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Motivation

The most challenging problem in cosmology is the accelerating
expansion of the universe which is based on the recent
astrophysical data explaining the universe is spatially flat and an
invisible cosmic fluid called dark energy with a hugely negative
pressure which is responsible for this expansion (Riess et al. 1998;
Perlmutter et al. 1999).
Therefore, dark energy and related topics are important subjects to
study in theoretical physics and cosmology.
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Motivation Continued

Basically there are two approaches:

One is to propose suitable forms for the energy momentum
tensor Tµν in the Einstein’s equation, having a negative
pressure, which culminate in the proposal of an exotic energy
called dark energy.

The second approach is to modify the geometry of the space
time in the Einstein’s equation.
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Motivation Continued

In most of the cosmological models, the content of the universe
has been considered as a perfect fluid. It is important to
investigate more realistic models that take into account dissipative
processes due to viscosity. In a homogeneous and isotropic universe
bulk viscosity is the unique viscous effect capable to modify the
background dynamics. It is known that when neutrino decoupling
occurred, the matter behaved like a viscous fluid in the early stage
of the universe. There are remarkable cosmological applications of
viscous imperfect fluids already in (Israel and Vardalas (1970)).In
the context of inflation, it has been known since long time ago that
an imperfect fluid with bulk viscosity can produce an acceleration
without the need of a cosmological constant or some scalar field.
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Motivation Continued

In the context of inflation, many authors found that the bulk
viscous fluids are capable of producing acceleration of the universe
(Padmanabhan and Chitre (1987), Waga et al. (1986), Cheng
(1991)). This idea was extended to explain the late acceleration of
the universe
In the present work, author study FRW model with bulk viscosity
in modified f (R,T ) gravity theory and investigate the effects of
bulk viscosity in explaining the early and late time acceleration of
the universe.
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f (R ,T ) gravity

Recently, the modified theory of gravity has become one of the
most popular candidates to understand the problem of dark energy.
The f (R,T ) theory is a modified theory of gravity, in which the
Einstein-Hilbert Lagrangian, i.e., R is replaced by an arbitrary
function of the scalar curvature R and the trace T of
energy-momentum tensor. In (Harko et al. 2011), the following
modification of Einstein’s theory is proposed in the unit
8πG = 1 = c .
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f (R ,T ) gravity Continued

The action for the modified theories of gravity takes the following
form

S =
1

2

∫
[f (R,T ) + 2Lm]

√
−gd4x (1)

where g is the determinant of the metric tensor gµν , f (R,T ) is an
arbitrary function of the Ricci scalar, R, and of the trace T of the
stress-energy tensor of the matter, Tµν . Lm is the matter
Lagrangian density, and define the stress-energy tensor of matter
as Landau and Lifshitz (1998).
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f (R ,T ) gravity Continued

Tµν = − 2√
−g

δ(
√
−gLm)

δgµν
(2)

and its trace by T = gµνTµν , respectively. By assuming that the
Lagrangian density Lm of matter depends only on the metric tensor
components gµν , and not on its derivatives, we obtain

Tµν = gµνLm − 2
∂Lm
∂gµν

(3)
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f (R ,T ) gravity Continued

By varying the action S of the gravitational field with respect to
the metric tensor components gµν provides the following
relationship

δS =
1

2

∫ [
fR(R,T )δR + fT (R,T )

δT

δgµν
δgµν

− 1

2
gµν f (R,T )δgµν + 2

1√
−g

δ(
√
−gLm)

δgµν

]√
−gd4x (4)

where fR(R,T ) = ∂f (R,T )
∂R and fT (R,T ) = ∂f (R,T )

∂T , respectively.
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f (R ,T ) gravity Continued

For the variation of Ricci scalar, one can obtain

δR = δ(gµνRµν)

= Rµνδg
µν + gµν(5λδΓλµν −5νδΓλµλ) (5)

where 5λ is the covariant derivative with respect to the symmetric
connection Γ associated to the metric g . The variation of the
Christoffel symbols yields

δΓλµν =
1

2
gλα(5µδgνα +5νδgµα −5αδgνµ) (6)

and the variation of the Ricci scalar provides the expression

δR = Rµνδg
µν + gµν�δg

µν −5µ 5ν δg
µν (7)

where � ≡ 5µ5µ is the d’Alembert operator.
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f (R ,T ) gravity Continued

Therefor, for the variation of the action of the gravitational field is
as follows

δS =
1

2

∫ [
fR(R,T )Rµνδg

µν + fR(R,T )gµν�δg
µν

− fR(R,T )5µ 5νδg
µν + fT (R,T )

δ(gαβTαβ)

δgµν
δgµν

− 1

2
gµν f (R,T )δgµν + 2

1√
−g

δ(
√
−gLm)

δgµν

]√
−gd4x (8)
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f (R ,T ) gravity Continued

The variation of T with respect to the metric tensor as

δ(gαβTαβ)

δgµν
= Tµν + Θµν (9)

where

Θµν ≡ gαβ
δTαβ
δgµν

. (10)
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f (R ,T ) gravity Continued

After partially integrating the second and third terms in equation
(8), we obtain the field equations of the f (R,T ) gravity model as

fR(R,T )Rµν −
1

2
f (R,T )gµν + (gµν�−5µ5ν)fR(R,T )

= Tµν − fT (R,T )Tµν − fT (R,T )Θµν . (11)

Note that when f (R,T ) ≡ f (R), then equations (11) becomes the
field equations of f (R) gravity.
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f (R ,T ) gravity Continued

By contracting Eq. (11) gives the following relation between the
Ricci scalar R and the trace T of the stress-energy tensor,

fR(R,T )R + 3�fR(R,T )− 2f (R,T )

= T − fT (R,T )T − fT (R,T )Θ, (12)

where Θ = Θµ
µ.
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f (R ,T ) gravity Continued

By eliminating the term �fR(R,T ) between Eqs. (11) and (12),
the gravitational field equations can be written in the form

fR(R,T )

(
Rµν −

1

3
Rgµν

)
+

1

6
f (R,T )gµν

=

(
Tµν −

1

3
Tgµν

)
− fT (R,T )

(
Tµν −

1

3
Tgµν

)
−fT (R,T )

(
Θµν −

1

3
Θgµν

)
+5µ 5ν fR(R,T ). (13)
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f (R ,T ) gravity Continued

Taking into account the covariant divergence of Eq. (11), with the
use of the following mathematical identity

5µ

[
fR(R,T )Rµν −

1

2
f (R,T )gµν

+(gµν�−5µ5ν)fR(R,T )

]
≡ 0 (14)

where f (R,T ) is an arbitrary function of the Ricci scalar R and of
the trace of the stress-energy tensor T , we obtain for the
divergence of the stress-energy tensor Tµν the equation

5µTµν =
fT (R,T )

1− fT (R,T )
[(Tµν + Θµν)5µ ln fT (R,T ) +5µΘµν ].

(15)
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f (R ,T ) gravity Continued

Next we consider the calculation of the tensor Θµν , once the
matter Lagrangian is known. From Eq. (3) we obtain first

δTαβ
δgµν

=
δgαβ
δgµν

Lm + gαβ
∂Lm
∂gµν

− 2
∂2Lm

∂gµν∂gαβ

=
δgαβ
δgµν

Lm +
1

2
gαβgµνLm −

1

2
gαβTµν

− 2
∂2Lm

∂gµν∂gαβ
. (16)
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f (R ,T ) gravity Continued

From the condition gασg
σβ = gβα , we have

δgαβ
δgµν

= −gασgβγδσγµν , (17)

where δσγµν = δgσγ

deltagµν is the generalized Kronecker symbol.
Therefore, for Θµν we find

Θµν = −2Tµν + gµνLm − 2gαβ
∂2Lm

∂gµν∂gαβ
. (18)
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f (R ,T ) gravity Continued

The equations of f (R,T ) gravity are much more complicated with
respect to the ones of General Relativity even for FRW metric. For
this reason many possible form of f (R,T ), for example,

f (R,T ) = R + 2f (T ),

f (R,T ) = µf1(R) + νf2(T ),

f (R,T ) = Rf (T )

where f1(R) and f2(T ) are arbitrary functions of R and T , and µ
and ν are real constants, respectively, have been proposed to solve
the modified field equations.
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Metric and Field Equations

In this work we consider the following simplest particular model:

f (R,T ) = R + 2f (T ) (19)

where f (T ) is an arbitrary function of the trace of the
stress-energy tensor of matter. The gravitational field equations
immediately follow from Eq. (11), and are given by

Rµν −
1

2
Rgµν = Tµν − 2f

′
(T )Tµν

− 2f
′
(T )Θµν + f (T )gµν , (20)

which is considered as the field equations of f (R,T ) gravity.
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The Metric and Field Equations Continued

Here, a prime stands for derivative of f (T ) with respect to T and
f (T ) = λT , where λ is constant. If the matter source is a perfect
fluid , Θµν = −2Tµν − pgµν , then the field equations become

Rµν −
1

2
Rgµν = Tµν + 2f

′
(T )Tµν

+ [2pf
′
(T ) + f (T )]gµν , (21)
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The Metric and Field Equations Continued

Here we assume a spatially homogeneous and isotropic space time,

ds2 = dt2 − a(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(22)

where a(t) represent the cosmic scale factor. The constant k
defined curvature of space so, k = 0, 1 and −1 represents flat,
closed and open universe respectively. Our interest in this work is
the first case mainly k = 0.
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The Metric and Field Equations Continued

In comoving coordinates, the components of the four-velocity
vector is defined as uµ = (1, 0, 0, 0). Here we consider the source
of gravitation as the bulk viscous fluid. Therefore the energy
momentum tensor is given by

Tµν = (p̄ + ρ)uµuν − p̄gµν (23)

and
p̄ = p − ξθ (24)

or
p̄ = p − 3ξH (25)

where H = ȧ
a is the Hubble parameter, ρ is the energy density, ξ is

the coefficient of bulk viscosity, θ is the scalar of expansion, p̄ is
the total pressure and p is the proper pressure.
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The Metric and Field Equations Continued

Therefore, the Lagrangian density may be chosen as Lm = −p̄, and
the tensor Θµν = −2Tµν − p̄gµν .
Hence, the field equations (21) for bulk viscous fluid become

Rµν −
1

2
Rgµν = Tµν + 2f

′
(T )Tµν

+ [2p̄f
′
(T ) + f (T )]gµν (26)

Gauranga Charan Samanta BITS Pilani, K K Birla Goa Campus, Goa



The Metric and Field Equations Continued

The gravitational field equations are given by

3

(
ȧ

a

)2

= ρ+ 2λ(ρ+ p̄) + λT (27)

2
ä

a
+

(
ȧ

a

)2

= −p̄ + λT (28)

where T = ρ− 3p̄.
The equation of continuity is given by

ρ̇+ 3
ȧ

a
(ρ+ p̄) = 0 (29)
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Exact Solution of the Field Equations

The field equations (27) to (29) (by substituting H = ȧ
a becomes,

3H2 = ρ+ 2λ(ρ+ p̄) + λT (30)

2Ḣ + 3H2 = −p̄ + λT (31)

and
ρ̇+ 3H(ρ+ p̄) = 0 (32)

Subtract (30) from (31), yields

2Ḣ + (1 + 2λ)(p + ρ)− 3(1 + 2λ)ξH = 0 (33)
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Exact Solution of the Field Equations Continued

The equation of state (EoS) connecting p and ρ can be chosen in
the following form

p = (γ − 1)ρ (34)

where γ is constant known as the EoS parameter lying in the rage
0 ≤ γ ≤ 2. we assume the general form of bulk viscous coefficient
(Ren and Meng 2006)

ξ = ξ0 + ξ1
ȧ

a
+ ξ2

ä

ȧ

= ξ0 + ξ1H + ξ2

(
Ḣ

H
+ H

)
(35)

where ξ0, ξ1 and ξ2 are constants.
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Exact Solution of the Field Equations Continued

Case-I
ξ1 = ξ2 = 0, so ξ = ξ0, a constant.

Case-II
ξ2 = 0, so ξ = ξ0 + ξ1

ȧ
a , depending only on velocity of the

expansion of the universe and not on its acceleration.

Case-III
ξ0, ξ1, ξ2 all are non zero, so that ξ = ξ0 + ξ1

ȧ
a + ξ2

ä
ȧ ,

depending on both the velocity and acceleration of the
expansion of the universe.
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Exact Solution of the Field Equations Continued

Using (25), (34) and (35) into (30), we get

ρ =

3H

[
(1− λ(ξ1 + ξ2))H − λξ2 ḢH − λξ0

]
1 + 4λ− λγ

(36)
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Exact Solution of the Field Equations Continued

Using (34) and (36) into (33), we get[
2− 3λξ0(1 + 2λ)

(1 + 4λ− λγ)
− 3λξ2

]
Ḣ

−
[

3λξ0γ(1 + 2λ)

(1 + 4λ− λγ)
+ 3ξ0(1 + 2λ)

]
H

+

[
(1 + 2λ)3γ

(1 + 4λ− λγ)
(1− λ(ξ1 + ξ2))

−3(1 + 2λ)(ξ1 + ξ2)

]
H2 = 0 (37)
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Exact Solution of the Field Equations Continued

Solution with constant bulk viscous coefficient

Assume ξ1 = ξ2 = 0, then equation (36) reduces to

ρ =
3H2 − 3λξ0H

(1 + 4λ− λγ)
(38)

Substituting (38) and (34) in (33), we get

Ḣ +
3γ(1 + 2λ)H

2(1 + 4λ− λγ)

[
H − ξ0(1 + 4λ)

γ

]
= 0 (39)
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Exact Solution of the Field Equations Continued

Case:-I Solution for γ 6= 0

Solving (39) for γ 6= 0. We find

H =
e

3(1+2λ)(1+4λ)ξ0
1+4λ−λγ

t

c0 + γ
(1+4λ)ξ0

e
3(1+2λ)(1+4λ)ξ0

1+4λ−λγ
t

(40)

Here c0 is a constant of integration. Using H = ȧ
a , the scale factor

in terms of t is given by

a = c1

[
c0 +

γ

(1 + 4λ)ξ0
e

3(1+2λ)(1+4λ)ξ0
1+4λ−λγ

t
] 2(1+4λ−λγ)

3γ(1+2λ)

(41)
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Exact Solution of the Field Equations Continued

where c1 > 0 is integration constant. The above scale factor may
be rewritten as

a(t) = a0

[
1 +

γH0

(1 + 4γ)ξ0

(
e

3(1+2λ)(1+4λ)ξ0
2(1+4λ−λγ)

t − 1

)] 2(1+4λ−λγ)
3γ(1+2λ)

(42)

The energy density can be obtained as

ρ =
3H0

(1 + 4λ− λγ)

[
e

3(1+2λ)(1+4λ)ξ0
1+4λ−λγ

t

1 + γH0

(1+4γ)ξ0

(
e

3(1+2λ)(1+4λ)ξ0
2(1+4λ−λγ)

t − 1

)]

×
[

H0e
3(1+2λ)(1+4λ)ξ0

2(1+4λ−λγ)
t

1 + γH0

(1+4λ)ξ0

(
e

3(1+2λ)(1+4λ)ξ0
2(1+4λ−λγ)

t − 1

) − λξ0] (43)
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Exact Solution of the Field Equations Continued

For 0 ≤ γ ≤ 2, viscous solution satisfies the dominant energy
condition, i. e. p + ρ ≥ 0. If γ < 0 we have a big rip singularity at
a finite cosmic time

tbr =
2(1 + 4λ− λγ)

3(1 + 2λ)(1 + 4λ)ξ0
ln

(
1− (1 + 4λ)ξ0

γH0

)
> t0. (44)

The energy density grows up to infinity at a finite time t > t0,
which leads to a big rip singularity characterized by the scale factor
and Hubble parameter blowing up to infinity at this finite time.
Therefore, there are cosmological models with viscous fluid which
present in the development of this sudden future singularity.
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Exact Solution of the Field Equations Continued

The deceleration parameter is given by

q =

3(1+2λ)
2(1+4λ−λγ)

[
γ − (1+4λ)ξ0

H0

]
e

3(1+2λ)(1+4λ)ξ0
2(1+4λ−λγ)

t
− 1 (45)

which is time dependent in contrast to perfect fluid.
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Conclusion

Thus the constant bulk viscous coefficient generates time
dependent deceleration parameter (q) which may also describe the
transition phases of the universe along with deceleration or
acceleration of the universe.
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