Galileons (in the
shift symmetric case) have been obtained previously by Fairlie, Govaerts and
Morozov (1992) by the « Euler hierarchy » construction :

Start from a set of arbitrary functions F) = F (77”)
Then define the recursion relation |1/, = —EF 11 Wy

”~

E being the Euler-Lagrange operator (and Wy=1)

é=[#-0. () +0.0. (%)

Hence W/, is the field equation of the Lagrangian £, = F,IV,_,
(« Euler hierarchy »)

=) The hierarchy stops after at most D steps

{+1

1
|:> ChOOS|ng Fk = M 71'“ /2, one has £{‘ — in,Tf(_l _ E( al,3
(see e.g. the review by Curtright and Falrlle (2012))



» Horndeski (1972) obtained the most general scalar tensor theory in 4D
which has second order field equation for the scalar and the metric

Using our notations it is given by

4
J1 2 3V V23 . _ I _ _
H ‘ R L0 povy vo T sy —R1 X T 01 T pove T g
L -/4(3) Ry / 3 / / /

12V _ —
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-3 (QF‘W -+ 1YH-3) X + Ko,

P1H2p3VIVRVS (. - T
_"4(33) (h'HR/-ll/-leWzTrﬂ:& Ty — 4K3 X T 0 Tpgws Mg “U:g)

and is parametrized by four free functions of Xand = : K1, K3, K8, Ko
and one constraint F'y = k. — kg3 — 2X K3 x

IZ> First it is clear that the flat space-time restriction of Horndeski theory
must be included in our generalized flat-space time Galileon

IZ> Conversely, our covariantized generalized Galileons must
be included into Horndeski theory
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. J1 L2 3 Vv . o o
EH = —./4(3) (hlﬁ;n;tgulygﬂ_p;w,; — ghl._\ 7‘_,(11r/| W;tgu-g“,u;_gt/:g
M1 2 (31213 g Ak T
_/4(3) (h-BR;t”um vo s Mg — ‘1"13.,\' T g1 T povs Mg ﬂ-rx;_g)
H1H2V1V2 / e
_./4(2) (FR;HHQVIM_) - 4F..\'7T,u]1/1 “;lgu_))

) JU1 fh2 V2
_QhSA(g) T T T pows

-3 (QF;T gils Xh'.g) X + Ko, FX = Kliqx — Ry — 2X/€‘3X

ha
In fact, one can show that the two sets of theories (Horndeski and
covariantized generalized Galileons) are identical in 4D (even though
they start from different hypothesis)

3

L= L{fa}

~

X
Xfo(?T,X) = —I{g(?T,X) — E /dX (2/68 — 4,'{3570“,

1
Xfl(ﬂ',X) = X(4I€3,7r + /{’8) — §/dX (21{8 — 4:'{3,7r) —|—6FJr

X fo(m, X) = 4(F—|—X/£3)=X,

1
ng(?ﬂX) = gﬁlsX‘

C.D. Xian Gao, Daniele Steer, George Zahariade T.Kobayashi, M.Yamaguchi, J. Yokoyama
arXiv:1103.3260 [hep-th] (PRD) arXiv 1105.5723 [hep-th]



Il. D.o.f. counting in Galileons
and generalized Galileons theories

C.D., G. Esposito-Farése, D. Steer,
arXiv:1506.01974 [gr-qc], PRD

Horndeski-like theories: Cauchy problem ? Numerical
studies (e.g. adressing the Vainshtein mechanism in

grav. Collapse) ?

No Hamiltonian analysis so far !

Horndeski-like theories: Scalar tensor theories with
second order field equations + diffeo invariance

A priori 2 (graviton) + 1 (scalar) d.o.f.

Claimed to be true in an even larger set of theories
(« Beyond Horndeski » theories) !

J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi,
(GLPV) arXiv:1404.6495, arXiv:1408.1952



Our works aims at

Provides a first step toward a proper Hamiltonian treatment of
Horndeski-like and beyond Horndeski theories

Rexamine the GLPV claim
(arguments of GLPV being not convincing to us)



Our works aims at

Provides a first step toward a proper Hamiltonian treatment of
Horndeski-like and beyond Horndeski theories

Rexamine the GLPV claim
(arguments of GLPV being not convincing to us)

Along two directions

II.1. Show how in a (large) set of beyond Horndeski theories
(matching the one considered by GLPV), the order in time
derivatives of the field equations can indeed be reduced.

Il.2. Analyze in details via Hamiltonianian formalism a
simple (the simplest ?) non trivial beyond Horndeski theory



Consider one single Galileon « counterterm »: £(n—1—1.p) — _,4(2”)?17272(1))5((])

_ 1=p
)
7?’('P) = (W/\WA)] H thl-i—l H4it+1 fLdi H4i4+2 >
With s
S(q) = H Tpon—1-2i pan—2i

1=0



Consider one single Galileon « counterterm »: ﬁ(

ntlp) = —Aen) TR S

_ i=p
)
7z(p) = (W,\ ﬁ{\)] H Rﬂ4i—1 [4i+1 H4i [h4i4+2 0
With - s
S(q) = H Tpon—1-2: p2n—2:

1=0

The field equations have the following structure (as seen before)

Scalar field eom 8 D) 88 T
D 000 g, (~ V Riemann)

Energy Y :
momentum T D> 90 g (~ Riemann)

tensor :) 888 -



Concentrate on the

Energy
momentum
tensor

T

D
D

d0 g,, (~ Riemann)
000 T




Concentrate on the

E .
mr;?;geﬁtum T D d0 g (~ Riemann)
tensor B aaa -

e 1 5y Iu
™ = [(29# ‘|‘P }. )A(?n - (2n+2 In+1 2n+2]] Ty T s R(p) S(q)

A{Qn Ap+4) 1 [“U}%ER'{P)S@_”] Hap+3
5 A{Qn spi3aped) 7 T T Rip)Sta-n)]
(v 2
+2p A(gn Ap+1,4p+2) [T1 s (TX) R (p-1)S(q) Hap pap—1

v _ 2
pA(Qn 4p—1 }R )p4p+1 Hap Hap+2 W#l “HE(“A)R(P—U‘S@]‘-

¥ _ HiH2 M1 ¢ Hypq.- “‘?ﬂ
(2n,i) A{Qn} '
Where aB

A = AHHe i O i B jt1---Hon
(2n,i,7 (2n)



Concentrate on the

Ener : A :
momge);,tum T D 90 g, (~ Riemann)
tensor :) aaa P

0! 110
T ana w, 1"

1/ Do not contain any T

=~ 2/ Do contain the same combination of g;},y

_ 3/Donotcontainany ;7



Concentrate on the

Ener N ¢ :
ey um T D 00 g, (~ Riemann)
tensor B aaa P

0 110
T ana 1"

1/ Do not contain any T

=~ 2/ Do contain the same combination of g;},y

_ 3/Donotcontainany 0,7

WOWMTMO — W“WMTOO

Contains only 7[ as second time derivatives



Hence, the combination of the field equations
0 1140 0 ; 00 00
T T, (T‘“ — G* ) — i, (T — G )

Can be used on shell to extract 7°% as function of time derivatives

of order < 2 of the scalar field and the metric




Hence, the combination of the field equations
0 1140 0 ; 00 00
T T, (T‘“ — G* ) — i, (T — G )

Can be used on shell to extract 7°% as function of time derivatives

of order < 2 of the scalar field and the metric

Take then a time derivative of the obtained expression
and insert back into

Ener , A ¢ :
e m 1" D 90 gu (~ Riemann)
tensor B 888 p

Reduces the Einstein equations to a system
od PDE of second order in time



Similarly, another linear combination of the time derivatives of the
field equations 77, (T‘u“o — G‘u“o) and (TOO — GOO)
can be used to reduce the order of the time derivatives of the scalar
field equation by extracting ¢ . ; as function of lower time

derivatives



NB: in
, 1110

1/ Do not contain any T

— 2/ Do contain the same combination of g;},y

| 3/Donotcontainany ;7



NB: in
. 110
TOO and ﬂ-p,T’u

1/ Do not contain any ™

— 2/ Do contain the same combination of g;},y

| 3/Donotcontainany ;7

The crucial 1/ and 2/ are just consequences of

Scalar fieldeom £ D 00 T
D 000 gu (~ V Riemann)

Energy [ ARA ~ . )
momentum | O 00 g, (~ Riemann)
tensor D) 888 T

1
And V,TH" = 5%”5 (from invariance under diffeo)



The found « reduction » of the order in time
derivatives of the field equations

can be generalized to an
arbitrary theory of the

type

—f (W. )() X ﬁ(-}H—l,p] (: _f (W' ‘Y) A(Q'TE-]TlTQR(E}) S(q})

Each theory of this type
should propagate 2 (graviton) + 1 (scalar) d.o.f.



II.2. Hamiltonian analysis of the quartic Galileon

Consider S = /rl’i.i‘ -9 [R T £(4,0)]

£(4_0) — (Dﬁ)z (ﬂ,u- WH) — 2 (Dﬂ) (ﬁ,u- T W:x)
With - — (T o) (mp, ) + 2 (w7t 7y, )

_ _MM3UEVL f2fafle o _
~ = € € v Npe g s e



In the ADM parametrization, the action S becomes (in an arbitrary gauge)

S::/EM%AQEﬁgH”—K?+mR)

3 \/_ ik £ - 2 ¢ ‘ 1+
—+ /df(f N Ej mk[ — T -S'igSj.m — 2TFE'TFE-SDQSjm + ZWi?rg.stsuj + 4’?‘T?T,{»’_Sm$‘jm]

+ /dfda { ik bmn N7 [ TTeSimSjn — 4T TEHU?HLJH]

[ - :\‘: ...\rp P e
+/ﬁﬁﬂﬁ@—%ffmmwmmw

Where S = V,V, T



In the ADM parametrization, the action S becomes (in an arbitrary gauge)

S = / dtd*z N/7(K; K9 — K* + ®R)
1 /dfﬂhj} \<_ ijk Emk [ — ?‘TQ-SiE-Sj-m T QTFI'_TFE.S'DQSjm -+ Qﬁiﬁff‘ﬂmﬂﬂj + 4ﬁﬁf£iﬂ£jm]

+ /a’fﬂ“j’ { igh bmn No [ TT0SimSjn ilﬁ.iﬂ'gﬂgmé'jn]

‘ - .7\': ;\'rp
-+ /df(ﬁ3;11 .7\\/"‘_ (1 — %) ljk Lmn Hjnlqknﬂzﬂf

Where S = V,V, T

» Generates third order time derivatives
» Absent in the unitary gauge (used by GLPV)



In the ADM parametrization, the action S becomes (in an arbitrary gauge)
S = / dtd*s N /(K K7 — K* + O R)
1 /dde’ { Gketm [ — 72808 jm + 28008 jm|+ 27iTeSomS0j + 4TS0S jm]

+ /dfcf3 { ik bmn N7 [Eﬁrgam in 4?T.iﬂ'g,51:?n5j.n_]

‘ - }; ;'\'rp
-+ /df(‘fg;l‘ .7\\/"‘_ (1 — %) ljk Lmn Hjnlqknﬂzﬂf

Where S = V,V, T

» Generates third order time derivatives
« Absent in the unitary gauge (used by GLPV)

but S depends on \ Nand non linearly on second derivatives of 7T



More convenient to work with

S = S+ /rﬁ.r A (8, — V. V,7)

31 canonical (Lagrangian) fields [V . N*, Vij - /\,L!.;-'.f » S
(Where P a— ;N"T\/—i"}fiﬁ”“’ )

« 23 primary constraints
« 23 secondary constraint
« At least 8 of them are first class

Atmost 62 — (2 x 8) — (46 — 8) = 8 Hamiltonian d.o.f.

Further analysis shows that there exist a tertiary (and likely also a
quaternary) second class constraint, hence less than 8 d.o.f.



Conclusions (of part Il)

Have shown how the e.o.m. of beyond Horndeski theory
can indeed be reduced in agreement with GLPV claim (but
correcting a flaw in GLPV proof).

Provide a first step toward a proper Hamiltonian treatment
of these theories (also supporting GLPV claim).

Various possible follow up: classification of these
theories, Cauchy problem etc...



Thank you for your attention



