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The first modification of GR
R,uu — %Rg,uu — SWGTMV (1915)

1
R,uy — ing/ + Aguy — SWGTMV (1917)

“The history of science provides many instances
of discoveries which have been made for reasons
which are no longer considered satisfactory. It
may be that the discovery of the cosmological
constant is such a case.”

George E. Lemaitre, article in the book
“Albert Einstein: Philosopher—Scientist”, 1949



Seventy years after.
1997: The shape of the univ




de Sitter Quantum Field Theory

W. Thirring. Quantum field theory in de Sitter

space. Acta Physica Austriaca, suppl. IV, 1967,
2609.

Naively it was believed to be a simple example of
QFT on a curved spacetime while it is plagued by
a very difficult infrared problem.

The physical importance of dS QFT increased
from the eighties because of the inflationary
paradigm.

Today : darkage ...->dS->FLRW ->dS -> ...



Example: particle decays

* There are no stable particle of mass
 (d—1)°
~  4RZ
* Perturbation theory says that such particle

can decay into two or more particl
arbitrary mass
o * (




What if such difficulties were artifacts
of perturbation theory?

What about non perturbative physics on dS?

There several approaches to nonperturbative
QFT on flat space

One is the study of exactly solvable two-
dimensional models of QFT

So: why not try to explore solvable (?) two-
dimensional models in de Sitter?



Two interesting models:
1) The Thirring Model

e Classical field equations

W“aulb(ﬁ) — —gJ“(f)%lb(ﬁ)
JH(x) = (x)y" (o)
0, J"(x) =0

e At the quantum level the field equations need
a renormalization (!)



2) Schwinger Model
(Two-dim massless QED)

* Field equations

Y Op(z) = —ery" Ap(z) ()
0" Fyv(z) = —ed,(z) + Au(x)

 Point-splitting renormalization €* <0

1

Ay()p(a) = S lim [ A, (2 + () + A, (2)(x — )]

Ju() = lim [(z + yab(e) — (Wle + pb(@))] (1 - ie e 4, ()



Two apparently elementary questions

 What is going to replace the free Dirac
equation

(i7"9, — m)ib(z) = 0

on the de Sitter manifold?

* What is the meaning of de Sitter covariance
for spinor fields ?



The Fock-lvanenko construction (1929)

e Curved space gamma matrices ' = @nya
 Spin connection Wigh = €4 V jChi.

1

* Fock-lvanenko coefficients 1'; = —Eabwjab
2

* Curved space Dirac equation:

ia? (9; + )¢ —meo =0



A reminder (see Bjorken and Drell)

 Meaning of the Lorentz covariance of the Dirac’s equation:

r' = Az {\MVZUMV+ACUMV
(170 —m)ib(z) = 0 (iv" O —m)yY'(z") = 0
W (') = ' (Ax) = S(A)(z) = S(A)p(A 1))

1 i

S=1+ Z[VW%]AWW =1- gJWAw’“/
SL(2,C) is the double cover of the Lorentz group

SL(2,C) > g— A(g) € SOy(1,3)

V' (2') =¥ (A(g)z) = gy(z) = gv(A™ " (g9)z")



De Sitter universe
dS; = {zx eR’: (X")" — (X')* — (X?)* = -1}

Relativity group: SOq(1,2)
One parameter subgroups

cosh( 0 sinh(
0 1 0
sinh( 0 cosh(
coshy sinhy O
sinhy coshy 0

0 0 1

1 0 0
0O cosf —sind
0 sinf cosé




Conformal cylindrical coordinates
dS; = {zx eR’: (X")" — (X')* — (X?)* = -1}

XY =rtant
X1 =rsin6/cost
X? =rcosf/cost

r=R=1

1
2 2 2
ds® = ——(dt* — db?)

0 0

eq =cost, e, =0, e} =0, e} =cost.

t



Conformal coordinates
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1
cos? t

(dt* — db*?),

ds?



Minkowskian cylinder
' =tc R, x'=60¢c]0,2m)

e Metric ds® = dt* — db?

. Clifford algebra %" + ~4%7% = 201,

0 1 0 1
0 __ 1 _
=) = (5)



Dirac-Fock-lvanenko construction

ef)zcost, 6320, 68:0, egzcost.
a

» Curved space gamma matrices o’ = e’
ol = (cost)v’, a’ = (cost)~l.
1)

[y =0, Tg=3X"who =tant ( S

ia? (0; +T;)p — meo =0

= O

Y0y + % tant~y b — mo = 0



Moving to de Sitter: conformal

transformation
* Consider a spinor 1) = (cos t)_%¢ on the
lind .
cylinder i Ot = 0

* The spinor ¢ solves the following equation
?
1Y 0q @ + 5 tanty ¢ =0

* This is the massless Dirac equation on the de
Sitter manifold



Spin bundles on the cylinder

There are two inequivalent spin bundles.
Two boundary conditions:
1) Periodic (Ramond)

$(t,0) = (¢, 0+ 27)
2) Anti-periodic (Neveu-Schwarz)

b(t,0) = —i(t, 0 + 27)

In both cases observables are fully well defined
on the cylinder (i.e. they are periodic)



Quantum Spinor field (Ramond)

 Two sets of ladder anticommuting operators acting in a Fock space.

{a;(p), ar(q)} = k0p.q, 1b;(P), br(q)} = 0;5k0pq - G k=12

u=t+0, v=t—2~0

V() = UE ) = 5= (@ (0) +h (0 Za1 e+ by (p)e )
¢2<>=¢§<v>=2%<a;<>+bz Z e + ba(p)e )




Quantum Spinor field (Neveu-Schwarz)

* Same two sets of ladder anticommuting operators acting in a Fock space:

{a;(p), ar(@)} =0 k0p.q » {b;j(P), bi(q)} =0 k0pq . Jk=12

wl CIZ 2 Z zpu+7lu/2 + by (p)e—ipu—iu/2>7 U — CIZO 4 5131
V &7 —
p>0

ha(z) = —= ) (a3 (p)fi””*"’“/ 24 ba(p)e P TR), v =2 —a!
\/%pZO
0 . 0 eiu/Z i i
wi(a, y) = (@ D)) = G- D = et
piv/2P20 ;

?,Ug(ﬂi, y) = (Q, ¢2(33)¢>2k(y)9) — e ZGZPU - 47 SIn U/Q
p=>0



Conformal transformation of the spinors

Given a massless Dirac (quantum) spinor field on the
cylinder (either Ramond or Neveu-Schwarz)

170, = 0
1
b = (cost)21)
is a (quantum) massless Dirac spinor field on the de Sitter

manifold: i
1Y 0y + 5 tant~y ¢ = 0

What about the de Sitter symmetry?

There is a priori no reason to expect it. The spinors on the
cylinder have less symmetries (space rotations + time
translations)!



Two apparently elementary questions

 What is going to replace the free Dirac
equation

(i7"9, — m)ib(z) = 0

on the de Sitter manifold?

* What is the meaning of de Sitter covariance
for spinor fields ?



Another equation by Dirac
* Clifford algebra in the ambient spacetime
ds? = (dX9)° — (aX)” — (dXx?)’
YyP + 4P y* = 29*P = 2diag(1, -1, —1)

o (0 1 (0 1 s (i 0
=) =) 7= 5)
X =7"X, = ( Xg?f;(l on')_(QXl )
* Generators of the de Sitter (Lorentz) group
1

Lag — Ma[g -+ Sag — —i(Xa(95 — Xgaa) — Zha,vg]



The de Sitter (Casimir)-Dirac equation

Q= —L%Lop =  2yays M +i 2+ :
* Eigenvalues of the Casimir operator
1
QY = (V2 + Z) (08

* First order equation (Dirac 1935 4-dim)

1 .
(Q’Ya’YﬁMaﬁ 1+ V) Y =0



Solving the Dirac-Dirac equation

N 1
(iD+i+v)y =0 HL:TWMMM

The crucial identity is

(D+1)D =




The asymptotic cone

{8 —-¢2—...—¢2 =0}




de Sitter plane waves
X &= Xoo — X181 — ... — Xg4&yg
AeC, &=0 £

UA(X,€6) = (X -ON

Plane waves are homogeneous functions

Qp(x,p) — oW'T — ezm(ﬁx)

T —



de Sitter plane waves
(X-O=2MA+d—-1)(X-O

Involution:

A= A= -A—(d—1)

A4+ X=—(d—1)

Scalar waves with (complex) squared mass:

m2 = A\

(O+ M) (X -9*r=0,

+AX) (X -9 =0



The plane waves are however irregular

V(X €) = (X - )7
XedS: (X -6 =0

(X -6 = | X €)M (a(N)O(X - €) + b(AN)I(—X - )



Geometry: de Sitter tubes
Z=X4+iY, X°2—-Y?2=-R?2 X.Y =0
7+t =Y in the forward cone.
7T~ =Y in the backward cone.




(Z -6 = (X £iY)?
Y2=") - (Y)Y = (¥Y*)?>0, Y’>0
IZ - £ is positive for Z € T

37 - € is negative for Z € T~




Boundary values on the reals:
(XY = [X - (0(X - &) + eF™o(—X - ©))



Normalization of the Plane Waves

Klein Gordon product
(f,9) —2/ n"(f” Oug — auf*g)\/ﬁdd_lm
5

Introduce an involution that
e generalises the complex conjugation and
e works for all complex A

Fae(X) = (X 5
Fe(X) = (X - ¢f)



Normalization of the PW. Two-point function

N A
fre(X) = (X - fre(X)=(X-9)7
o i)
(Fae Iaer) = N+ d—1) 6(§—¢) = @5(5—5)-

Wi (X1, X2) = c(N) /(X1 O (X - 63 do(€)

~

Y —

For A = n plane waves are zero modes



Solving the Dirac equation
tD+i+v)yYy =0
P(X;6) = (X - &)~ u(f)

fu(§) =0= ( 50_-25251 goigfl ) ( Z;Egg )
u(§) = \/2(53_,51) (60262 ) (Z\\//§§2’+§ )

Compare Cartan’s definition of a spinor




The two-point function

* Defining the adjoint spinor as usual

1
7€) = w' (O ul) ®uE) = of
W, (X1, X2) = e [ (X977 (X7 gdo(©

 In the massless limit

1 71— 7>
271 (Zl — 22)2

Wo(Z1, Z2) =



Spin group and de Sitter covariance

Sp(1,2) ={g € SL(2,C): ¢y’ =g '}

a 1b
g_(z’c d) ad+ bc =1

Sp(1,2) is conjugated to SL(2,R) in SL(2,C) :

B X 0 1 ([ a b
(e ) (L)



Covering

Sp(1,2) acts on the de Sitter manifold by similarity
— AM _ _iX2 XO — X1 / _ 1
X ="X, ( X0+ X: iXe X =gXg

The covering projection g — A(g) of Sp(1,2) onto SOy(1,2)

g—>AMg)s = %tr(vag’mg_l) A(g) = A(—9)

|

(—a? =0+ +d?) 5(a*—b*—c*+d*) ab+cd

(a ib> 1%(a2+b2+02+d2) 1(—a2+b2—02+d2) cd — ab
. — | 3
ac — bd —ac — bd ad — bc

X' =gXg ! = MepyX



De Sitter covariance of the Dirac-Dirac
field
W(Z) = gp(A(g9)Z)

GWo(Zs, Za)g—) = — 92197 =929t _ 1 MaYZi — MeyZs
0{41, 42 211 (Z1 — Z5)? o = ,

gWy (A—l(g)le /\_1(g)X2)g—1 —



The symmetric space Sp(1,2)/A

«y . b
* lwasawa decomposition ¢= ( S ) ad +be = 1

% zsmé)(l i)x)(e§ 0 >
T ¢ —x )

5 COS3 0 1 0 e 2

C

where 0 < ¢ < 47 and A and x are real.

* Parametrization of the coset space Sp(1,2)/A

( (:085C z)\cos§+zsm§ )
2

7 sin COS% — )\sin%

XA Q) =k()n(\) =



Group action

* Sp(1,2) acts on the coset space by left
multiplication:

gX(\¢) = XN, ()

2 2
isin & cos & — A\sin &

cos & i)\cos% —I—iSing >
2

X0 0) = k(O n(\) = (

2 2



Rotation (K)

B COS 5  1SIn 5 ~ ~
) = (ko) @O0 XC)

N(a)=X ((a)=(+a

X(A,C)Zk(on()\):( COS% i)‘COE%—F’iSin% )

% g2 e
ising  cos3 — Asin 3



Boost (A)
a(k) = ( 6()% 69% > a(m)X(A, C) — X()\,7 C/)

" M (k) = Acosh k 4 sinh k(A cos ¢ + sin (),

¢'(k) _ ¢
cot 25—~ = e cot 3

\\

2 2

cos & — \sin &

i\ cos & Jrz'sing )
9

X(A,o:k(c)n(x):( |

2



Lightlike Boost (N)

1 2 > >
=g 1) AEAQ > XN
{ N(p)=X(1+ %,u2) — (A +E)sin¢+p(1- %)\,u) cos (,

cot#zcot%—,u.

COS% i)\cos% +isin%
' g Cos%—)\sin£

2



Maureer-Cartan metric

 The Maureer-Cartan form dg g ! gives to the symmetric
space Sp(1,2)/A a natural Lorentzian metric

* There exists a inner automorphism of Sp(1,2) that leaves A

invariant 5 o ) i 0
g = plg) =797 v=<0 )

—1
* |t may be used to construct a map from the coset space

Sp(1,2)/A into the group Sp(1,2) and an induced Lorentzian
metric on Sp(1,2)/A

g(X) =gu(g) ' = —Xy* X142

1
ds? = §Tr(dg g~ 1)? = —=2d\d¢ — (A +1)d¢?




Maureer-Cartan metric

1
ds? = 5Tr(dg g h)? = —2d\d¢ — (N + 1) d¢?

1. The metric is invariant under the group left action

. The curvature is constant (R=-2) and the Ricci tensor is proportional to the

metric:

1
Ry — QRg/“/ = Ry + 9 =0

. The map X0 — )\
p: XN =X\ =< X'=Xcos( +sin¢
X? =cos( — Asin(

IS @ covering map.

= —2d\d¢ — (A\* 4+ 1) d¢?

ds? — (dX02 _dxt? dXQz) .
dS2




de Sitter

X0 =)\
X1t =MXcos( +sin(
X? =cos¢ — Asin(

= —2dAd¢ — (A2 + 1) d¢?

ds? — (dX02 _dxt dX22> .
dS2




Double covering of de Sitter

2 2
G

cos & Mcos% —I—ising )
4 q

181n 2 COS 3 — \sin 2

2 2

—2dAd¢ — (A? +1) d¢?



Double covering of de Sitter

In conclusion: the symmetric space
Sp(l, 2)/A — dSQ

may be identified with the double covering of the two

dimensional de Sitter universe.

The spin group Sp(1,2) acts directly on the covering
space as a group of spacetime transformations:

X — gX
We were not able to find the above identification in
the (enormous) literature on the group SL(2,R).



Gursey and Lee’s trick

e What is the relation between the two Dirac’s
equation? Introduce the matrices B:

0 1 0 1 i 0
0 __ 1 _ 2 _
=) =G0 =0 Y

OyH X% = rtant
BM:(‘?X’/VV’ yt = (t,0,r) X1 =rsinf/cost
X? =rcosf/cost

{B,8'}y=g", i,7=0,1

=L (58 =0




Gursey and Lee’s trick

o' =e, " {a,al}={B"B"}=g"
 There should (more than one) matrix S such
that . . .
o' = SB*S™

* The solution only exists on the covering
manifold. The most convenient choice

S(t.0) = 1 cos =2 isin 52
’ Jeost \ —isin £ Cos#

2




Dressing

S(t.0) — 1 cos =2 jsin 2
’ cost \ —isin He COS ﬂ

* Given a solution W of the Dlrac Dlrac
Equation the dressed spinor

o(t,9) = % (t,0)S(t,0)(1 — X)U(t,0)

* Solves the Fock-lwanenko- Dirac equation

o (0y +T) p+ial (09 +T9) & —ia®(0;In flp —vd =0



Remarks

S(t,0) = 1 Cos% isin%
’ Jeost \ —isin t+9 COS #

 The matrix S is anti-periodic well-defined only on the
double covering of the de Sitter hyperboloid.

* Themap (t,0) — S(t,0) is thus a map from the double
covering of the de Sitter spacetime with values in the
spin group Sp(1,2)

* The dressing changes periodicities: periodic (R) fields
become anti-periodic (NS) and viceversa.



Answer to the second question

* Dress the DD field and get a quantum field solving the ¢y
standard Dirac-Fock-lwanenko) equation.

* The dressed field has NS antiperiodicity and therefore well-

defined only on the covering of the de Sitter manifold

W'(X) = g(A ! (g)X)
¢ (X) =2(g,X) ¢p(g7 X),

~

(g, X) = S(X) g S(g %)
>:(g, X) is a nontrivial cocyle of Sp(1,2)

~

(g1, X)%(g2, 97 ' X) = 2(g192, X).



Cocyclic de Sitter Covariance

 The de Sitter covariance of the de Sitter FI Dirac NS field is thus
expressed in terms of a cocycle.

¢ (X) =2(9,X) ¢p(g7 "' X),
(g1, X)2(g2, 97 ' X) = %(g192, X).

 On the other hand there is no covariant Dirac field (in the above
sense) in the Ramond sector.

 The following remarkable result play an important role in the
construction of the de Sitter - Thirring model :

For any g in the spin group Sp(1, 2)
the cocycle (g, X) is diagonal.



Rotations

For every spatial rotation g = k(6)
and every X ¢ d52 the cocycle

»(k(F),X) =1



Boosts

For a transformation a(k) belonging to the abelian subgroup A

B (1—|—>\/2)4 Sln(g)
Kk/2
( © (1—|—)\2)4 sm(g) 0 \

S(a(k), X) =

5/2 (1422 )4 Sm(%)

\ 0 (1—|—>\’2)4 sm(%) )
where

N = N(—k) = Acosh k — sinh k(A cos { + sin (),
cot %/ — cot @ — e " cot %



Lightlike Boosts

For a transformation n(u) of the upper triangular subgroup N we have
(1—|—)\/2)% sin(%)
(14A2) 7 sin($)

0

E(n(,u),X) — (1+>\2)i Sin(%)

(1—|—>\’2)% sin(%)

where

AN = N(- :%( (2X — p)sin¢ — p(Ap + 2) cos ¢ + A (p? + 2))
COtC:COtC( b — COtC—I—,u



In the end: massless NS Spinors have a
hidden de Sitter symmetry

S(t,0)(2, Wy(t, H)WO(t’, 0")2)S (t, «9’)_1
v/ costy/cost!

. 1
i ( ) Ee) )
Am sin(%(v—v’)) 0

Wo(t,0) =+/costS(t,0) 1PN5(¢,0).




In the very end: the Thirring field

+ Field Equation ja# (9, +T',)yY = —gatJ, 9

* Solution  ¢(x) = eiXJr(m)d)o(a:)eix_(x) .

X1 (z) = aj™(z) — B~ () + af
Xz (z) = aj (z) + B (z) + a3

- bit (x)Q2 )

- b;t(x)Ql :

* Under certain conditions it is possible to find
local and de Sitter covariant solutions



Perspectives

* Opens the way to he study of integrable QFT
models on the de Sitter Manifold

* Based on work in progress with Henri Epstein
(IHES)



