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Motivation & Scientific context

 Accelerated expansion of the Universe: beyond reasonable doubt.

 ΛCDM or Modification of Gravity?

 Λ? too small...

 Beyond: New degree(s) of freedom

 Observations of background and perturbations: Can be used to 

discriminate and rule out models.
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Why is this relevant?

 Combining probes of Gravitational Waves and Large Scale Structure: New 
handle for constraining theories

 Both Gravitational Slip and Gravitational Waves impact on B-modes:

• GW‘s: impact on 𝑙 ≈ 100

• 𝑐𝑇 shifts pick position of primordial B-modes

• Lensing effects mostly around  𝑧~1, 𝑙 ≳ 100

 Friction term in GW‘s is degenerate with 𝑟 (but background information 

can remove degeneracy)

Amendola, Ballesteros and Pettorino (2014) 

Raveri, Baccigalupi, Silvestri and Zhou (2014)
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Why is this relevant?

 Exciting times: 

 Detection of Gravitational waves

 Ligo:

𝑚𝑔𝑤 ≤ 1.2 × 10−22 eV   arrival time of different frequecies

𝑐𝑔𝑤 ≲ 1.7 time delay between detectors 

(model-dependent bounds on 𝑐𝑔𝑤 much more stringent)

Courtesy Caltech/MIT/LIGO Laboratory
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Why is this relevant?

 Exciting times:

 Future probes of the Universe‘s largest scales: wide, deep and 

unprecendented precision.

 Standing out: Model-independent observable:  

Gravitational Slip:
Φ

Ψ
≡ 𝜂

Weak Lensing          Redshift space-distortions                

- 0
𝑟𝑠 𝑑𝑟

𝑟𝑠−𝑟

𝑟 𝑟𝑠
ΔΩ(Φ + Ψ)

1

ℋ
𝜕𝑟 𝑽. 𝒏 ≈

1

ℋ2 𝜕𝑟
2Ψ
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~10% accuracy with Euclid

Motta et al 2013

Amendola et al 2013

5



Assumptions 6



Assumptions

 First order in linear perturbations on FRW

𝑑𝑠2 = − 1 + 2𝚿 𝑑𝑡2 + 𝑎22𝐵,𝑖 𝑑𝑡𝑑𝑥
𝑖 + 𝑎2 1 − 2𝚽𝛿𝑖𝑗 + 2𝐸,𝑖𝑗+ ℎ𝑖𝑗 𝑑𝑥𝑖𝑑𝑥𝑗

 Universe filled with dust (neglecting neutrinos and radiation).

 Matter moves on geodesics of 𝑔𝜇𝜈 in the Jordan frame.

6



Assumptions

 Modification of gravity: addition of one extra

 Tensor: Massive Bigravity 

 Vector: Einstein-Aether 

 Scalar: Horndeski 
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Spatial traceless

part of 𝛿 1 𝐺𝜇𝜈

Gravitational Slip 

& Gravitational Waves

 Slip equation

Φ − Ψ = 𝜎 𝑡 Π 𝑡, 𝑘 + 𝜋𝑚

 General modification of Gravity waves:

ℎ𝑖𝑗
′′ + 2 + 𝜈 ℋ ℎ𝑖𝑗

′ + 𝑐𝑇
2𝑘2ℎ𝑖𝑗 + 𝑎2𝜇2ℎ𝑖𝑗 = 𝑎2Γ𝛾𝑖𝑗

Saltas et al 2014
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Gravitational Slip: property of geometry

Anisotropic Stress: property of matter



𝑈 𝑔, 𝑓 = 𝑀𝑃
2  𝑑4𝑥 −𝑔  

𝑛=0

4

𝛽𝑖𝑒𝑖

𝑒𝑖 , symmetric polynomials of √𝑔−1𝑓

 Matter minimally coupled to 𝑔

 1 massless + 1 massive graviton: 2+5 dofs, of 

which 1 longitudinal mode

Perturbations:

𝑑𝑠𝑔
2 = 𝑎2  − 1 + 2Ψ𝑔 𝑑𝑡2 + 2𝐵𝑔,𝑖 𝑑𝑡𝑑𝑥

𝑖

+  1 − 2Φ𝑔𝛿𝑖𝑗 + 2𝑬𝒈,𝑖𝑗+ ℎ𝑔𝑖𝑗
𝑑𝑥𝑖𝑑𝑥𝑗

𝑑𝑠𝑓
2 = 𝑏2  −𝑐2 1 + 2Ψ𝑓 𝑑𝑡2 + 2𝐵𝑓,𝑖 𝑑𝑡𝑑𝑥

𝑖

 + 1 − 2Φf𝛿𝑖𝑗 + 2𝑬𝒇,𝑖𝑗+ ℎ𝑓𝑖𝑗
𝑑𝑥𝑖𝑑𝑥𝑗

 Scalar dofs 𝐸𝑔, 𝐸𝑓

Gravitational slip → Modified Tensors

Massive Bigravity
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Slip equation:

Φ − Ψ = 𝑎2𝑟  𝑍(𝐸𝑔 − 𝐸𝑓)

Gravitational waves:

ℎ𝑔
′′ + 2ℋℎ𝑔

′ + 𝑘2ℎ𝑔 + 𝑎2𝑟  𝑍ℎ𝑔 = −𝑎2𝑟  𝑍ℎ𝑓

𝜎 = 𝑎2𝑟  𝑍,  𝑍 =  𝑍(𝛽𝑖 , 𝑟)

Π = 𝐸𝑔 − 𝐸𝑓

𝜈 = 0 𝜇2 = 𝑟  𝑍

𝑐𝑇
2 = 1 Γ = −𝑟  𝑍

Gravitational slip → Modified Tensors

Massive Bigravity

10



ℒ𝑣 =  

𝑛=1

3

ℒ𝑛 𝛽𝑛, 𝛻𝑢 2 + 𝜆(𝑢𝛼𝑢𝛼 + 1)

𝛿𝑢𝑖 = 𝜕𝑖𝛿𝑢 + 𝛿 𝑢𝑖 , 𝜕𝑖𝛿 𝑢𝑖 = 0

 Dimensionless parameters 𝛽𝑖

 Non-vanishing vacuum violates LS: picks out a 

preferred frame, the Aether

Perturbations:

Θ ≡ 𝜕𝑖𝑉
𝑖

𝛿𝑢𝑖 ≡
1

𝑎
𝑉𝑖

Gravitational slip → Modified Tensors

Einstein-Aether
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Slip equation:

Φ − Ψ = 𝛽1 + 𝛽3

𝑎2Θ ′

𝑘 𝑎 2

Gravitational waves:

ℎ𝑔
′′ + 2ℋℎ𝑔

′ +
𝑘2

1 − 𝛽1 − 𝛽3
ℎ𝑔 = 0

𝜎 = 𝛽1 + 𝛽3

Π =
𝑎2Θ ′

𝑘 𝑎 2

𝜈 = 0 𝜇2 = 0

𝑐𝑇
2 = 1 − 𝛽1 − 𝛽3

−1 Γ = 0

Gravitational slip → Modified Tensors

Einstein-Aether
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ℒ =  

𝑛=2

5

ℒ𝑛 (𝜙, 𝑋)

𝑋 = −
1

2
𝑔𝜇𝜈𝜕

𝜇𝜙𝜕𝜈𝜙

Perturbations: 

𝑣𝑋 ≡ −
𝛿𝜙

𝜙′

 Run rate of 𝑀𝑃:      𝛼𝑀

 Braiding:               𝛼𝐵

 Kineticity: 𝛼𝐾

 Tensor speed excess: 𝛼𝑇

 GR :    𝛼𝑀 = 𝛼𝐵 = 𝛼𝐾 = 𝛼𝑇 = 0

Gravitational slip → Modified Tensors

Horndeski

Bellini & Sawicki, 2014
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Slip equation:

Φ − Ψ = 𝛼𝑇Φ + ℋ(𝛼𝑀 − 𝛼𝑇)𝑣𝑋

Gravitational waves:

ℎ𝑔
′′ + (2 + 𝛼𝑀)ℋℎ𝑔

′ + (1 + 𝛼𝑇)𝑘
2ℎ𝑔 = 0

𝜎 = 𝛼𝑀 − 𝛼𝑇

Π =
𝛼𝑇

𝜎
Φ + ℋ𝑣𝑋

𝜈 = 𝛼𝑀 𝜇2 = 0

𝑐𝑇
2 = 1 + 𝛼𝑇 Γ = 0

Gravitational slip → Modified Tensors

Horndeski
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Modified Tensors → Gravitational Slip?

(In a modified gravity model, are there parameter choices 

which cancel gravitational slip? And is this configuration 

stable in time?)
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 Slip constraint:

Φ − Ψ = 𝐶 𝑿 ≡ 𝑨 𝑡, 𝑘 . 𝑿 𝑡, 𝑘 = 0

 Can we cancel away gravitational slip in a theory where 

gravitational waves are modified?

 Can the above constraint be mantained through cosmological 

evolution?

16Cancelling Gravitational Slip

Method



Modified Tensors → Gravitational Slip? 

Method

 Fix a gauge

 Eliminate non-dynamical dofs: 

 On the scalar sector: two coupled EoM:

𝜓1
′′=𝜓1

′′(𝜓1
′ , 𝜓1, 𝜓2

′ , 𝜓2)

𝜓2
′′=𝜓2

′′(𝜓1
′ , 𝜓1, 𝜓2

′ , 𝜓2)
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𝑿 𝑡; 𝑘 = 𝜓1, 𝜓1
′ , 𝜓2, 𝜓2

′

𝐶 = 𝑨.𝑿 = 0,

 The vector 𝑨 in model-space defines a 3D hyperplane passing 

through the origin

𝐶′ = 𝑨′. 𝑿 + 𝑨.𝑿′ = 0

𝐶′ = 𝑩.𝑿 = 0

𝑨

4-dim phase space

EoM:   𝐗′ = 𝑴.X

𝐶

18
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𝑿 𝑡; 𝑘 = 𝜓1, 𝜓1
′ , 𝜓2, 𝜓2

′

𝐶 = 𝑨.𝑿 = 0,

 The vector 𝑨 in model-space defines a 3D hyperplane passing 

through the origin

𝐶′ = 𝑨′. 𝑿 + 𝑨.𝑿′ = 0

𝐶′ = 𝑩.𝑿 = 0

 𝑩 generically defines a LI 3D hyperplane 

that contains the origin               

𝑨

4-dim phase space

EoM:   𝐗′ = 𝑴.X

𝐶

𝑩

𝐶′

18
Cancelling Gravitational Slip
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Cancelling Gravitational Slip 

Method
 In 4D: at most 4 linearly-independent hyperplanes.

 Cases:

• a) 𝐶′ = 𝜆0 𝐶 phase space is a 3D subspace

• b) 𝐶′′ = 𝜆0 𝐶 + 𝜆1𝐶
′ phase space is a 2D subspace

• c) 𝐶′′′ = 𝜆0 𝐶 + 𝜆1𝐶
′ + 𝜆2𝐶′′ phase space is a 1D subspace
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Cancelling Gravitational Slip 

Method
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Increasing 

fine-tuning



𝐶 = 𝑎2𝑟  𝑍 𝐸𝑔 − 𝐸𝑓 = 𝒵 Δ𝐸 = 𝑽𝟎. 𝑿

𝑽𝟎 = 𝒵,−𝒵, 0 , 0 , 𝑿 = {𝐸𝑔, 𝐸𝑓, 𝐸𝑔
′ , 𝐸𝑓

′}

𝐶 = 0

𝒵 = 0 Δ𝐸 = 𝐸𝑔 − 𝐸𝑓 = 0

GW not modified

ℎ𝑔
′′ + 2ℋℎ𝑔

′ + 𝑘2ℎ𝑔 + 𝒵ℎ𝑔 = −𝒵ℎ𝑓

𝒵 = 0 → 𝑐 = 1, de Sitter 

Trivially: All higher derivatives hyperplanes 

𝐶 ≈ 𝐶′ ≈ 𝐶′′ ≈ ⋯ = 0

Ex: Cancelling Gravitational Slip in Massive Bigravity
20

Model-Space Phase-Space

𝑽𝟎

𝐶

𝐸𝑔

𝐸𝑓

𝑉0 defines a

3D subspace 

in the 4D 

phase-space



𝐶′ = 𝒵′ Δ𝐸 + 𝒵 Δ𝐸′ = 𝑽𝟏. 𝑿

𝑽𝟏 = 𝒵′, −𝒵′, 𝒵, −𝒵 , 𝑽𝟎, 𝑽𝟏 𝑳𝑰:

𝐶′ ≈ 𝐶 ≈ 0

𝒵 = 0 Δ𝐸′ = 𝐸𝑔
′ − 𝐸𝑓

′ = 0

GW not modified

𝒵 = 0 → 𝑐 = 1, de Sitter 

Trivially: All higher derivatives hyperplanes 

𝐶 ≈ 𝐶′ ≈ 𝐶′′ ≈ ⋯ = 0
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Intersection 

in a 3D 

subsapce

Ex: Cancelling Gravitational Slip in Massive Bigravity

Model-Space Phase-Space

Intersection 

in a 2D 

subsapce



𝐶′′ = 𝒵′′Δ𝐸 + 2 𝒵′Δ𝐸′ + 𝒵 Δ𝐸′′ + 𝐸𝑜𝑀

𝐶′′ = c0 Δ𝐸 + 𝑐1 Δ𝐸′ + 𝑐3 𝐸𝑔
′ + 𝑐4 𝐸𝑔 = 𝑽𝟐. 𝑿

𝑽𝟎, 𝑽𝟏, 𝑽𝟐 𝑳𝑰

𝐶′′ ≈ 𝐶′ ≈ 𝐶 ≈ 0

𝑐3 = 𝑐4 = 0 → 𝑑𝑒 𝑆𝑖𝑡𝑡𝑒𝑟 𝐸𝑔
′ = −

𝑐4

𝑐3
𝐸𝑔
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Intersection 

in a 1D 

subsapce

Intersection 

in a 2D 

subsapce

Ex: Cancelling Gravitational Slip in Massive Bigravity

Model-Space Phase-Space



𝐶′′′ = 𝑑0 Δ𝐸 + 𝑑1 Δ𝐸′ + 𝑑2 𝐸𝑔
′ +

𝑐4
𝑐3

𝐸𝑔 + 𝑑3𝐸𝑔 = 𝑽𝟑. 𝑿 = 0

𝑽𝟎, 𝑽𝟏, 𝑽𝟐, 𝑽𝟑 𝑳𝑰

𝐶′′′ ≈ 𝐶′′ ≈ 𝐶′ ≈ 𝐶 ≈ 0
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Intersection 

in a 1D 

subsapce

Ex: Cancelling Gravitational Slip in Massive Bigravity

L I  :

Intersection is the origin:    

no perturbations

LD : 

𝑑3 = 0 → 𝑑𝑒 𝑆𝑖𝑡𝑡𝑒𝑟

Model-Space Phase-Space



Conclusion:

It is not possible to cancel away Gravitational Slip 

in Massive Bigravity if Gravitational Waves are 

modified.

Modified GW → Graviational Slip
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Ex: Cancelling Gravitational Slip in Massive Bigravity



𝐶 = 0

No Modified GW Reduce phase-space: 3D  

𝐶′ ≈ 𝐶 ≈ 0

No Modified GW Reduce phase-space: 2D

𝐶′′ ≈ 𝐶′ ≈ 𝐶
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Model-Space Phase-Space

Ex: Cancelling Gravitational Slip in Horndeski

Model-Space Phase-Space



𝐶′′ ≈ 𝐶′ ≈ 𝐶

Two set of solutions: 

1- Analytically solved:

a) No modified MG

b) No evolution of 𝛿𝑚

2- Numerically solved,                                   

a)Scalar field decouples

b)Gravity is switched off
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Ex: Cancelling Gravitational Slip in Horndeski

Model-Space Phase-Space

L I  :

Intersection is 1D 

subspace

𝐶′′′ ?



Remarks and conclusions

 Modifications of Gravitational waves seem to imply the 

presence of Gravitational slip

 This can be used to rule out theories: e.g. B-modes of CMB 

polarization, direct detection of GWs and LSS.

 For more dof‘s extension of procedure is straightforward, but 

do „conclusions“ hold?

 Could it be promising to extend this to vector perturbations?

Thank you!
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Slip equation:

Φ − Ψ = 𝛼𝑇Φ + ℋ 𝛼𝑀 − 𝛼𝑇 𝑣𝑋 − 𝛼𝐻 (Ψ + 𝑣𝑋
′ )

Gravitational waves:

ℎ𝑔
′′ + (2 + 𝛼𝑀)ℋℎ𝑔

′ + (1 + 𝛼𝑇)𝑘
2ℎ𝑔 = 0

𝜎 = 𝛼𝑀 − 𝛼𝑇

Π =
𝛼𝑇

𝜎
Φ + ℋ𝑣𝑋 −

𝛼𝐻

𝜎
(Ψ + 𝑣𝑋

′ )

𝜈 = 𝛼𝑀 𝜇2 = 0

𝑐𝑇
2 = 1 + 𝛼𝑇 Γ = 0

Gravitational slip → Modified Tensors

Beyond Horndeski

28

Effective action term 𝛼𝐻 𝛿𝑁 𝛿𝑅 : 

no tensor contributions
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Counter example


