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Overview 

I. Note on the Cauchy problem for GR 
 

II. How to handle nonlinear gravitational waves 

 

III. The Multiple-scale method 
 

IV. Application to warped brane world models with U(1) 

                                           scalar-gauge field(in the brane) 

Spin-off: 
             a. Self-acceleration of FLRW possible without Λ? 
                                          [Slagter, Pan: Found of Phys, 2016] 
             b. Evidence via alignment of quasar polarization? 

                                   [Slagter: Journ Mod Phys,2016] 

 
Overview article:  R.Maartens: Liv.Rev. 2010  “Brane world models” 



Artist impression of a cosmic string 



Some considerations on the Cauchy problem in GR 

For linear problems:   well understood 

For nonlinear problems:    we have  

                                   local  Cauchy problem [well understood] 

                                   global Cauchy problem ( strong cosmic censorship problem) 

 

General:  Given a solution 𝑢0 𝑥 ,   does there exist a unique solution  𝑢(𝑡, 𝑥) 
of the PDE’s with 𝑢 0, 𝑥 = 𝑢0(𝑥)  
Connection with practical physics:   

It is seldom that exact solutions of the Einstein eq. can be used: one needs numerical 

solutions or analytic approx ( expansion in a small parameter) 

 
►The Einstein eq are essentially global hyperbolic eq:  

 
►A spacelike hypersurface S is called Cauchy surface, if each inextendible  

causal curve hits it precisely once 
►Cauchy surfaces are the correct places to give data for the Cauchy problem 

► 𝑛𝜇 unit normal vector on S; define:  𝒈𝝁𝝂 = 𝒉𝝁𝝂 + 𝒏𝝁𝒏𝝂 ,  𝒌𝝁𝝂 = 𝜵𝜸𝒏𝜹𝒉𝝁
𝜸
𝒉𝝂

𝜹                                             

     they constitute  the initial data for the Einstein eq. 
►There are constraints: 
 

 
𝑹 − 𝒌𝒂𝒃𝒌

𝒂𝒃 + 𝒉𝒂𝒃𝒌𝒂𝒃
𝟐
= 𝜿𝑻𝟎𝟎         𝛁

𝒃𝒌𝒂𝒃 − 𝛁𝒂 𝒉𝒃𝒄𝒌𝒃𝒄 = −
𝟏

𝟐
𝜿𝑻𝟎𝒂 



Considerations on gravitational waves in GR 

Weak field approx:  

𝝏𝜸𝝏𝝁𝒉
𝝁𝝇 + 𝝏𝝇𝝏𝝁𝒉

𝝁𝜸 − 𝝏𝜸𝝏𝝇𝒉 − 𝝏𝝁𝝏𝝁𝒉
𝜸𝝇 − 𝜼𝜸𝝇 𝝏𝜷𝝏𝝁𝒉

𝜷𝝁 + 𝝏𝝁𝝏𝝁𝒉 =  𝟏𝟔𝝅𝑮𝑻𝜸𝝇 

Einstein equations: 

Note that 𝒉𝝁𝝂 is invariant under a coordinate transformation    𝒙𝝁 → 𝒙𝝁 + 𝝃𝝁  

so  𝒉𝝁𝝂 → 𝒉𝝁𝝂 − (𝝏𝝁𝝃𝝂 + 𝝏𝝂𝝃𝝁) 

One usually choose the Lorentz-gauge:  𝝏𝝁 𝒉𝝁𝝇 −
𝟏

𝟐
𝜼𝝁𝝇𝒉 = 𝟎 and additional  

gauge freedom  𝝏𝝁𝝏𝝁𝝃
𝝇 = 𝟎. 

However:  in high-energy situations ( or high curvature): 

             

                 weak field approximation  not suitable   

 The background metric itself may respond to the strong gravitational field  

 

And: weak-field approx runs into divergences when pushed to second order! 

                  [long time ago:Trautman, Fock]  

𝒈𝝁𝝂 ≈ 𝜼𝝁𝝂 + 𝒉𝝁𝝂  + ℴ(𝒉𝝁𝝂
𝟐)     𝒉𝝁𝝂  ≪   𝟏 



The multiple-scale analysis 
[ Or: high-frequency  or “two-timing” method] 

It is known that: 
► In d>4 the equations of (stringy) gravity are fully non-linear ( the usual Einstein  

equations are quasi-linear). 

 
► Non-uniformity can appear in a regular perturbation expansion by interaction  
     between consecutive orders of the perturbation scheme: secular terms can appear. 

 ► Discontinuities of the 2-th order derivatives of the metric  across a (d-1) dim   
                                                                                                           submanifold            

  ► dispersion of gravitational waves  or shocks  

Now: 
►The MS method is a powerful method [ Choquet-Bruhat, 1969] to  solve this  

Cauchy problem: the unknowns and their first derivatives cannot be given 

arbitrarily on a (d-1) dim submanifold: the Cauchy data must satisfy constraints 

 
►Find an asymptotic solution of order p in an expansion parameter ω. 
►This is also an approximate solution for appropriate boundedness conditions 
►One obtains from lower  to higher order:  “gauge”-conditions on the fieldvariables 
                                                                             “back-reaction” on the background metric 
                                                                               propagation equations 
                                                                  ..... 
►Make additional restrictions on the expansion to maintain boundedness. 



First of all:     We need a physical meaningful expansion parameter: 

 

   for example:    
𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡𝑕 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛

𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
 

 

                or:      
𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡𝑕𝑒 𝑒𝑥𝑡𝑟𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
 

 

 

 

So:      wave-like solutons of the non-linear hyperbolic system are 

characterized by different scales: 

 

Regions with smooth variation of the solution:  background 

Regions with strong variation: waves 

 

Some results: 

 

 Isaacson-1967; Choquet-Bruhat-Taub-1973;Choquet-Bruhat-1969,1976,1988 

 Slagter-Ap.J 1986 

 For sringy gravity ( Gauss-Bonnet term): Choquet-Bruhat-1988 



Simple example 1:  Duffing’s equation 

𝒅𝟐𝒚

𝒅𝒕𝟐
+ 𝜶𝒚 + 𝜺𝒚𝟑 = 𝟎      𝜀 𝑠𝑚𝑎𝑙𝑙 When t is of order 

1

𝜖
 one gets serious problems: 

Secular terms in all orders, so violation 

of boundedness. 

𝒚 𝒕 =   𝜺𝒏𝒚𝒏(𝒕)

∞

𝟎

  Proof:  Expand: then:  

  𝒚′′𝟎+𝒚𝟎 = 𝟎        →           𝒚𝟎= 𝐜𝐨𝐬 𝒕   

𝒚′′𝟏 + 𝒚𝟏 = −𝒚𝟎
𝟑  →      𝒚𝟏= 𝑨𝒄𝒐𝒔 𝒕 + 𝑩𝒔𝒊𝒏 𝒕 +

𝟏

𝟑𝟐
𝐜𝐨𝐬 𝟑𝒕 −

𝟑

𝟖
𝒕 𝐬𝐢𝐧 (𝒕) 

  
𝑦1  contains a secular term.  However: 

 

Solution: all secular terms sum up to  zero.  A hell of a job for many DE’s! 

                   Result:  𝒚 𝒕 = 𝒄𝒐𝒔[𝒕 𝟏 +
𝟑

𝟖
𝜺 ] 

For the multiple scale method not necessary: 

 

Substitute:       𝒚 𝒕 = 𝒀𝟎 𝒕, 𝝉 + 𝜺𝒀𝟏 𝒕, 𝝉 + ⋯ .               𝝉 = 𝜺𝒕 

the solution is bounded for all t! 



collecting powers of 𝜀 : 𝜕2𝑌0
𝜕𝑡2

+ 𝑌0 = 0            
𝜕2𝑌1
𝜕𝑡2

+ 𝑌1 = −𝑌0
3 − 2

𝜕2𝑌0
𝜕𝜏𝜕𝑡

 

The general solution for  𝑌0:    𝒀𝟎 𝒕, 𝝉 = 𝑨 𝝉 𝒆𝒊𝒕 + 𝑨∗(𝝉)𝒆−𝒊𝒕  

Substituting this solution in righthand side in Eq. for  𝑌1: 
 

𝑒𝑖𝑡 −3𝐴2𝐴∗ − 2𝑖
𝑑𝐴

𝑑𝜏
+ 𝑒−𝑖𝑡 −3𝐴 𝐴∗ 2 + 2𝑖

𝑑𝐴∗

𝑑𝜏
− 𝑒3𝑖𝑡𝐴3 − 𝑒−3𝑖𝑡(𝐴∗)3 

  

 

 
If we do not want secular terms in  𝑌1-equation to order ε,  then the two terms in 

brackets must be zero! The solution is:  𝑨 𝝉 = 𝑹(𝟎)𝒆𝟏𝜽 𝟎 +𝟑𝒊𝑹(𝟎)𝟐/𝟐 
After substituting τ = ε t   and proper boundary conditions, we obtain 
 

𝒚 𝒕 = 𝐜𝐨𝐬 𝒕 𝟏 +
𝟑

𝟖
𝜺 + 𝝄 𝜺 ,   𝜀→0,  εt= 𝜊 1 ,    [compare with sum sec.terms] 

 

 

So:  one can keep track of the several orders of approximation 



Example 2:  Nonlinear Schrodinger equation 

Consider: 

      

Φ = 0 is a stable solution. For 𝛼 = 1, 𝛽 =
1

6
  and Φ small 

Then an approx.:  𝑈 = 1 − 𝑐𝑜𝑠Φ  (sin-Gordon eq) 

 

How to handle the disturbances? 

Multiple-Scale-method:  

 

 

 

  We define ―slow‖ variables‖:  𝑋𝑘 = 𝜀𝑘𝑥       𝑇𝑘 = 𝜖𝑘𝑡 
Then:   

 

And we can keep track of the several orders and can handle secular terms. 

 

Lowest order:                                                            [linearized eq.]   

 

Next order:   

 

 

 

 

Φ𝑡𝑡 − Φ𝑥𝑥 =  Φ 𝛽Φ2 − 𝛼  

Φ 𝑥, 𝑡; 𝜖 =  𝜀𝑘𝑝

∞

𝑘=1

Φ 𝑘 (𝑥, 𝑡; 𝜀) 

Φ 𝑡, 𝑥; 𝜀 = Φ (𝑥, 𝑡, 𝑋, 𝑇, 𝑋1, 𝑇1, … . . ) 

𝜕𝑥𝑥 − 𝜕𝑡𝑡 − 𝛼 Φ(1) = 0 

𝜕𝑥𝑥 − 𝜕𝑡𝑡 − 𝛼 Φ(2) + 2 𝜕𝑋1𝑥 − 𝜕𝑇1𝑡 Φ 1 = 0 

𝜕𝑥𝑥 − 𝜕𝑡𝑡 − 𝛼 Φ(3) + 𝜕𝑋1𝑋1
− 𝜕𝑇1𝑇1 + 2𝜕𝑋2𝑥 − 2𝜕𝑇2𝑡 Φ 1 + 𝛽 Φ(1) 3

+ 2 𝜕𝑋1𝑥 − 𝜕𝑇1𝑡 Φ 2 = 0 



The multiple scale method formally 

Let us consider the formal series of the relevant fields 𝑭𝒊  in x on a manifold M, 

dependent on different scales  (𝒙, 𝜉, 𝜒, . . ) 
 

 

 

 

with 𝜉 = ωΘ 𝒙 ,   χ = 𝜔 Π 𝒙 , … scalar ( phase functions) on M. 

Here:  
𝟏

𝝎
  is the ratio of the characteristic wavelength of the perturbations to 

the   dimension of the background;  
𝟏

𝝎 
  ratio extra dim. to background dim. 

𝐹𝑖 are the metric components (and the scalar-gauge fields). 

 

 

 

If one substitutes the expansions into the fieldequations, one says that 𝐹𝑖 

are  asymptotic solutions, if in the replaced series 

 

 

 

all 

𝐹𝑖 𝒙, 𝜉, 𝜒. . =    𝜔−𝑛𝐹𝑖
𝑛

(𝒙, 𝜉, 𝜒. . )

∞

𝑛=0

 

𝒅𝒈𝝁𝝂

𝒅𝒙𝝇 = 𝒈𝝁𝝂,𝝇 + 𝝎𝒍𝝇𝒈 𝝁𝝂 + 𝝎 𝒎𝝇𝒈 𝝁𝝂 +. .  with  𝒈𝝁𝝂,𝝇≡
𝝏𝒈𝝁𝝂

𝝏𝒙𝝇 ,     𝒈 𝝁𝝂 ≡
𝝏𝒈𝝁𝝂

𝝏𝝃
 ...  

𝑓𝑖 𝒙, 𝜉, 𝜒. . =    𝜔−𝑛𝑓𝑖
𝑛

(𝒙, 𝜉, 𝜒. . )

∞

𝑛=−𝑚

 

 𝒇𝒊
𝒏

=0 



Now 

Nice example:  stringy gravity—Choquet-Bruhat; J Math. Phys.1988 

 

►gravity+Gauss-Bonnet term in n-dim: field eq second order PDE’s 

                                    

►Cauchy problem is well described with constraints 

► 

 

The multiple scale method formally 

𝑭𝒊 𝒙, 𝝃, 𝝌. . =    𝝎−𝒏𝑭𝒊
𝒏

(𝒙, 𝝃, 𝝌. . )∞
𝒏=𝟎     is also  an approximate wavelike 

 

 solution of order p on W ⊂ 𝑀, if for all x∈ 𝑊 

 

                             |𝒇𝒊 𝒙, 𝝃, 𝝌. . | ≤ 𝑪.𝝎−𝒑    for all 𝜉, 𝜒,...  C const 



 Why Warped 5D Space times? 

•The explanation of the acceleration  with a cosmological constant is rather 

problematic: 

       ► Coincidence-problem:   𝛀𝚲~𝛀𝑴 

       ►  Finetuning-problem:   𝝆𝚲,𝒐𝒃𝒔~𝟏𝟎−𝟓𝟕𝑮𝒆𝑽𝟒     𝝆𝚲,𝒕𝒉𝒆𝒐𝒓~𝟏 𝑻𝒆𝑽𝟒 

      ►  Ad hoc modifications:  of the Friedmann equation risky, specially when 

                                       considering density perturbations: do it  covariantly 

 

       ► Disturbances don’t survive in 4D models : at least some of them are   

needed   for the observed large-scale structures  

 

In warped 5D model: they do survive 

 

So modify GR : D-branes.          1. Dvali-Gabadadze- Porrati  (DGP) 

                                              ⇒2. Randall-Sundrum (RS) 
In general: 

Gravity leakage at late-times initiates acceleration, due to weakening of gravity on 

the brane –   not due to any negative pressure field.  
4D gravity is recovered at high energy via the lightest KK   modes of the graviton 

By-product:  hierarchy problem solved [ for example in RS-1 model] 
     



Present State of our Universe 

 ► The expansion of our universe is accelerating. 

 

► One needs dark energy with an effectively negative pressure, 𝒑 < −
𝟏

𝟑
𝝆  

          LCDM:   w = -1                       [ Planck 2015:  w > −𝟏 ? ] 

 

 ► We should live now in the cosmological constant dominated era (and approx. ) 

                            𝛀𝚲 = 𝟎. 𝟕𝟑                 𝛀𝑴 =   𝛀𝑫𝑴 = 𝟎. 𝟐𝟑    +   𝛀𝑩 (= 𝟎. 𝟎𝟒𝟔) 
  



Why Cosmological Cosmic Strings? 

• The U(1) scalar gauge field has 1.lived up to his   reputation! :    

                                                   2.triggered  inflation 

                                                   3.GL theory of  super-cond.  

                                                   4.Nielsen-Olesen vortex 

 
• Gen Rel field eq: 

𝑮𝝁𝝂 =  𝜿𝟐
4 𝑻𝝁𝝂     𝑫𝝁𝑫

𝝁𝜱 − 𝟐
𝝏𝑼

𝝏𝜱∗ = 0      𝜵𝝁𝑭𝝁𝝂 −
𝟏

𝟐
𝒊𝒆[𝜱(𝑫𝝂𝜱)∗-𝜱∗ 𝑫𝝂𝜱 ] = 𝟎 

**Cosmic string  collection of points in false vacuum. 

** Angle deficit  Minkowski minus wedge 

 

  

 

Question:  What about cylindrical  GW from CS in          

                      expanding universe? [ Gregory, 1989] 

 

It turns out:   C-energy ~ 
𝒓𝒄𝒔

𝑹𝑯
     extremely small    

Expected disturbances  fade away during expansion   

 

[Importance of cyl symm grav waves was already noticed  

by Einstein-Rosen[1936]] 

 



Why Cosmological Cosmic Strings? 
•U(1) CS can be embedded into a flat 4D FRW  along the polar axis  

 

•However: The approx spacetime becomes  conical:[ not pleasant] 

 

 

 
and can be matched on the well known FLRW spacetime by suitable transformation 

 

 

 

•Result: No contribution from the gravitation waves from the CS because  

                
𝑟𝐶𝑆

𝑅𝐻
~ 

𝑎 

𝑎
 ~ 𝟏𝟎−𝟐𝟎 

•Disturbances are damped rapidly by (
𝑟𝐶𝑆
𝑅𝐻

)2 

 

• Asymptotic conical ST ( angle deficit) is problematic. Also found in radiative cyl. 

Einstein-Rosen ST: C-energy related to angle deficit  [just as mass is related to angle 

deficit for CS].  

So:       Surviving disturbances must be very small ( otherwise conflict with observ) 

 

 

 

  



Problems for Cosmic Strings from 

Observations 

► density perturbations :    
𝛿𝜌

𝜌
 ~ Gμ = η2 /Mp 

2 ~ 10-6  for GUT scale 

 

►  in first instance correct with observations 

 

► Now: inconsistencies with new CBM power spectrum COBE, WMAP 

► They cannot provide  a satisfactory explanation for the magnitude of      the 

initial density perturbations 

► How to handle super-massive CS with Gμ >>1  [ phase transition at energy much 

larger than GUT ] 

 This is interesting for perturbation analysis 

[The angle deficit will increase with the energy scale of symmetry breaking] 

► where is the axially symmetric gravitational lensing-effect? 

 

► Cosmological CS: late-time conical residu [unwanted]  

    [Gregory, 1989]  

                                                          

                 So Exit  CS study??   

 



Rescue of CS 

reborn CS    →   

            *** in the brane:      unobservable angle deficit 

          *** asymptotically:   no conical space time   

                                                 [Slagter, 2012, IJMPD] 

          *** So no conflict with:  

                   1.    CMB-spectrum 

                   2.    Absence of axially symm. double images 

                        3.    The effective 4D spacetime of the CS in agreement   with GUT;  

 

→  CS can be produced in superstring theory 

→  Super massive CS with Gμ >> 1  will be warped down to GUT scale( 𝟏𝟎−𝟕) 
 

→   Disturbances in the spatial components of the stress-energy tensor cause cylindrical 

symmetric waves, amplified due to the presence of the bulk space  with warp factor 

►►  Mass:        𝛍 = 𝟐𝛑 𝐅(𝐲)  𝐞−𝐀𝐊𝛔𝐝𝐫
∞

𝟎
  with F the WARPFACTOR 

  so: building up a huge mass in the bulk : KK-modes on brane 

►►  Test of RS type models against observational  constraint possible ! 

        Cern:  KK-particles detectable? 

Go to warped 5D RS model 





The warped 5D model with the U(1) scalar-gauge field 

We consider  the warped spacetime:  [ 𝑔𝜇𝜈 = 𝑔𝜇𝜈 − 𝑛𝜇𝑛𝜈]
54    (n normal to brane) 

 

 

 

With W the warpfactor. We reside on the BRANE y=0. Gravity can prop. in BULK 

We consider: scalar-gauge field in brane: [empty BULK; only Λ5 ] 

Φ = 𝜂𝑋 𝑡, 𝑟 𝑒𝑖𝜑, 𝐴𝜇 =
1

𝜀
𝑃 𝑡, 𝑟 − 1 𝛻𝜇𝜑, 𝑉 Φ =

1

8
𝛽(Φ2 − 𝜂2) 

2
 

 

From the 5D-eq: 
[Slagter-Pan;2016] 

  Found of Phys 

The modified 4D effective Einstein equations: 

 

 

S is the quadratic term in the energy-momentum tensor [from extrinsic curv. terms 

in proj. Einstein tensor] 

𝓔 is part of the 5D Weyl tensor C and carries inf.of grav.field outside the brane  

 
 
𝚲𝒆𝒇𝒇 = 𝟎  (RS-finetuning) 

𝒅𝒔𝟐 = 𝓦(𝒕, 𝒓, 𝒚)𝟐 𝒆𝟐 𝜸(𝒕,𝒓)−𝝍(𝒕,𝒓) −𝒅𝒕𝟐 + 𝒅𝒓𝟐 + 𝒆𝟐𝝍(𝒕,𝒓)𝒅𝒛𝟐 + 𝒓𝟐𝒆−𝟐𝝍(𝒕,𝒓)𝒅𝝋𝟐 + 𝒅𝒚𝟐 

𝓦 =
𝒆

−
𝟏
𝟔𝜦𝟓(𝒚−𝒚𝟎) 

𝜶 𝒓
(𝒅𝟏𝒆

𝜶𝒕 − 𝒅𝟐𝒆
−𝜶𝒕)(𝒅𝟑𝒆

𝜶𝒓 − 𝒅𝟒𝒆
−𝜶𝒓) 

𝑮𝝁𝝂 = −𝜦𝒆𝒇𝒇 𝒈𝝁𝝂 + 𝜿𝟒
𝟐 𝑻𝝁𝝂 +𝟒𝟒𝟒 𝜿𝟓

𝟒 𝑺𝝁𝝂 − 𝓔𝝁𝝂 

𝓔𝝁𝝂 =  𝑪𝜶𝜸𝜷𝜹𝒏
𝜸𝒏𝜹 𝒈𝝁

𝜶 𝒈𝝂
𝜷𝟒𝟒𝟓  



*Exact solutions 

Slagter-Pan;2016--Found of Phys 

 



The warped 5D model with the U(1) scalar-gauge field 

The scalar-gauge field equations: 

 

 

 

With 𝐷𝜇Φ = 𝛻𝜇Φ + 𝑖𝜖𝐴𝜇Φ
4 .  

 
►The scalar gauge field can build-up a huge mass 

per unit length (or angle-deficit) by the  

warpfactor W:   G𝝁~𝟏 

 
►Can induce massive KK-modes felt on the brane. 

  [while manifestation on brane will be warped  

down to GUT scale consistent with observation] 

 
►Disturbances can cause cyl. symm waves amplified by the warpfactor and could 
    survive natural damping due to the expansion of the universe. 
 
►Could possible explane “self-acceleration”  [ dark energy]  with Λ𝑒𝑓𝑓=0 ! 

 

𝑫𝝁𝑫𝝁𝜱 = 𝟐
𝒅𝑽

𝒅𝜱∗        𝜵𝝁𝑭𝝂𝝁 =
𝟏

𝟐
𝒊𝜺 𝜱(𝑫𝝂𝜱)∗−𝜱∗𝑫𝝂𝜱

𝟒  



The nonlinear wave approximation in 5D GenRel 

We expand: 

 

 

 

 

 

 

We define 

 

 

 

 

The rapid variations occur in the directions of 𝑙𝜇 , 𝑘𝜇 transversal to the sub-

minifolds of constant phase . 

 

For the time being:   only 𝒍𝝁 =
𝝏𝜣

𝝏𝒙𝝁   [ now Θ = 𝑡 − 𝑟] 

The perturbations can be φ-dep. 
 

 

 

𝒈𝝁𝝂 = 𝒈 𝝁𝝂 𝒙 +
𝟏

𝝎
𝒉𝝁𝝂 𝒙, 𝝃, 𝝌, . . +

𝟏

𝝎𝟐 𝒌𝝁𝝂 𝒙, 𝝃, 𝝌, . . + ⋯ 

𝑨𝝁 = 𝑨 𝝁 𝒙 +
𝟏

𝝎
𝑩𝝁 𝒙, 𝝃, 𝝌, . . +

𝟏

𝝎𝟐 𝑪𝝁 𝒙, 𝝃, 𝝌, . . + ⋯ 

𝜱 = 𝜱 𝒙 +
𝟏

𝝎
𝜳 𝒙, 𝝃, 𝝌, . . +

𝟏

𝝎𝟐 𝚵 𝒙, 𝝃, 𝝌, . . + ⋯ 

𝒅𝒈𝝁𝝂

𝒅𝒙𝝇 = 𝒈𝝁𝝂,𝝇 + 𝝎𝒍𝝇𝒈 𝝁𝝂 + 𝝎 𝒌𝝊𝒈 𝝁𝝂+. .   𝒈𝝁𝝂,𝝇 =
𝝏𝒈𝝁𝝂

𝝏𝒙𝝇         𝒈 𝝁𝝂 =
𝝏𝒈𝝁𝝂

𝝏𝝃
  



We write: 

 

 

 

 

 

 

 

 

 

We substitute the expansions into the fieldequations and subsequently put zero the 
various powers of ω 
 
From the 𝝎−𝟏   Einstein:                                                 (―gauge‖ cond) 

 

                       Scalar:                               [note: this is the Eikonal eq., or 𝚿  ]      
 

                      gaugefield: 

 

Normally one imposes a priori gauge-conditions: 

The contribution of ℇ𝝁𝝂
(−𝟏)

  changes the conditions on 𝑕𝜇𝜈 

Further:  we take                       (Eikonal cond)      

𝒍𝝁𝒍𝝁 ≠ 𝟎  means that 𝑕𝜇𝜈  arises from a coord transformation. 

𝑮𝝁𝝂
(−𝟏)

= −ℇ𝝁𝝂
(−𝟏)𝟒  

𝒍𝝁𝒍𝝁𝚿 = 𝟎 

Γ𝜇𝜈
𝛼 = Γ 𝜇𝜈

𝛼 + Γ𝜇𝜈
𝛼(0)

+
1

𝜔
Γ𝜇𝜈

𝛼(1)
+ … 

𝑅𝜇𝜏𝜈
𝜎 = 𝜔 𝑅𝜇𝜏𝜈

𝜎(−1)
+ 𝑅 𝜇𝜏𝜈

𝜎 + 𝑅𝜇𝜏𝜈
𝜎(0)

+ 
1

𝜔
 𝑅𝜇𝜏𝜈

𝜎(1)
+ ⋯ 

 

with                          Γ𝜇𝜈
𝜎(0)

=
1

2
𝑔 𝛽𝜎 𝑙𝜇𝑕 𝛽𝜈 + 𝑙𝜈𝑕 𝛽𝜇 − 𝑙𝛽𝑕 𝜇𝜈  

                      

 Γ𝜇𝜈
𝛼(1)

=
1

2
𝑕𝜇:𝜈

𝜎 + 𝑕𝜈:𝜇
𝜎 − 𝑕𝜇𝜈

:𝜎 − 𝑙𝜈𝑘 𝜇
𝜎 + 𝑙𝜇𝑘 𝜈

𝜎 − 𝑙𝜎𝑘 𝜇𝜈 − 𝑕𝜌
𝜎Γ𝜇𝜈

𝜌(0)
 

𝑙𝜇 𝑕 𝜇𝜈 −
1

2
𝑔 𝜇𝜈𝑕 = 0  

𝒍𝝁𝒍𝝁 = 𝟎    

𝒍𝝁𝑩 𝝁 = 𝟎 



The effective brane Einstein equations 

The 𝝎(𝟎)- Einstein equations: 

 

 

 

where the part of the Weyl tensor is:  

 

 

 

 

 

Now we take only     𝒉𝟏𝟏, 𝒉𝟒𝟒   𝒉𝟏𝟑   𝒉𝟏𝟒   𝒉𝟓𝟓   ≠   𝟎  
 

One can also integrate the equations wrt to ξ  :  propagation equations 
Then: substitute back these equations:  (Λ𝑒𝑓𝑓 = 0 (𝑅𝑆 𝑓𝑖𝑛𝑒𝑡𝑢𝑛𝑖𝑛𝑔)                                                 

     
 
                                                                       

one says:► − 𝓔𝛍𝛎
(𝟎)

𝐝𝛏 is the KK-mode contribution of the perturbative 5D graviton 

               ►    can play the role of effective CC ( same sign) 

               ►    is an extra ―back-reaction‖ term which contain 𝒉 𝟓𝟓      

𝑮 𝝁𝝂 + 𝑮𝝁𝝂
(𝟎)

=𝟒  − 𝜦𝒆𝒇𝒇 𝒈 𝝁𝝂 + 𝜿𝟒
𝟐(𝟒 𝑻 𝝁𝝂 + 𝑻𝝁𝝂

(𝟎)
) + 𝜿𝟓

𝟒 𝑺 𝝁𝝂 + 𝑺𝝁𝝂
𝟎

− (𝓔 𝝁𝝂 + 𝓔 𝝁𝝂
𝟎

)𝟒  𝟒𝟒  

ℰ𝜇𝜈 =  𝑛𝛾𝑛𝛿 𝑔𝜇
𝛼4 𝑔𝜈

𝛽
[ 𝑅𝛼𝛾𝛽𝛿 −

1

3
( 𝑔𝛼𝛾 𝑅𝛿𝛽 −5554 𝑔𝛼𝛿 𝑅𝛾𝛽 −55 𝑔𝛽𝛿 𝑅𝛾𝛼 +55 𝑔𝛽𝛿 𝑅𝛾𝛼

55 ) 

+
1

12
( 𝑔𝛼𝛾 𝑔𝛿𝛽 − 𝑔𝛼𝛿 𝑔𝛾𝛽

5555 ) 𝑅]5  

𝑮 𝝁𝝂 = 𝜿𝟒
𝟐 𝑻 𝝁𝝂 + 𝜿𝟓

𝟒𝑺 𝝁𝝂 − 𝓔 𝝁𝝂 +
𝟏

𝝉
 𝜿𝟒

𝟐𝑻𝝁𝝂
(𝟎)

+ 𝜿𝟓
𝟒 𝑺𝝁𝝂

(𝟎)
 − 𝑮𝝁𝝂

(𝟎)
 −  𝓔𝝁𝝂

(𝟎)𝟒 𝒅𝝃𝟒𝟒  



The scalar-gauge field equations 

Simplified case:  𝑙𝜇 = [1,−1,0,0,0] 

Then: first order gauge field:  𝑩𝝁 = [𝑩𝟎, 𝑩𝟎, 𝟎, 𝑩, 𝟎] 

 

From the gauge field eq: :  The  𝐴 
𝜇 is as the unperturbed case. 

The first order perturbations:  

 

 

 

 

 

 

 

 

 
► We observe:  φ-dependent parts arise, amplified by warpfactor! 
► One needs:  𝒍𝝁𝑨 𝝁 = 𝟎  , otherwise real and imaginary parts interacts as 

propagation progresses. 

►We omitted for time being 𝐶𝜇  and the 𝜿𝟓
𝟒 𝑺 𝝁𝝂 + 𝑺𝝁𝝂

𝟎
  term 

►Approximate wave solution no longer axially symmetric! [also found by Choquet B] 

𝜕𝑡Ψ =  𝜕𝑟Ψ +
𝜕𝑟𝒲 − 𝜕𝑡𝒲 

𝒲 
+

1

2𝑟
Ψ  

𝜕𝑡𝐵 = 𝜕𝑟𝐵 + 𝜕𝑟𝜓 − 𝜕𝑡𝜓 −
1

2𝑟
𝐵 + 𝑒2𝜓 

(𝜕𝑟𝑃 − 𝜕𝑡𝑃 ) 

2𝑟2𝒲 2𝜀
𝑕 44 

                  𝜕𝑡𝐵 0 = 𝜕𝑡𝐵 0 − 𝑒2𝛾 𝜕𝜑𝐵 

𝑟2 − 𝜀𝑒2𝛾 −2𝜓 𝒲 2𝑋 Ψ  sin 𝜑+𝑒2𝜓 (𝜕𝑡𝑃 −𝜕𝑟𝑃 ) 
2𝑟2𝒲 2𝜀

𝑕 14 



The scalar background field equation 

 

 

 

 

 

𝐷 𝛼𝐷 𝛼Φ − 
1

2
𝛽Φ Φ Φ ∗ − 𝜂2 =

1

𝜏
 𝑕𝜇𝜈𝑙𝜇𝑙𝜈Ψ + 𝑔 𝜇𝜈Γ𝜇𝜈

𝛼(0)
Ψ 𝑑𝜉 

After integration  we obtain for the background scalar field 

 

 

 

 

 

 
►There is a “backreaction” from the HF perturbations 
 
 
 



The background Einstein equations to order 𝜔(0) 

In our special model, we have decoupled background equations: 

 

 

 

 

 

 

 

 

 

 

  

 
 
 
 
 
 
 

𝜕𝑡𝑡
2 𝒲 = −𝜕𝑟𝑟

2 𝒲 +
2

𝒲 
𝜕𝑡𝒲 

2 + 𝜕𝑟𝒲 
2 − 𝒲 𝜕𝑡𝜓 

2 + 𝜕𝑟𝜓 
2 +

𝒲 

𝑟
𝜕𝑟𝛾 − 𝜕𝑡𝛾 

+ 2 𝜕𝑟𝒲 − 𝜕𝑡𝒲 𝜕𝑡𝜓 − 𝜕𝑟𝜓 +𝜕𝑟 𝛾 − 𝜕𝑡𝛾 + 2𝒲 𝜕𝑡𝜓 𝜕𝑟𝜓 − 4
𝜕𝑡𝒲 𝜕𝑟𝒲 

𝒲 

− 2𝜕𝑡𝑟𝒲 −
3

4
𝜅4

2 𝑒2𝜓 
𝜕𝑡𝑃 − 𝜕𝑟𝑃 

2

𝒲 𝑟2𝜖2
+ 𝒲 𝜕𝑡𝑋 − 𝜕𝑟𝑋

2  

 𝜕𝑡𝑡
2 𝜓 = 𝜕𝑟𝑟

2 𝜓 +
𝜕𝑡𝜓 

𝑟
+

2

𝒲 
𝜕𝑟𝒲 𝜕𝑟𝜓 − 𝜕𝑡𝒲 𝜕𝑟𝜓 −

𝜕𝑟𝒲 

𝑟𝒲 
+

3𝑒2𝜓 

4𝒲 2𝑟2𝜖2 𝜅4
2(𝜕𝑡𝑃 

2 −

𝜕𝑟𝑃 
2 − 𝒲 2𝜀2𝑋 2𝑃 2𝑒2𝛾 −2𝜓 ) 

𝜕𝑡𝛾 = 𝜕𝑟𝛾 

+
1

𝜕𝑡𝒲 − 𝜕𝑟𝒲 −
𝒲 

2𝑟

 
1

2
𝒲 𝜕𝑡𝜓 − 𝜕𝑟𝜓 

2 +
𝜕𝑟𝒲 

𝑟
− 𝜕𝑡𝑟𝒲 + 𝜕𝑟𝑟𝒲 +

2𝜕𝑡𝒲 𝜕𝑟𝒲 

𝒲 

+ 𝜕𝑟𝒲 − 𝜕𝑡𝒲 𝜕𝑟𝜓 − 𝜕𝑡𝜓 −
𝜕𝑟𝒲 

2 + 3𝜕𝑡𝒲 
2

2𝒲 

+ 𝜅4
2
𝒲 

16
 7𝜕𝑡𝑋 

2 + 5𝜕𝑟𝑋 
2 − 12𝜕𝑡𝑋 𝜕𝑟𝑋 + 5𝑒2𝛾 

𝑋 2𝑃 2

𝑟2 + 6𝑒2𝜓 
𝜕𝑟𝑃 − 𝜕𝑡𝑃 

2

𝒲 2𝑟2𝜖2

+ 𝒲 2𝛽𝑒2𝛾 −2𝜓 𝑋 2 − 𝜂2 2   



The Einstein propagation equations to order 𝜔(0) 

We obtain the propagation equations by substituting back the integrated equations: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜕𝑡𝑕 11 = 𝜕𝑟𝑕 11 +
𝑒2𝛾 

𝑟2 𝜕𝑟𝜓 − 𝜕𝑡𝜓 −
1

2𝑟
𝑕 44 +

1

2
𝑘 22 + 𝑘 11 − 𝑘 12 +

2

𝒲 
(𝜕𝑡𝒲 − 𝜕𝑟𝒲 

+ 𝒲 𝜕𝑟𝜓 − 𝜕𝑡𝜓 +𝜕𝑡 𝛾 − 𝜕𝑟𝛾 )𝑕 11 +
1

2
𝑒2𝛾 −2𝜓 𝒲 2

𝜕𝑟𝒲 − 𝜕𝑡𝒲 

𝒲 
+

1

2𝑟
𝑕 55

+ 𝜅4
2𝑒2𝛾 −2𝜓 𝒲 2 𝜕𝑡𝑋 − 𝜕𝑟𝑋 Ψ cos 𝜑 

𝜕𝑡𝑕 44 = 𝜕𝑟𝑕 44 + 2𝜕𝑟𝜓 − 2𝜕𝑡𝜓 −
3

2𝑟
+

𝜕𝑟𝒲 − 𝜕𝑡𝒲 

𝒲 
𝑕 44 +

𝜅4
2

𝜀
𝜕𝑡𝑃 − 𝜕𝑟𝑃 𝐵 

+
1

2
𝑟2𝑒−2𝜓 𝒲 2 𝜕𝑡𝜓 − 𝜕𝑟𝜓 +

1

2𝑟
𝑕 55 

 𝜕𝑡𝑕 55 = 𝜕𝑟𝑕 55 

𝜕𝑡𝑕 13 = 𝜕𝑟𝑕 13 + 2
𝜕𝑡𝒲 − 𝜕𝑟𝒲 

𝒲 
+ 𝜕𝑡𝜓 − 𝜕𝑟𝜓 𝑕 13 + 𝑘 13 − 𝑘 23 

𝜕𝑡𝑕 14 = 𝜕𝑟𝑕 14 + 2 𝜕𝑡𝜓 − 𝜕𝑟𝜓 +
1

𝑟
+

𝜕𝑟𝒲 − 𝜕𝑡𝒲 

𝒲 
𝑕 14 + 𝑘 24 − 𝑘 14

+ 2𝜅4
2𝑒2𝛾 −2𝜓 𝒲 2𝑋 𝑃 Ψ sin 𝜑 + 𝜕𝜑 𝑕 11 +

𝑒2𝛾 

𝑟2 𝑕 44 − 𝑒2𝛾 −2𝜓 𝒲 2𝑕 55  

 



►These propagation equations are linear in the first order derivative. 

     Appearance of combinations of  𝑕 𝜇𝜈   and  𝑘 𝜇𝜈 terms:  

                           distortion of the shape of the  waves 
 

►The equation for 𝑕 55 is as expected: 𝒉 𝟓𝟓 = 𝓜𝟏 𝒕, 𝒓 . 𝓜𝟐 𝝋, 𝒚, 𝝃  :  

     the brane part must be separable from the bulk part. 

 
►There is an interaction between the HF perturbations from the bulk, the 

matterfields on the brane and the evolution of 𝑕 𝑖𝑗 

 

►The bulk contribution 𝑕 55  is amplified by the warpfactor! 

 
►It is a reflection of the massive KK-modes felt on the brane. 
 

►The 𝑕 55  contribution disappears when:  𝝏𝒓𝝍 − 𝝏𝒕𝝍 −
𝟏

𝟐𝒓
=0  ( physically not very 

interesting:   𝜓 = 𝑎 log 𝑟 + 𝑏;  so a testparticle in this field is repelled from the 

cylinder 
 
►Effectively a dark-energy term in Einstein equations 

However:  a more general solution must be investigated with 𝜿𝟓
𝟒 𝑺 𝝁𝝂 + 𝑺𝝁𝝂

𝟎
 

For example in 𝜓 𝑡𝑡:   terms at rhs: 𝜅5
4  Ψ 𝐵 𝑋 𝑡 − 𝑋 𝑟 𝑃 𝑡 − 𝑃 𝑟 𝑐𝑜𝑠𝜑 𝑑𝜉 



Example of a solution 

Consider the last eq. for 𝑕 14 : For 𝑕 14=0  (for the moment): integration to φ: 
 
 
 
 
 
Let us consider  Ψ = Ψ 𝑡, 𝑟, 𝜉 𝑐𝑜𝑠𝜑  Then we obtain: 
                 
 
 

With two extremal values on [0,𝜋]  and amplified by warpfactor. 

𝛾𝑡 can also be written as: 

 

 

𝑕 11 = 𝑒2𝛾 −2𝜓 𝒲 2 𝑕 55 − 2𝜅4
2𝑋 𝑃  (Ψ sin 𝜑)𝑑𝜑  

𝑕 11 = 2𝜅4
2𝑋 𝑃 𝑒2𝛾 −2𝜓 𝒲 2Ψ  𝑐𝑜𝑠2𝜑 



Possible evidence of cosmic strings via alignment of quasar 

and BH polarizations? 

There appeared two investigations on polarization vectors on BH and quasars: 

D.Hutsemekers, et al, Alignment of quasar polarizations with large-scale structures 

A.Taylor, et al, Alignment of Radio Galaxies in deep radio imaging of ELAIS N1 

 

 

 

 



Two preferred directions 



Prospect:  Wait for new data from 

                Gaia!  [500 000 pulsars?] 

 

Then: next order results can be  

          tested. 

 


