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I. Scalar Galileon

Galileon

Originally (Nicolis, Rattazzi, Trincherini 2009) defined in flat space-time as 
the most general scalar theory which has (strictly) second order
fields equations

I. 1 Flat space-time Galileon in 4 D

In 4D, there is only 4 non trivial such theories

( with                                              )



Simple rewriting of those Lagrangians with epsilon tensors
(up to integrations by part): 
(C.D., S.Deser, G.Esposito-Farese, 2009)

This leads to (exactly) second order field equations 



Indeed, consider e.g. 

Varying this Lagrangian with respect to π yields (after integrating by part) 

Second order 
derivative

Third order 
derivative…

… killed by the 
contraction with 
epsilon tensor

Similarly, one also have in the field equations 

Yields third and fourth 
order derivative… 
killed by the epsilon tensorHence the field equations are proportional to 

Which does only contain second derivatives

NB: the field equations are linear in time derivatives (Cauchy problem ?)



I. 2 Flat space-time Galileon in arbitrary Dimension

In D dimensions, D non trivial Galileons can be defined as 

Only the Lagrangians with                are non vanishing. 

One has 

All free indices are contracted with those of 

Using the tensors

Or to alleviate notations

is antisymmetric (separately) 
in odd and even indices



Up to total derivatives, the following Lagrangians are equivalent

One has the exact relation



I. 3 Curved space-time Galileon

A naive covariantization leads to the loss of the distinctive properties of the Galileon 

Indeed, consider now in curved space-time (with πµ = ∇µ π and πµ ν = ∇µ ∇ν π) 

Indeed the (naively covariantized)              has the field equations

Third derivatives generate 
now Riemann tensors … 
and fourth derivatives, 
derivatives of the Riemann

Variation yields in particular

Kinetic mixing



Similarly, varying w.r.t. the metric

Yields third order derivatives of the scalar π in the energy momentum tensor

Do not vanish in flat space-time !



This can be cured by a non minimal coupling to the metric

Adding to 

The Lagrangian

Yields second order field equations for the scalar and the metric 
(but loss of the « Galilean » symmetry)

e.g. one has now the energy momentum tensor 



This can be generalized to arbitrary Galileons 
(arbitrary number of fields and dimensions)

Introducing 

With 

The action 

with 

Yields second order field equations. 

Heuristically, one needs to replace sucessively 
pairs of twice differentiated π by Riemanns



Note that the extra term 

Does not generate unwanted derivatives of the curvature thanks to Bianchi identity 

Indeed one has 

Similarly to  

Yields an easy generalization to p-forms



I. 4 Generalization to p-forms

E.g. consider 

With            a p-form of field strength

In the field equations, Bianchi identities annihilate any 

E.o.m. are (purely) second order

E.g. for a 2-form

Note that one must go to 7 dimensions (in general one has                      )
and that this construction does not work for odd p as we show now

C.D., S.Deser, G.Esposito-Farese, 
arXiv 1007.5278 [gr-qc] (PRD)



I.4.2. The case of (odd p)-forms

For odd p the previous construction does not work

Indeed, the action 

With            an (odd p)-form of field strength

Yields vanishing e.o.m. (the action is a total derivative)

Integration by part

Renumbering of an 
even (for odd p) 
number of indices



Is there an (odd p) Galileon ?

C. D. , A. E. Gumrukcuoglu, S. Mukohyama and 
Y.Wang, [arXiv:1312.6690 [hep-th]], JHEP 2014.

C.D., S. Mukohyama, V. Sivanesan
[arXiv:1601.01287[hep-th]], PRD 2016.

C.D., S. Mukohyama, V. Sivanesan
In preparation



We start from the field equations

with

For a p-form with components                

with p antisymmetric indices    

We ask these field equations

(i) To derive from an action 

(ii) To depend only on second derivatives

(iii) to be gauge invariant  



Hypothesis (i) (that field equations derive from an action S) leads to

Which upon using

Leads to the « integrability conditions » 

Where

Vanish as a consequence of 
Hypothesis (ii) (that field

equations only depend on 
second order derivatives) 

Vanish as a consequence of 
Hypothesis (ii) (that field

equations only depend on 
second order derivatives) 



Hypothesis (iii) (gauge invariance of the field equations)

Lead to 

These symmetries extend in particular to 
derivatives of the field equations



Defining then

Hypothesis (i) (ii) and (iii) lead to the following symmetries for the tensor

1.1. Antisymmetry within each group of p indices A and Bi

1.2. Invariance under interchange of groups of indices Bi and Bj, 
as well as A and any Bi

2.1. Symmetry of each pair of indices (ci, di)
2.2. Invariance under interchange (ci, di) and (cj, dj)

3. Symmetrizing over any 3 indices yields zero



NB:

Is a  (pm + 2(m-1))  tensor

C. D. , A. E. Gumrukcuoglu, S. Mukohyama and Y.Wang, 
[arXiv:1312.6690 [hep-th]].

For p=1, 

Conditions 1.1, 1.2, 2.1, 2.2 and 3 

are enough to show that vanishes identically
(i.e. field equations are at most linear into the second derivatives)

No vector Galileons (with gauge invariance)



For (odd) p > 1 ? C.D., S. Mukohyama, V. Sivanesan,
1601.01287 [hep-th]

Decompose

into components belonging to irreducible representations of 
the symmetric group Spm+2(m-1) = Sn

Using
1.1. Antisymmetry within each group of p indices A and Bi

1.2. Invariance under interchange of groups of indices Bi and Bj, as 
well as A and any Bi

2.1. Symmetry of each pair of indices (ci, di)
2.2. Invariance under interchange (ci, di) and (cj, dj)

3. Symmetrizing over any 3 indices yields zero

This amounts to act with the Young symmetrizers /           appearing in the 
decomposition of  the group algebra of Sn into irreducibles given by 

Partitions of n 
Standard Young 

tableaux
Young symmetrizers

Condition 3. implies that only Young 
Tableaux with 1 or 2 column will yield a 

non zero component of 



1.1. Antisymmetry within each group of p indices A and Bi

1.2. Invariance under interchange of groups of indices Bi and Bj, as 
well as A and any Bi

2.1. Symmetry of each pair of indices (ci, di)
2.2. Invariance under interchange (ci, di) and (cj, dj)

3. Symmetrizing over any 3 indices yields zero

Conditions 1.1,1.2., 2.1. and 2.2. then imply that
belongs to the « Plethysm »

Next step: find out the content of this Plethysm.
in the representations of Sn indexed by up-to-two
columns Young diagrams



By the use of Schur functions ,  the multiplicity

(which allows to count the max number of possibly non trivial theories

fixing       and allowing to vary)                                                

of the representations indexed by  

Inside

Is given by 

Where is the number of partitions of r into s number within
(0,…,p) with repetition allowed.

is the same with repetitions not allowed.



Next step: try to construct explicit theories

E.g. for m=4, p=3   ⇒ mp + 2(m-1) = 18 

We look at Young diagrams with 18 boxes 

e.g. has multiplicity 1 inside

No clear method to constuct the corresponding theory



Start with the  filling

A tensor with these symmetries can be constructed
from the metric corresponding to 

Then act on it with projectors corresponding to the 
symmetries of 

This gives a non trivial 



This can be integrated to yield the following action density for  a 
3 form (in D= 9 dimensions)

To be contrasted with the p-form action constructed in 

C.D., S.Deser, G.Esposito-Farese, 
arXiv 1007.5278 [gr-qc] (PRD)



This can be generalized …..

…… classification on the way



I. 5 From k-essence to generalized Galileons

C.D. Xian Gao, Daniele Steer, George Zahariade
arXiv:1103.3260 [hep-th] (PRD)

What is the most general scalar theory which has 
(not necessarily exactly) second order field
equations in flat space ?

Specifically we looked for the most general scalar theory such 
that (in flat space-time)

i/ Its Lagrangian contains derivatives of order 2 or less of 
the scalar field π

ii/ Its Lagrangian is polynomial in second derivatives of π

(can be relaxed: Padilla, Sivanesan; Sivanesan)

iii/ The field equations are of order 2 or lower in 
derivatives 

(NB: those hypothesis cover k-essence, simple Galileons ,… )



Answer: the most general such theory is given by a linear 
combination of the Lagrangians

defined by 

where 

Free function of π and X



Our most general flat space-time theories can easily be 
« covariantized » using the previously described technology

The covariantized theory is given by a linear combination of the Lagrangians 

with 

Specifically the covariantized theory is given by 

with 



I. 6 Some previous and recent results and other approaches

• Flat space-time Galileons and flat-space time generalized Galileons (in the   
shift symmetric case) have been obtained previously by Fairlie, Govaerts and 
Morozov (1992) by the « Euler hierarchy » construction : 

Start from a set of arbitrary functions 

Then define the recursion relation 

being the Euler-Lagrange operator (and W0=1) 

Hence           is the field equation of the Lagrangian  

(« Euler hierarchy »)

The hierarchy stops after at most D steps

Choosing Fk = πµ πµ /2, one has

(see e.g. the review by Curtright and Fairlie (2012))



• Horndeski (1972) obtained the most general scalar tensor theory in 4D
which has second order field equation for the scalar and the metric

Using our notations it is given by 

and is parametrized by four free functions of X and π :
and one constraint   

First it is clear that the flat space-time restriction of Horndeski theory 
must be included in our generalized flat-space time Galileon 

Conversely, our covariantized generalized Galileons must 
be included into Horndeski theory



In fact, one can show that the two sets of theories (Horndeski and 
covariantized generalized Galileons) are identical in 4D (even though 
they start from different hypothesis)

C.D. Xian Gao, Daniele Steer, George Zahariade T.Kobayashi, M.Yamaguchi, J. Yokoyama                  
arXiv:1103.3260 [hep-th] (PRD)                                                                    arXiv 1105.5723 [hep-th]



II. D.o.f. counting in Galileons
and generalized Galileons theories

Horndeski-like theories:   Cauchy problem ? Numerical 
studies (e.g. adressing the Vainshtein mechanism in 
grav. Collapse) ? 

A priori 2 (graviton) + 1 (scalar) d.o.f. 

No Hamiltonian analysis so far ! 

Claimed to be true in an even larger set of theories 
(« Beyond Horndeski » theories) !  

Horndeski-like theories:   Scalar tensor theories with 
second order field equations + diffeo invariance 

J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, 
(GLPV) arXiv:1404.6495, arXiv:1408.1952 

C.D., G. Esposito-Farèse, D. Steer, 
arXiv:1506.01974 [gr-qc], PRD



Our works aims at  

Provides a first step toward a proper Hamiltonian treatment of 
Horndeski-like and beyond Horndeski theories

Rexamine the GLPV claim 
(arguments of GLPV being not convincing to us)



Our works aims at  

Provides a first step toward a proper Hamiltonian treatment of 
Horndeski-like and beyond Horndeski theories

Along two directions

II.1. Show how in a (large) set of beyond Horndeski theories
(matching the one considered by GLPV), the order in time 
derivatives of the field equations can indeed be reduced.

II.2. Analyze in details via Hamiltonianian formalism a 
simple (the simplest ?) non trivial beyond Horndeski theory

Rexamine the GLPV claim 
(arguments of GLPV being not convincing to us)



Consider one single Galileon « counterterm »: 

With 



Consider one single Galileon « counterterm »: 

With 

The field equations have the following structure (as seen before)

Energy 
momentum 
tensor

Scalar field eom



Concentrate on the 

Energy 
momentum 
tensor



Concentrate on the 

Energy 
momentum 
tensor

Where 



Concentrate on the 

Energy 
momentum 
tensor

and

1/ Do not contain any 

3/ Do not contain any 

2/ Do contain the same combination of 



Concentrate on the 

Energy 
momentum 
tensor

and

1/ Do not contain any 

3/ Do not contain any 

2/ Do contain the same combination of 

Contains only        as second time derivatives 



Hence, the combination of the field equations

Can be used on shell to extract      as function of time derivatives 

of order ≤ 2 of the scalar field and the metric   



Hence, the combination of the field equations

Can be used on shell to extract      as function of time derivatives 

of order ≤ 2 of the scalar field and the metric   

Energy 
momentum 
tensor

Take then a time derivative of the obtained expression 
and insert back into

Reduces the Einstein equations to a system 
od PDE of  second order in time



Similarly, another linear combination of the time derivatives of the 

field equations                                         and

can be used to reduce the order of the time derivatives of the scalar 

field equation  by extracting           as function of lower time 

derivatives  



and

1/ Do not contain any 

3/ Do not contain any 

2/ Do contain the same combination of 

NB: in 



and

1/ Do not contain any 

3/ Do not contain any 

2/ Do contain the same combination of 

The crucial 1/ and 2/ are just consequences of 

Energy 
momentum 
tensor

Scalar field eom

And (from invariance under diffeo)

NB: in 



The found « reduction » of the order in time 
derivatives of the field equations  

can be generalized to an 
arbitrary theory of the 
type

Each theory of this type 
should propagate 2 (graviton) + 1 (scalar)  d.o.f.



II.2. Hamiltonian analysis of the quartic Galileon

With

Consider



Where 

In the ADM parametrization, the action S becomes (in an arbitrary gauge) 



Where 

In the ADM parametrization, the action S becomes (in an arbitrary gauge) 

• Generates third order time derivatives
• Absent in the unitary gauge (used by GLPV)



In the ADM parametrization, the action S becomes (in an arbitrary gauge) 

Where 

• Generates third order time derivatives
• Absent in the unitary gauge (used by GLPV)

but        depends on      ,       and non linearly on second derivatives of 



More convenient to work with 

31 canonical (Lagrangian) fields

(where                                    )  

• 23 primary constraints 
• 23 secondary constraint
• At least 8 of them are first class

At most                                                                   Hamiltonian d.o.f.

Further analysis shows that there exist a tertiary (and likely also a 
quaternary) second class constraint, hence less than 8 d.o.f. 



Conclusions (of part II)

Have shown how the e.o.m. of beyond Horndeski theory 
can indeed be reduced in agreement with GLPV claim (but 
correcting a flaw in GLPV proof).

Provide a first step toward a proper Hamiltonian treatment 
of these theories (also supporting GLPV claim).

Various possible follow up: classification of these 
theories, Cauchy problem etc…



Thank you for your attention 


