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New Ekpyrotic Cosmology: A Brief Review Buchbinder, Khoury, Ovrut

At the level of a 4d effective description, the basic ingredients of the simplest ekpyrotic
scenario are essentially the same as in inflation, namely a scalar field ¢ rolling down some self-
interaction potential V' (¢). A key difference, however, is that while inflation requires a flat
and positive potential, its ekpyrotic counterpart i1s steep and negative. This has a dramatic
impact on the cosmological evolution. Instead of accelerated expansion, an ekpyrotic theory
has slow contraction. Instead of an exponentially growing scale factor and nearly constant
Hubble radius, corresponding to approximate de Sitter geometry, we now have a nearly

constant scale factor and rapidly shrinking Hubble radius, corresponding to approximately
flat space.
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Density Perturbations-

In the long-wavelength limit

corresponding to a scale-invariant power spectrum. This = the associated gauge-invariant

curvature perturbation 7R is scale invariant for large wavelengths outside the Hubble horizon.

Ghost Condensation and the Bounce-
Theories of ghost condensation describe a scalar field with higher-derivative kinetic term
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L=\ —gM'P(X), X-= (86)*

M and m are some arbitrary scales . Choosing P(X) to be, for example, of the form

PX)

PX)=-X+X* =

will violate the NEC and cause the contracting universe during the Ekpyrotic phase to

bounce to an expanding phase.




Question:

Will the near scale invariant long wavelength perturbations ® go unchanged

through the bounce-- or will the scale invariance be destroyed?

= must compute the evoltion of R through the dynamical

bouncing phase.




In natural units (837G = M 1;12 = 1), the Lagrangian is given by

L= ﬁ(§+P(X,¢)+g(¢)XD¢) ;

Horndeski ——>

where R is the Ricci scalar and 2nd order equations of motion

P(X,¢) = k(¢)X +T(6)X> — V()

with X = —%(6(15)2. The explicit forms of the functions k,7,¢g,V are
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k(6) = 1

(chosen to allow for a simple supersymmetric extension later on)
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V() = —Vov(@)e

where v(¢) is a function chosen such that the potential turns off for ¢ < @up—cna-
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Figure 1: The solid curve shows k(¢) while the dashed curve shows the normalized functions 7(¢)/7, 9(9)/3,
all with k = 1/4.
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Figure 2: The ekpyrotic potential. The ekpyrotic phase starts at large positive ¢, with the field rolling down
the potential towards smaller values of the field. Around ¢¢k_eng = 15 the potential starts to come back up
to zero, and is irrelevant from then on. The bounce occurs at small values, ¢ = 0.




For the background, we will assume a flat Friedmann-Lemaitre universe. In the “physical” time

coordinate t,, this is given by
ds* = —dt; + a*(tp)di;da’da’
However, we will transform to a *harmonic” time ¢

dt, = a(t)® dt

It follows that the Friedman-Lemaitre metric becomes
ds® = —a®(t)de® + ag(t)éijd:vi‘drj .
We note that, with this coordinate choice, the metric satisfies
=g, =0.

This is a useful property when we calculate metric and scalar perturbations.

For a given metric, coordinates satisfying this are called “harmonic coordinates”.




Harmonic coordinates are not unique-if #* are harmonic, then so are y*=z" + &*(z) as long as

— (€ +a'V%¢ =0
—&" +a'V =0
In the background
ds® = —aS(t) dt® + a®(t)d;;dz'da’
¢ = ¢(t)

the equations of motion become
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where ' = 4 and H = %. Solving these with the sample conditions x = 1/4, 7 =1, g = 1/100

a

and initial conditions a — 1, © — 5 ¢ = 107 atsometime tg =>
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Figure 3: Scale factor and comoving Hubble length for the bounce solution with parameter values K = 1/4,
7=1, g=1/100 and with initial conditions a =1, ¢ = 17/2, ¢' = —10-5.

Note that the bounce is completely smooth. Furthermore, going to physical time we find

—> the NEC is violated for a period of

order |~2 times the ghost condensate scale.
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The (gauge-invariant) co-moving curvature perturbation R satisfies the closed equation

dQR 2dz dR 9,9
W-FEEF-%CS}»R:O,

to linear order in Fourier space where dr = a®dt is conformal time. The coefficients are given by
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Also, the quadratic action for the perturbations takes the simple form
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With respect to harmonic time and the above intital parameters, the quantities ¢2 and 22

are found to be
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Figure 4. Evolution of the speed of sound squared and of z? in the non-singular bounce background. The

positivity of 2% demonstrates the absence of perturbative ghost fluctuations, while the brief period over

which ¢2 becomes negative indicates the presence of a gradient instability.
Note that 22 blows up in the vicinity of the bounce, as the denominator
passes through zero when H = —%g(q&)%’;. This implies that at this
moment the equation for R becomes singular. The lesson we draw from this observation is that
it would be desirable to find a better, non-singular and completely reliable way to describe
the evolution of perturbations across the bounce.
Following B. Xue, D. Garfinkle, F. Pretorius, and P. J. Steinhardt, Phys.Rev. D88, 083500 (2013), one defines

“harmonic gauge” by




(a) taking generic scalar perturbations around our background given by

Mg=—&u+2AM9+2MBﬁH@J+&@ﬂ“—2¢Mﬁ+ZEddf®J,
o= 0o(t)+dd(t,x)

(b) noting that
1
oIt = —ﬁc“ .

¢ =A'+ 3¢ — V2 (E' —a’B) ,

¢ =[(a’B) +a' (A—v - V’E)|

N

(c) and finally choosing the A, B, E. 1 functions to satisfy
oI'* =0
As in the unperturbed case, there is residual harmonic gauge freedom given by
A — A" —3He
B%B+f€—%g.
Y=Y+ HE,

E—-E-€.




These can be used to set the simplifying initial conditions
A(tp) = B(to) = ¢¥(to) = E(tp) =0

The complete set of equations of motion in harmonic gauge are

0=A"+3¢' +k*(E' - a’B)
= (a’B)" +a' (A — ¥ + k’E)
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Note that there are no — factors. This is the main reason for using harmonic gauge.

These equations can be solved subject to the above initial conditions.




The gauge-invariant comoving curvature perturbation is defined as

H
R = —ad .
d)+¢, b

In harmonic gauge R is well-defined and smooth at the bounce. For the above choices of
parameters we find
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Figure 5: The left-hand panel presents the evolution of the comoving curvature perturbation for various
wavelengths. Long-wavelength modes are preserved essentially unchanged across the bounce, while short,
initially oscillating modes, flatten out near the bounce. The right-hand panel shows both the horizon size

and the physical wavelengths a/k of the various perturbation modes as functions of harmonic time.
Momentum k is in Planck units.
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Main Result: non-singular ghost condensate/Galileon bounces preserve both the amplitude and
spectrum of large-scale curvature perturbations across the bounce, and hence, if such perturbations
are generated during the contracting phase, they will go through unmodified into the expanding

phase of the universe.

=
The nearly scale-invariant scalar perturbations generated during the Ekpyrotic contracting

phase will pass essentially unchanged through a smooth bounce!

What is the behaviour of short wavelength modes--with {55 < [z for all ¢7
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Does the exponential jump AR, at the bounce for & & 107" indicate an instability in the

bounce theory? No!

To understand this, we have to compute the action for the scalar cuvature perturbation 7<
to cubic order. Using both harmonic and ADM fluctuations, we find that near the bounce

So3 = / dtdz® a3 [% (R)2

—E+2) (R)3 g (R)’R

H3 H?
2R 1R, o 1.
—EﬁRdzR = Eﬁ((m)z 4 F72(072)2]

- . —_ 72 2 3 r ‘ 72 .
where A = Pxx X+ 3PxxxX” and ¥ = PxX + 2P xx X?
To evaluate the cut-off of the theory, we must compare the cubic action to the quadratic one,

but for normalised perturbations. To this end we define

R
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and obtain terms of the form

So3 = / dtdz® a* [(0)’
—(Z+2)) .3 H

-2
S (0 + 35 (-
H? H?
223/2“0 (28‘L + (Ov)” ) 223/2v(8v)2

Since we have a time-dependent background, the coefficient functions of the various terms
change over time. The most interesting time in the present context 1s the moment when
the null energy condition starts being violated, i.e. the time of the onset of the bounce (the
energy density of the background is also maximal around that time). It turns out that it is
the ©® term that yields the smallest energy scale for the cut-off of the theory, and hence this

1s the most relevant term to consider. We rewrite this term as

1 y)3/4
— ¢ 3 .v 3 1 - —
/dtdr Agfza (0)° with Aps = BEEINE




Close to the bounce, the ghost condensate can be approximated by a Lagrangian function

of the form

P(X,¢) = —X +¢gX?

where ¢ has mass dimension [—4]| and determines the scale of the ghost condensate. At
the onset of the bounce, the null energy conditions starts being violated. Thus we have
H=—-Y(p+p) =0 and thus ¢ = 0 and Py = 0. From these conditions it follows that

X = —1/(2q) at that time and consequently the energy density is given by p = 2Px X — P =
1/(4q). The cut-off scale is
1 1/4 .
A = (47) at H=0

Taking the ghost condensate scale to be A ~ 10'"(/¢1” as we did previously gives
Aps ~107°Mp

Hence, the effective theory becomes strongly coupled just where the fluctuation

amplitudes begin to change dramatically.




To further explore the relationship between the exponential growth in the gauge invariant
curvature purturbations and their wave number, we repeat the previous analysis but with a

different, and more revealing, set of parameters. Again, we choose the interaction terms to be

Specifically, we take the coefficient of the Galileon term to be
. . g=0 <«
while choosing

T=10° «——

1
K= -,
4

Additionally, we choose a potential to be in the same form as above

‘-.:(’fl — —‘;,I‘ 0 )€ C\9)¢

but with |
/U(¢) — 5 [1 + tanh()‘(¢ — Qsek:—end))} D

where

Vo =100, A=3,  dek—end =15, c(¢) =3

Resolving the above equations in harmonic gauge using the same initial conditions

17 .
aO:la ¢0:?7 ¢6:_10

leads to the following results.
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Figure 6: Graphs of the functions entering the scalar field Lagrangian. (a) The blue curve shows
k(@) while the yellow curve shows the normalized function g(¢)/q, both with & = 1/4. (b) The
ekpyrotic potential (9) with Vj = 100, A = 3, ¢ep—end = 15,¢(@) = 3. The ekpyrotic phase starts
at large positive ¢, with the field rolling down the potential towards smaller values of the field.
Around ¢er—end the potential starts to come back up to zero, and is irrelevant from then on. In

this model, the bounce occurs at small values, ¢ = 0.
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Figure 7: (a) The scale factor around the time of the bounce as a function of physical time ¢
minus 5, where t; denotes the time of the bounce (H(f;) = 0). Our numerical evaluation starts ¢
at ¢p = 17/2 with ¢g = —107?, ag = 1 and Hj is determined by the Friedmann equation. We
are using the parameters & = 1/4, § = 10®. The figure shows a zoom-in on the most interesting
time period, namely that of the bounce. One can clearly see that the bounce is smooth. (b) The
evolution of the scalar field ¢ during the bounce phase. The approximately linear evolution near
¢ = 0 corresponds to the ghost condensate phase which is responsible for the bounce.
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Figure 8: The sum of energy density and pressure during the bounce phase. When this quantity
goes negative, the null energy condition is violated.
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Figure 9: (a) Evolution of 22 and (b) of the speed of sound squared in the non-singular bounce

background. The positivity of 22 demonstrates the absence of perturbative ghost fluctuations, while
the brief period over which cg becomes negative indicates the presence of a gradient instability.




The results for the curvature perturbations now become
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Figure 10: The left-hand panel presents the evolution of the comoving curvature perturbation for various

wavelengths. Long-wavelength modes are preserved essentially unchanged across the bounce, while short,

initially oscillating modes, flatten out near the bounce. The right-hand panel shows both the horizon size

and the physical wavelengths a/k of the various perturbation modes as functions of harmonic time.

Momentum k is in Planck units.

Focussing in on the curvature perturbations for large wave number k, we find
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Figure 11: (a) The curvature perturbation modes Rj; near the time of the bounce, expressed

as functions of physical time ¢. The initial conditions for these sub-horizon modes are taken to
correspond to the early time limit of the Bunch-Davies state, in particular Ry oc k~1/2. The period

of NEC violation extends from about ¢ = —8000 to ¢ = +14000. During

this time period short modes with wavenumber k > 10~° are seen to be amplified significantly.
(b) The same plot, but with an expanded vertical scale. The mode with wavenumber k£ = 1073
(and thus with a physical wavelength more than 3 orders of magnitude smaller than the minimum
horizon size) is seen to be amplified by almost 100 orders of magnitude near the bounce.




These results have a clear analytic interpretation.

Even though the numerical solutions shown in the figures were obtained via calculations
in harmonic gauge, we know that the results are gauge invariant. Thus, we may obtain

an estimate for the amplification by analyzing directly the equation of motion for the

curvature perturbation R, which leads to the approximate solution

C .
Rpost-bounoe ~ exp (k / | SIdt) 7?'pre»bounoe ~ ek/k*Rpre-bounce
c

220 @

For the classical background considered here, numerical integration gives k, ~ 9 x 107°.
This equation thus gives a quasi-analytic explanation for the results shown in Fig. | |. More
specifically, 1t indicates that the amplitudes for shorter wavelength modes — that 1s, modes
with wavelengths always smaller than the horizon (but larger than the Planck length) — grow
exponentially. Naively, this dramatic growth seems to imply that the effective field theory
and, hence, the bounce solution become wildly unstable at these scales — perhaps negating
the validity of the non-singular classical bounce discussed above. However,

this 1s not the case and a smooth bounce solution exists — even including its scalar

and metric perturbations.




The Strong Coupling Scale:

Reintroducing mass scales, the full action we will consider is

S = /dtdBI\/_ ( “PRLP(X, )) :
Note that, henceforth, “t” is physical time and we have restored mass units.
It is most convenient to employ the Arnowitt-Deser-Misner (ADM) decomposition
ds* = —N2dt? + hy; (dz' + N'd¢t) (dz? + N7dt) ,
where N represents the lapse function, N; the shift and h;; the metric on spatial shices of

constant time. The action may then be written as

1 i W M2,
=3 / dtdz*vVh [w (MpR® +2P(X,¢)) + NP (KYK,;; — K?)

where R® is the three-dimensional Ricci scalar formed from h;; and where the extrinsic

curvature 1s defined as
1. 1 1
ghis — 5Nis — 5Njs + I'§; Nk

We are interested in determining the scale at which strong coupling occurs-that 1s, we are

Kij =

interested in determining the cut—off of the models under consideration, in order to assess

the validity and reliability of particular solutions. We will focus on scalar perturbations.




We will start our calculation in flat gauge where the spatial metric h;; = a(t)?d;; is kept
fixed (by choosing the appropriate time and space reparameterisations of the coordinates) as

the spatial section of a flat FLRW universe. The remaining scalar perturbations are defined

¢ = é(t) + ‘P(tﬁ Ii)?
N =1+ aft, "),
Ni _ 8,-‘8(t,17i).

At linear order, which 1s all we will need, the constraints are given by
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where 9% = §9;0; is summed only over spatial indices. The action in flat gauge

at quadratic order in fluctuations is given by
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The speed of propagation (speed of sound) ¢ of the fluctuations can be read off from the

ratio of spatial to time derivative terms,

_ Px
Py + Pxx¢®

0
W o

At cubic order, the action i1s given by




1. 1.
SB) — / dtd*zra® {9'93 [§¢P,xx + gq&gp,xxx]

B SP% _29;>3p,xp,xx _4-5513,xp,xxx Jip L1
- AMZH M2 H AMZH 2 X%
o[ Pk PPxPx 56°Pk Pxx
PP IMER? T T OMZH SMA H?
_ ¢'"PxPxxs N ¢7P,‘“3(Rxxx]
INZH SMLH?

o [Lp, , OPxPgss  30°Px &Pk | ¢'PiPxs

6 " AMZH  8MIH 16MSH®  SMAiH2

 @®PxPxss  ¢"PXPxx N ¢°P%Pxxs <.1'59P,§(P_.xxx]

ANZH MG 3 SMAL 2 A3MG

y $*P% 1 PxPxxo'
02803 — B3] + 20 : ’
pl0°60° = B + ¢ OB yEi + 3,

5 P% 1 PxPxx¢®
SN v vyl L v vy s

| 1 . 1.
— OO~ [Px +¢°Pxx] — ﬁﬁﬁp,xxﬁﬁ(aﬁp)g}

+ % <.1'52P,XX¢]

1.
+ §¢Rx¢¢ +

oPx

+ 4a2H

We are now ready to analyze various special cases of interest.




Ghost Condensate Bounces:
The onset of ghost condensations occurs when
Px=0 = ¢ =0
Between the two times that this occurs, the NEC is violated and the bounce occurs.

During the period when the NEC is violated, the bounce energy density is small since

the Friedmann equation is

and H=0 at the exact bounce time. Also, before and after the NEC is violated, we do not

expect any troublesome effects. = The two times at which P x = (

are the most important. At these times, we find

(24 L. . . s aorl
S | p y—o= /dfdgl‘aB{gs?z [P..\'.\'<.f)2] + op[6Pxs] + ¢ [§P¢>¢>]
+ 6% | oPyy + L6 Pyxx]
| 3P xx + 5o Pxxx|
+¢%¢ [pro+ =&’ P\\o] + pp° [—ébp..wé] + [Ep.c')c'xa]
‘ 1 1

+ ?0* ,s'[ QP\o] — p(ag)"[)a

P\o] — "()Lr,()'? [Q P\\]

1
— —dPxxp(d¢ )2}

2a°




while the constraint 1s given by

1&%";3| —(—op a Pxs |« ¢ _p :
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The dominant terms in the action are the ¢ and ¢* terms. With the field redefinition

¢ = (Pxx9?) 12

the dominant quadratic and cubic terms can be written as

I 1 13
S2+3) /dtd3ra3{l)'(2 — 1 Pxx¢é+ §.P’XXX¢ SRR }
: 2 2 (Pxx¢?)3?

1 : L ..
= ./dtd3m§a.3{x9' + FX:‘ 4 ... } )
We can then read off the strong coupling scale A, with the result that

(Pxx)*¢
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(Pxx + 350*Pxxx)!/?
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This scale should now be compared to the energy density of the background at that time,
which is p = —P. Using the condition that Py = 0, which implies X = —&(9)/(2q9(9)), it

follows that 942 2
AM=" p=—+V(s
T Pe (®)

where the functions k, ¢ and V are evaluated at ¢ for which Px = 0. In the absence of

a potential, we find
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Figure 12:

Ghost condensate bounce without a potential, V; = 0. Plotted here are the strong coupling scale
A and the energy density p!'/4 against physical time t, relative to the time of the bounce t;. Also
plotted is the sum of the energy density and pressure (to the quarter power). At the two moments
where this quantity vanishes the null energy condition is marginally satisfied, while in the time
interval in between the NEC is violated. This plot confirms that A and p'/4 are closest to each
other precisely at the moments when the NEC starts and ends being violated.
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Figure |3: Plot of the ratio of strong coupling scale to background energy density (to the quarter

power) against physical time. As expected from our analytical treatment, we see that at the
moments where the NEC starts and ends being violated, this ratio reduces to a factor of 8 Thus
the bouncing background solution lies within the regime of validity of the effective theory, while

dangerous short wavelength modes lie outside.

It is important to note, however, that

a negative potential during the bounce phase increases the separation between the energy
density of the background and the strong coupling scale. The two scales can, in fact, be

separated by an arbitranly large factor — provided the potential can approach close to the

minimally allowed value of V,,;, = —k2/(4q).




[t 1s interesting to note that a negative potential 1s natural in ekpyrotic

models. Up to now 1t was typically assumed that this negative potential would be non-
vanishing during the contracting phase-but rapidly vanish before, and be irrelevant at, the
moment of the bounce. Our results suggest a new

perspective, in that we see here that the potential can still play an important role during
the bounce phase. This has implications for ekpyrotic model building .

As a concrete example, we leave all previous functions and coefficients the same but change

the potential function to
2V

—/20-2

V(g) =~ S

P

where V; = 0.2 x 107® M},. This potential is plotted below.
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Again plotting the strong coupling scale and the background energy density, but now for
the above non-zero potential, we find
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Figure 14: The zeroes of the curve plotting (p + p)'/* indicate the start and end of the N EC violating

of v 'V - = A~40xp'/?
Nip

“f - = A~4x105 <1071
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phase.
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Figure 15: When a negative potential is included, the background energy density and the strong
coupling scale are further separated from each other. For Vj = 0.2 x 107% Mf) the ratio A/ pl/ 4
always remains above a factor of about 40. This implies that the background solution lies more
comfortably inside the regime of validity of the effective theory, compared to the case where no
potential is present during the bounce. But closer to blow up mass.




