Nonlinear Gravitational Waves as Dark Energy in Warped Spacetimes

Reinoud J. Slagter
ASFYON, The Netherlands [www.asfyon.com]
Spontanious workshop10-Cargese 2016

Presentation based on:
R.Slagter, S.Pan: Found. of Phys. 2016 (communicated by t'Hooft)
R.Slagter: Journ. of Mod. Phys. 2016
S.Pan, J.de Haro, A. Paliathanasir, R.Slagter: Mon.Not. Roy. Ast. Soc. 2016
R.Slagter: Astrophys. Journ. 1986, 1983

Overview

I. Note on the Cauchy problem for $G R$
II. How to handle nonlinear gravitational waves
III. The Multiple-scale method
IV. Application to warped brane world models with $U(1)$ scalar-gauge field(in the brane)
Spin-off:
a. Self-acceleration of FLRW possible without Λ ?
[Slagter, Pan: Found of Phys, 2016]
b. Evidence via alignment of quasar polarization?
[Slagter: Journ Mod Phys,2016]
Overview article: R.Maartens: Liv.Rev. 2010 "Brane world models"

Artist impression of a cosmic string

Some considerations on the Cauchy problem in GR

For linear problems: well understood
For nonlinear problems: we have
local Cauchy problem [well understood]
global Cauchy problem (strong cosmic censorship problem)
General: Given a solution $u_{0}(x)$, does there exist a unique solution $u(t, x)$ of the PDE's with $u(0, x)=u_{0}(x)$
Connection with practical physics:
It is seldom that exact solutions of the Einstein eq. can be used: one needs numerical solutions or analytic approx (expansion in a small parameter)

- The Einstein eq are essentially global hyperbolic eq:
- A spacelike hypersurface S is called Cauchy surface, if each inextendible causal curve hits it precisely once
- Cauchy surfaces are the correct places to give data for the Cauchy problem
- n_{μ} unit normal vector on S; define: $g_{\mu \nu}=h_{\mu \nu}+n_{\mu} n_{v}, k_{\mu \nu}=\nabla_{\gamma} n_{\delta} h_{\mu}^{\gamma} h_{v}^{\delta}$ they constitute the initial data for the Einstein eq.
- There are constraints:

$$
R-k_{a b} k^{a b}+\left(h^{a b} k_{a b}\right)^{2}=\kappa T_{00} \quad \nabla^{b} k_{a b}-\nabla_{a}\left(h^{b c} k_{b c}\right)=-\frac{1}{2} \kappa T_{0 a}
$$

Considerations on gravitational waves in GR

Weak field approx:

$$
\boldsymbol{g}_{\mu \nu} \approx \boldsymbol{\eta}_{\boldsymbol{\mu} \nu}+\boldsymbol{h}_{\boldsymbol{\mu} \nu}+\sigma\left(\boldsymbol{h}_{\boldsymbol{\mu}}{ }^{2}\right) \quad\left|\boldsymbol{h}_{\boldsymbol{\mu}}\right| \ll \mathbf{1}
$$

Einstein equations:

$$
\partial^{\gamma} \partial_{\mu} h^{\mu \sigma}+\partial^{\sigma} \partial_{\mu} h^{\mu \gamma}-\partial^{\gamma} \partial^{\sigma} h-\partial^{\mu} \partial_{\mu} h^{\gamma \sigma}-\eta^{\gamma \sigma}\left(\partial_{\beta} \partial_{\mu} h^{\beta \mu}+\partial^{\mu} \partial_{\mu} h\right)=16 \pi G T^{\gamma \sigma}
$$

Note that $\boldsymbol{h}_{\boldsymbol{\mu} \nu}$ is invariant under a coordinate transformation $\quad x_{\mu} \rightarrow \boldsymbol{x}_{\mu}+\xi_{\mu}$ so $h_{\mu \nu} \rightarrow h_{\mu \nu}-\left(\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}\right)$
One usually choose the Lorentz-gauge: $\partial_{\mu}\left(h^{\mu \sigma}-\frac{1}{2} \eta^{\mu \sigma} h\right)=0$ and additional gauge freedom $\partial^{\mu} \partial_{\mu} \xi^{\sigma}=0$.
However: in high-energy situations (or high curvature):
weak field approximation not suitable
The background metric itself may respond to the strong gravitational field
And: weak-field approx runs into divergences when pushed to second order! [long time ago:Trautman, Fock]

The multiple-scale analysis
 [Or: high-frequency or "two-timing" method]

It is known that:

- In d>4 the equations of (stringy) gravity are fully non-linear (the usual Einstein equations are quasi-linear).
- Non-uniformity can appear in a regular perturbation expansion by interaction between consecutive orders of the perturbation scheme: secular terms can appear.
- Discontinuities of the 2-th order derivatives of the metric across a (d-1) dim submanifold
- dispersion of gravitational waves or shocks

Now:

- The MS method is a powerful method [Choquet-Bruhat, 1969] to solve this Cauchy problem: the unknowns and their first derivatives cannot be given arbitrarily on a (d-1) dim submanifold: the Cauchy data must satisfy constraints
- Find an asymptotic solution of order p in an expansion parameter ω.
- This is also an approximate solution for appropriate boundedness conditions
- One obtains from lower to higher order: "gauge"-conditions on the fieldvariables "back-reaction" on the background metric propagation equations

Make additional restrictions on the expansion to maintain boundedness.

First of all: We need a physical meaningful expansion parameter:

```
for example: }\frac{\mathrm{ wavelength perturbation }}{\mathrm{ typical background dimension}
or: typical dimension of the extra dimension
```

So: wave-like solutons of the non-linear hyperbolic system are characterized by different scales:

Regions with smooth variation of the solution: background Regions with strong variation: waves

Some results:

Isaacson-1967; Choquet-Bruhat-Taub-1973;Choquet-Bruhat-1969,1976,1988 Slagter-Ap.J 1986
For sringy gravity (Gauss-Bonnet term): Choquet-Bruhat-1988
$\frac{d^{2} y}{d t^{2}}+\alpha y+\varepsilon y^{3}=0 \quad \varepsilon$ small
When t is of order $\frac{1}{\epsilon}$ one gets serious problems: Secular terms in all orders, so violation of boundedness.
Proof: Expand: $\boldsymbol{y}(\boldsymbol{t})=\sum_{0}^{\infty} \varepsilon^{n} y_{n}(\boldsymbol{t}) \quad$ then:

$$
\begin{array}{lll}
y^{\prime \prime}{ }_{0}+y_{0}=0 & \rightarrow & y_{0}=\cos (t) \\
y^{\prime \prime}{ }_{1}+y_{1}=-y_{0}^{3} & \rightarrow & y_{1}=A \cos (t)+B \sin (t)+\frac{1}{32} \cos (3 t)-\frac{3}{8} t \sin (t)
\end{array}
$$

y_{1} contains a secular term. However: the solution is bounded for all t !
Solution: all secular terms sum up to zero. A hell of a job for many DE's!

$$
\text { Result: } y(t)=\cos \left[t\left(1+\frac{3}{8} \varepsilon\right)\right]
$$

For the multiple scale method not necessary:
Substitute: $\quad y(t)=Y_{0}(t, \tau)+\varepsilon Y_{1}(t, \tau)+\cdots . \quad \tau=\varepsilon t$
collecting powers of $\varepsilon: \quad \frac{\partial^{2} Y_{0}}{\partial t^{2}}+Y_{0}=0 \quad \frac{\partial^{2} Y_{1}}{\partial t^{2}}+Y_{1}=-Y_{0}^{3}-2 \frac{\partial^{2} Y_{0}}{\partial \tau \partial t}$
The general solution for $Y_{0}: \quad Y_{0}(t, \tau)=A(\tau) e^{i t}+A^{*}(\tau) e^{-i t}$
Substituting this solution in righthand side in Eq. for Y_{1} :

$$
e^{i t}\left[-3 A^{2} A^{*}-2 i \frac{d A}{d \tau}\right]+e^{-i t}\left[-3 A\left(A^{*}\right)^{2}+2 i \frac{d A^{*}}{d \tau}\right]-e^{3 i t} A^{3}-e^{-3 i t}\left(A^{*}\right)^{3}
$$

If we do not want secular terms in Y_{1}-equation to order ε, then two terms in brackets must be zero! The solution is: $A(\tau)=R(0) e^{1 \theta(0)+3 i R(0)^{2} / 2}$ After substituting $\tau=\varepsilon t$ and proper boundary conditions, we obtain

$$
y(t)=\cos \left[t\left(1+\frac{3}{8} \varepsilon\right)\right]+o(\varepsilon), \quad \varepsilon \rightarrow 0, \varepsilon \mathrm{t}=o(1), \quad \text { [compare with sum sec.terms] }
$$

So: one can keep track of the several orders of approximation

Example 2: Nonlinear Schrodinger equation

Consider:

$$
\Phi_{t t}-\Phi_{x x}=\Phi\left(\beta \Phi^{2}-\alpha\right)
$$

$\Phi=0$ is a stable solution. For $\alpha=1, \beta=\frac{1}{6}$ and Φ small Then an approx.: $U=1-\cos \Phi$ (sin-Gordon eq)

How to handle the disturbances?
 Multiple-Scale-method:

$$
\Phi(x, t ; \epsilon)=\sum_{k=1}^{\infty} \varepsilon^{k p} \Phi^{(k)}(x, t ; \varepsilon)
$$

We define "slow" variables": $X_{k}=\varepsilon^{k} x \quad T_{k}=\epsilon^{k} t$
Then:

$$
\Phi(t, x ; \varepsilon)=\widetilde{\Phi}\left(x, t, X, T, X_{1}, T_{1}, \ldots . .\right)
$$

And we can keep track of the several orders and can handle secular terms.
Lowest order:

$$
\left(\partial_{x x}-\partial_{t t}-\alpha\right) \Phi^{(1)}=0
$$

[linearized eq.]
Next order:

$$
\left(\partial_{x x}-\partial_{t t}-\alpha\right) \Phi^{(2)}+2\left(\partial_{X_{1} x}-\partial_{T_{1} t}\right) \Phi^{(1)}=0
$$

$$
\begin{aligned}
& \left(\partial_{x x}-\partial_{t t}-\alpha\right) \Phi^{(3)}+\left(\partial_{X_{1} X_{1}}-\partial_{T_{1} T_{1}}+2 \partial_{X_{2} x}-2 \partial_{T_{2} t}\right) \Phi^{(1)}+\beta\left(\Phi^{(1)}\right)^{3} \\
& \quad+2\left(\partial_{X_{1} x}-\partial_{T_{1} t}\right) \Phi^{(2)}=0
\end{aligned}
$$

The multiple scale method formally

Let us consider the formal series of the relevant fields F_{i} in x on a manifold M, dependent on different scales ($\boldsymbol{x}, \xi, \chi, .$.)

$$
F_{i}(\boldsymbol{x}, \xi, \chi \ldots)=\sum_{n=0}^{\infty} \omega^{-n} F_{i}^{(n)}(\boldsymbol{x}, \xi, \chi \ldots)
$$

with $\xi=\omega \Theta(x), \quad \chi=\breve{\omega} \Pi(x), . .$. scalar (phase functions) on M.
Here: $\frac{1}{\omega}$ is the ratio of the characteristic wavelength of the perturbations to the dimension of the background; $\frac{\mathbf{1}}{\boldsymbol{\omega}}$ ratio extra dim. to background dim. F_{i} are the metric components (and the scalar-gauge fields).

$$
\frac{d g_{\mu \nu}}{d x^{\sigma}}=g_{\mu v, \sigma}+\omega l_{\sigma} \dot{g}_{\mu \nu}+\breve{\omega} m_{\sigma} \breve{g}_{\mu \nu}+. . \text { with } g_{\mu v, \sigma} \equiv \frac{\partial g_{\mu \nu}}{\partial x^{\sigma}}, \quad \dot{g}_{\mu \nu} \equiv \frac{\partial g_{\mu v}}{\partial \xi} \ldots
$$

If one substitutes the expansions into the fieldequations, one says that F_{i} are asymptotic solutions, if in the replaced series

$$
f_{i}(x, \xi, \chi \ldots)=\sum_{n=-m}^{\infty} \omega^{-n} f_{i}^{(n)}(x, \xi, \chi \ldots)
$$

The multiple scale method formally

Now

$$
F_{i}(x, \xi, \chi \ldots)=\sum_{n=0}^{\infty} \omega^{-n} F_{i}^{(n)}(x, \xi, \chi \ldots) \quad \text { is also an approximate wavelike }
$$

solution of order p on $\mathrm{W} \subset M$, if for all $\mathrm{x} \in W$

$$
\left|f_{i}(x, \xi, \chi \ldots)\right| \leq C . \omega^{-p} \quad \text { for all } \xi, \chi, \ldots \text { C const }
$$

Nice example: stringy gravity-Choquet-Bruhat; J Math. Phys. 1988
gravity+Gauss-Bonnet term in n-dim: field eq second order PDE's
Cauchy problem is well described with constraints

Why Warped 5D Space times?

-The explanation of the acceleration with a cosmological constant is rather problematic:

- Coincidence-problem: $\boldsymbol{\Omega}_{\boldsymbol{\Lambda}} \sim \boldsymbol{\Omega}_{\boldsymbol{M}}$
- Finetuning-problem: $\rho_{\Lambda, o b s} \sim \mathbf{1 0}^{-57}$ GeV $^{4} \quad \rho_{\Lambda, \text { theor }} \sim 1$ TeV 4
- Ad hoc modifications: of the Friedmann equation risky, specially when considering density perturbations: do it covariantly
- Disturbances don't survive in 4D models : at least some of them are needed for the observed large-scale structures

In warped 5D model: they do survive
So modify GR : D-branes.

1. Dvali-Gabadadze- Porrati (DGP)
\Rightarrow 2. Randall-Sundrum (RS)
In general:
Gravity leakage at late-times initiates acceleration, due to weakening of gravity on the brane - not due to any negative pressure field.
4 D gravity is recovered at high energy via the lightest KK modes of the graviton By-product: hierarchy problem solved [for example in RS-1 model]

Present State of our Universe

- The expansion of our universe is accelerating.
- One needs dark energy with an effectively negative pressure, $p<-\frac{1}{3} \rho$

LCDM: w =-1
[Planck 2015: w > -1 ?]

- We should live now in the cosmological constant dominated era (and approx.)

$$
\Omega_{\Lambda}=0.73 \quad \Omega_{M}=\Omega_{D M}(=0.23)+\Omega_{B}(=0.046)
$$

Why Cosmological Cosmic Strings?

- The $\mathbf{U}(1)$ scalar gauge field has 1 .lived up to his reputation!
2.triggered inflation
3.GL theory of super-cond.

4. Nielsen-Olesen vortex

- Gen Rel field eq:
$G_{\mu \nu}=\kappa_{4}^{2} T_{\mu \nu} \quad D_{\mu} D^{\mu} \Phi-2 \frac{\partial U}{\partial \Phi^{*}}=0 \quad \nabla^{\mu} F_{\mu \nu}-\frac{1}{2} i e\left[\Phi\left(D_{\nu} \Phi\right)^{*}-\Phi^{*}\left(D_{\nu} \Phi\right)\right]=0$
**Cosmic string collection of points in false vacuum.
** Angle deficit Minkowski minus wedge

$$
d s^{2}=-e^{a_{0}}\left(d t^{2}-d z^{2}\right)+d r^{2}+e^{-2 a_{0}}\left(k_{2} r+a_{2}\right)^{2} d \varphi^{2}
$$

Question: What about cylindrical GW from CS in expanding universe? [Gregory, 1989]

It turns out: C-energy $\sim \frac{r_{c s}}{R_{H}}$ extremely small
Expected disturbances fade away during expansion
[Importance of cyl symm grav waves was already noticed by Einstein-Rosen[1936]]

Why Cosmological Cosmic Strings?

- U(1) CS can be embedded into a flat 4D FRW along the polar axis
-However: The approx spacetime becomes conical:[not pleasant]

$$
d s^{2}=a(t)^{2}\left[-d t^{2}+d r^{2}+K(r)^{2} d z^{2}+(1-4 \pi G \mu)^{2} S(r)^{2} d \varphi^{2}\right]
$$

and can be matched on the well known FLRW spacetime by suitable transformation

$$
d s^{2}=a(t)^{2}\left[-d t^{2}+\frac{d R^{2}}{1-k R^{2}}+R^{2} d \theta^{2}+(1-4 \pi G \mu)^{2} R^{2} \sin ^{2} \theta d \varphi^{2}\right]
$$

-Result: No contribution from the gravitation waves from the CS because

$$
\frac{r_{C S}}{R_{H}} \sim \frac{\dot{a}}{a} \sim \mathbf{1 0}^{-20}
$$

-Disturbances are damped rapidly by $\left(\frac{r_{C S}}{R_{H}}\right)^{2}$

- Asymptotic conical ST (angle deficit) is problematic. Also found in radiative cyl. Einstein-Rosen ST: C-energy related to angle deficit [just as mass is related to angle deficit for CS].
So: Surviving disturbances must be very small (otherwise conflict with observ)

Problems for Cosmic Strings from Observations

- density perturbations: $\frac{\delta \rho}{\rho} \sim G \mu=\eta^{2} / M_{p}{ }^{2} \sim 10^{-6}$ for GUT scale
- in first instance correct with observations
- Now: inconsistencies with new CBM power spectrum COBE, WMAP
- They cannot provide a satisfactory explanation for the magnitude of the initial density perturbations
- How to handle super-massive CS with $\mathrm{G} \mu \gg 1$ [phase transition at energy much larger than GUT]
This is interesting for perturbation analysis
[The angle deficit will increase with the energy scale of symmetry breaking]
where is the axially symmetric gravitational lensing-effect?
- Cosmological CS: late-time conical residu [unwanted] [Gregory, 1989]

So Exit CS study??

Rescue of CS

reborn CS $\rightarrow \quad$ Go to warped 5D RS model
*** in the brane: unobservable angle deficit
*** asymptotically: no conical space time
[Slagter, 2012, IJMPD]
*** So no conflict with:

1. CMB-spectrum
2. Absence of axially symm. double images
3. The effective 4D spacetime of the CS in agreement with GUT;
\rightarrow CS can be produced in superstring theory
\rightarrow Super massive CS with $\mathrm{G} \mu \gg 1$ will be warped down to GUT scale($\mathbf{1 0}^{\mathbf{- 7}}$)
\rightarrow Disturbances in the spatial components of the stress-energy tensor cause cylindrical symmetric waves, amplified due to the presence of the bulk space with warp factor
\rightarrow Mass: $\quad \mu=2 \pi F(y) \int_{0}^{\infty} \mathrm{e}^{-\mathrm{A}} \mathrm{K} \sigma d r$ with F the WARPFACTOR
so: building up a huge mass in the bulk : KK-modes on brane

- Test of RS type models against observational constraint possible !

Cern: KK-particles detectable?

The warped 5D model with the $U(1)$ scalar-gauge field

We consider the warped spacetime: $\left[{ }^{4} g_{\mu \nu}={ }^{5} g_{\mu \nu}-n_{\mu} n_{\nu}\right.$] (n normal to brane)

$$
d s^{2}=\mathcal{W}(t, r, y)^{2}\left[e^{2(\gamma(t, r)-\psi(t, r))}\left(-d t^{2}+d r^{2}\right)+e^{2 \psi(t, r)} d z^{2}+r^{2} e^{-2 \psi(t, r)} d \varphi^{2}\right]+d y^{2}
$$

With W the warpfactor. We reside on the BRANE $\mathrm{y}=0$. Gravity can prop. in BULK We consider: scalar-gauge field in brane: [empty BULK; only Λ_{5}]

$$
\Phi=\eta X(t, r) e^{i \varphi}, \quad A_{\mu}=\frac{1}{\varepsilon}[P(t, r)-1] \nabla_{\mu} \varphi, \quad V(\Phi)=\frac{1}{8} \beta\left(\Phi^{2}-\eta^{2}\right)^{2}
$$

From the 5D-eq: [Slagter-Pan;2016]
Found of Phys

$$
\mathcal{W}=\frac{e^{\sqrt{-\frac{1}{6} \Lambda_{5}}\left(y-y_{0}\right)}}{\alpha \sqrt{r}} \sqrt{\left(d_{1} e^{\alpha t}-d_{2} e^{-\alpha t}\right)\left(d_{3} e^{\alpha r}-d_{4} e^{-\alpha r}\right)}
$$

The modified 4D effective Einstein equations:

$$
{ }^{4} G_{\mu \nu}=-\Lambda_{e f f}{ }^{4} g_{\mu \nu}+\kappa_{4}^{2}{ }^{4} T_{\mu \nu}+\kappa_{5}^{4} S_{\mu \nu}-\mathcal{E}_{\mu \nu}
$$

S is the quadratic term in the energy-momentum tensor [from extrinsic curv. terms in proj. Einstein tensor]
\mathcal{E} is part of the 5D Weyl tensor C and carries inf.of grav.field outside the brane

$$
\mathcal{E}_{\mu \nu}={ }^{5} C_{\alpha \gamma \beta \delta} n^{\gamma} n^{\delta 4} g_{\mu}^{\alpha}{ }^{4} g_{\nu}^{\beta}
$$

$$
\Lambda_{e f f}=0 \quad \text { (RS-finetuning) }
$$

* Exact solutions

Slagter-Pan;2016--Found of Phys

The warped 5D model with the $U(1)$ scalar-gauge field

The scalar-gauge field equations:

$$
D^{\mu} D_{\mu} \Phi=2 \frac{d V}{d \Phi^{*}} \quad{ }^{4} \nabla^{\mu} F_{v \mu}=\frac{1}{2} i \varepsilon\left(\Phi\left(D_{v} \Phi\right)^{*}-\Phi^{*} D_{v} \Phi\right)
$$

With $D_{\mu} \Phi={ }^{4} \nabla_{\mu} \Phi+i \epsilon A_{\mu \Phi}$.

- The scalar gauge field can build-up a huge mass per unit length (or angle-deficit) by the warpfactor W : $\quad \mathrm{G} \mu \sim \mathbf{1}$
- Can induce massive KK-modes felt on the brane.
[while manifestation on brane will be warped down to GUT scale consistent with observation]

- Disturbances can cause cyl. symm waves amplified by the warpfactor and could survive natural damping due to the expansion of the universe.
-Could possible explane "self-acceleration" [dark energy] with $\Lambda_{e f f}=0$!

The nonlinear wave approximation in 5D GenRel

We expand:

$$
\begin{gathered}
g_{\mu \nu}=\bar{g}_{\mu v}(x)+\frac{1}{\omega} h_{\mu v}(x, \xi, \chi, \ldots)+\frac{1}{\omega^{2}} k_{\mu v}(x, \xi, \chi, . .)+\cdots \\
A_{\mu}=\bar{A}_{\mu}(x)+\frac{1}{\omega} B_{\mu}(x, \xi, \chi, . .)+\frac{1}{\omega^{2}} C_{\mu}(x, \xi, \chi, . .)+\cdots \\
\Phi=\bar{\Phi}(x)+\frac{1}{\omega} \Psi(x, \xi, \chi, \ldots)+\frac{1}{\omega^{2}} \Xi(x, \xi, \chi, \ldots)+\cdots
\end{gathered}
$$

We define

$$
\frac{d g_{\mu \nu}}{d x^{\sigma}}=g_{\mu v, \sigma}+\omega l_{\sigma} \dot{g}_{\mu \nu}+\breve{\omega} k_{v} \check{g}_{\mu \nu}+. . \quad g_{\mu v, \sigma}=\frac{\partial g_{\mu \nu}}{\partial x^{\sigma}} \quad \dot{g}_{\mu \nu}=\frac{\partial g_{\mu \nu}}{\partial \xi}
$$

The rapid variations occur in the directions of l_{μ}, k_{μ} transversal to the subminifolds of constant phase .

For the time being: only $l_{\mu}=\frac{\partial \theta}{\partial x^{\mu}} \quad$ [now $\Theta=t-r$] The perturbations can be φ-dep.

We write:

$$
\begin{gathered}
\Gamma_{\mu \nu}^{\alpha}=\bar{\Gamma}_{\mu \nu}^{\alpha}+\Gamma_{\mu \nu}^{\alpha(0)}+\frac{1}{\omega} \Gamma_{\mu \nu}^{\alpha(1)}+\ldots \\
R_{\mu \tau \nu}^{\sigma}=\omega R_{\mu \tau \nu}^{\sigma(-1)}+\bar{R}_{\mu \tau \nu}^{\sigma}+R_{\mu \tau \nu}^{\sigma(0)}+\frac{1}{\omega} R_{\mu \tau \nu}^{\sigma(1)}+\cdots \\
\text { with } \Gamma_{\mu \nu}^{\sigma(0)}=\frac{1}{2} \bar{g}^{\beta \sigma}\left(l_{\mu} \dot{h}_{\beta \nu}+l_{\nu} \dot{h}_{\beta \mu}-l_{\beta} \dot{h}_{\mu \nu}\right) \\
\Gamma_{\mu \nu}^{\alpha(1)}=\frac{1}{2}\left(h_{\mu: v}^{\sigma}+h_{v: \mu}^{\sigma}-h_{\mu \nu}^{\sigma}-l_{\nu} \dot{k}_{\mu}^{\sigma}+l_{\mu} \dot{k}_{v}^{\sigma}-l^{\sigma} \dot{k}_{\mu \nu}\right)-h_{\rho}^{\sigma} \Gamma_{\mu \nu}^{\rho(0)}
\end{gathered}
$$

We substitute the expansions into the fieldequations and subsequently put zero the various powers of ω

From the ω^{-1} Einstein:

$$
{ }^{4} G_{\mu \nu}^{(-1)}=-\varepsilon_{\mu \nu}^{(-1)}
$$

("gauge" cond)
Scalar: $\quad l^{\mu} l_{\mu} \ddot{\Psi}=0 \quad$ [note: this is the Eikonal eq., or Ψ]
gaugefield: $\quad l^{\mu} \ddot{\boldsymbol{B}}_{\mu}=0$
Normally one imposes a priori gauge-conditions: $\quad l^{\mu}\left(\ddot{h}_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \ddot{h}\right)=0$ The contribution of $\varepsilon_{\mu \nu}^{(-1)}$ changes the conditions on $h_{\mu \nu}$
Further: we take $l^{\mu} l_{\mu}=0 \quad$ (Eikonal cond) $l^{\mu} l_{\mu} \neq 0$ means that $h_{\mu \nu}$ arises from a coord transformation.

The effective brane Einstein equations

The $\omega^{(0)}$ - Einstein equations:

$$
{ }^{4} \bar{G}_{\mu \nu}+{ }^{4} G_{\mu \nu}^{(0)}=-\Lambda_{e f f}{ }^{4} \bar{g}_{\mu \nu}+\kappa_{4}^{2}\left({ }^{4} \bar{T}_{\mu \nu}+{ }^{4} T_{\mu \nu}^{(0)}\right)+\kappa_{5}^{4}\left(\bar{S}_{\mu \nu}+S_{\mu \nu}^{(0)}\right)-\left(\overline{\mathcal{E}}_{\mu \nu}+\overline{\mathcal{E}}_{\mu \nu}^{(0)}\right)
$$

where the part of the Weyl tensor is:

$$
\begin{gathered}
\mathcal{E}_{\mu \nu}=n^{\gamma} n^{\delta 4} g_{\mu}^{\alpha} g_{\nu}^{\beta}{ }^{5} R_{\alpha \gamma \beta \delta}-\frac{1}{3}\left({ }^{5} g_{\alpha \gamma}{ }^{5} R_{\delta \beta}-{ }^{5} g_{\alpha \delta}{ }^{5} R_{\gamma \beta}-{ }^{5} g_{\beta \delta}{ }^{5} R_{\gamma \alpha}+{ }^{5} g_{\beta \delta}{ }^{5} R_{\gamma \alpha}\right) \\
\left.+\frac{1}{12}\left({ }^{5} g_{\alpha \gamma}{ }^{5} g_{\delta \beta}-{ }^{5} g_{\alpha \delta}{ }^{5} g_{\gamma \beta}\right)^{5} R\right]
\end{gathered}
$$

Now we take only $\quad h_{11}, h_{44} h_{13} h_{14} h_{55} \neq 0$
One can also integrate the equations wrt to \S : propagation equations Then: substitute back these equations: ($\Lambda_{\text {eff }}=0$ ($R S$ finetuning)

$$
{ }^{4} \overline{\boldsymbol{G}}_{\mu \nu}=\boldsymbol{\kappa}_{4}^{24} \overline{\boldsymbol{T}}_{\mu \nu}+\boldsymbol{\kappa}_{5}^{4} \bar{S}_{\mu \nu}-\overline{\mathcal{E}}_{\mu \nu}+\frac{\mathbf{1}}{\tau} \int\left(\boldsymbol{\kappa}_{4}^{2} \boldsymbol{T}_{\mu \nu}^{(\mathbf{0})}+\boldsymbol{\kappa}_{5}^{4} S_{\mu \nu}^{(\mathbf{0})}-{ }^{4} \boldsymbol{G}_{\mu \nu}^{(\mathbf{0})}-\mathcal{E}_{\mu \nu}^{(\mathbf{0})}\right) d \xi
$$

one says: $\downarrow-\int \varepsilon_{\mu \nu}^{(0)} \mathrm{d} \xi$ is the KK-mode contribution of the perturbative 5D graviton

- can play the role of effective CC (same sign)
- is an extra "back-reaction" term which contain \dot{h}_{55}

The scalar-gauge field equations

Simplified case: $l_{\mu}=[1,-1,0,0,0]$
Then: first order gauge field: $\boldsymbol{B}_{\boldsymbol{\mu}}=\left[\boldsymbol{B}_{0}, \boldsymbol{B}_{\mathbf{0}}, \mathbf{0}, \boldsymbol{B}, \mathbf{0}\right]$
From the gauge field eq: : The \bar{A}_{μ} is as the unperturbed case.
The first order perturbations:

$$
\begin{gathered}
\partial_{t} \dot{\Psi}=\partial_{r} \dot{\Psi}+\left[\frac{\partial_{r} \overline{\mathcal{N}}-\partial_{t} \overline{\mathcal{W}}}{\overline{\mathcal{W}}}+\frac{1}{2 r}\right] \dot{\Psi} \\
\partial_{t} \dot{B}=\partial_{r} \dot{B}+\left[\partial_{r} \bar{\psi}-\partial_{t} \bar{\psi}-\frac{1}{2 r}\right] \dot{B}+e^{2 \bar{\psi}} \frac{\left(\partial_{r} \bar{P}-\partial_{t} \bar{P}\right)}{2 r^{2} \overline{\mathcal{N}}^{2} \varepsilon} \dot{h}_{44} \\
\partial_{t} \dot{B}_{0}=\partial_{t} \dot{B}_{0}-e^{2 \bar{\gamma}} \frac{\partial_{\varphi} \dot{B}}{r^{2}}-\varepsilon e^{2 \bar{\gamma}-2 \bar{\psi}} \overline{\mathcal{W}}^{2} \bar{X} \dot{\Psi} \sin \varphi+e^{2 \bar{\psi} \frac{\left(\partial_{t} \bar{P}-\partial_{r} \bar{P}\right)}{2 r^{2} \overline{\mathcal{W}}^{2} \varepsilon}} \dot{h}_{14}
\end{gathered}
$$

- We observe: φ-dependent parts arise, amplified by warpfactor!
- One needs: $l^{\mu} \bar{A}_{\mu}=\mathbf{0}$, otherwise real and imaginary parts interacts as propagation progresses.
- We omitted for time being C_{μ} and the $\boldsymbol{\kappa}_{5}^{\mathbf{4}}\left(\overline{\boldsymbol{S}}_{\boldsymbol{\mu} \nu}+\boldsymbol{S}_{\boldsymbol{\mu} \nu}^{(\boldsymbol{0})}\right)$ term
- Approximate wave solution no longer axially symmetric! [also found by Choquet B]

The scalar background field equation

After integration we obtain for the background scalar field

$$
\bar{D}^{\alpha} \bar{D}_{\alpha} \bar{\Phi}-\frac{1}{2} \beta \bar{\Phi}\left(\bar{\Phi} \bar{\Phi}^{*}-\eta^{2}\right)=\frac{1}{\tau} \int\left(h^{\mu \nu} l_{\mu} l_{\nu} \ddot{\Psi}+\bar{g}^{\mu \nu} \Gamma_{\mu \nu}^{\alpha(0)} \dot{\Psi}\right) d \xi
$$

- There is a "backreaction" from the HF perturbations

The background Einstein equations to order $\omega^{(0)}$

In our special model, we have decoupled background equations:

$$
\begin{aligned}
\partial_{t t}^{2} \overline{\mathcal{W}}= & -\partial_{r r}^{2} \overline{\mathcal{W}}+\frac{2}{\overline{\mathcal{W}}}\left(\partial_{t} \overline{\mathcal{N}}^{2}+\partial_{r} \overline{\mathcal{W}^{2}}\right)-\overline{\mathcal{W}}\left(\partial_{t} \bar{\psi}^{2}+\partial_{r} \bar{\psi}^{2}\right)+\frac{\overline{\mathcal{W}}}{r}\left(\partial_{r} \bar{\gamma}-\partial_{t} \bar{\gamma}\right) \\
& +2\left(\partial_{r} \overline{\mathcal{W}}-\partial_{t} \overline{\mathcal{W}}\right)\left(\partial_{t} \bar{\psi}-\partial_{r} \bar{\psi}+\partial_{r} \bar{\gamma}-\partial_{t} \bar{\gamma}\right)+2 \overline{\mathcal{W}} \partial_{t} \bar{\psi} \partial_{r} \bar{\psi}-4 \frac{\partial_{t} \overline{\mathcal{W}} \partial_{r} \overline{\mathcal{W}}}{\overline{\mathcal{W}}} \\
& -2 \partial_{t r} \overline{\overline{\mathcal{W}}}-\frac{3}{4} \kappa_{4}^{2}\left(e^{2 \bar{\psi}} \frac{\left(\partial_{t} \bar{P}-\partial_{r} \bar{P}\right)^{2}}{\overline{\mathcal{W}} r^{2} \epsilon^{2}}+\overline{\mathcal{W}}\left(\partial_{t} \bar{X}-\partial_{r} X\right)^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\partial_{t t}^{2} \bar{\psi}=\partial_{r r}^{2} \bar{\psi}+\frac{\partial_{t} \bar{\psi}}{r}+\frac{2}{\bar{w}}\left(\partial_{r} \overline{\mathcal{W}} \partial_{r} \bar{\psi}-\partial_{t} \overline{\mathcal{W}} \partial_{r} \bar{\psi}\right)-\frac{\partial_{r} \bar{w}}{r \bar{w}}+\frac{3 e^{2 \bar{\psi}}}{4 \overline{\mathcal{W}}^{2} r^{2} \epsilon^{2}} \kappa_{4}^{2}\left(\partial_{t} \bar{P}^{2}-\right. \\
\left.\partial_{r} \bar{P}^{2}-\overline{\mathcal{W}}^{2} \varepsilon^{2} \bar{X}^{2} \bar{P}^{2} e^{2 \bar{\gamma}-2 \bar{\psi}}\right)
\end{gathered}
$$

$$
\partial_{t} \bar{\gamma}=\partial_{r} \bar{\gamma}
$$

$$
\begin{aligned}
& +\frac{1}{\partial_{t} \overline{\mathcal{W}}-\partial_{r} \overline{\mathcal{W}}-\frac{\overline{\mathcal{W}}}{2 r}}\left[\frac{1}{2} \overline{\mathcal{W}}\left(\partial_{t} \bar{\psi}-\partial_{r} \bar{\psi}\right)^{2}+\frac{\partial_{r} \overline{\mathcal{W}}}{r}-\partial_{t r} \overline{\mathcal{W}}+\partial_{r r} \overline{\mathcal{W}}+\frac{2 \partial_{t} \overline{\mathcal{N}} \partial_{r} \overline{\mathcal{W}}}{\overline{\mathcal{W}}}\right. \\
& +\left(\partial_{r} \overline{\mathcal{W}}-\partial_{t} \overline{\mathcal{W}}\right)\left(\partial_{r} \bar{\psi}-\partial_{t} \bar{\psi}\right)-\frac{\partial_{r} \overline{\mathcal{W}^{2}}+3 \partial_{t} \overline{\mathcal{W}}^{2}}{2 \overline{\mathcal{W}}} \\
& +\kappa_{4}^{2} \frac{\overline{\mathcal{W}}}{16}\left(7 \partial_{t} \bar{X}^{2}+5 \partial_{r} \bar{X}^{2}-12 \partial_{t} \bar{X} \partial_{r} \bar{X}+5 e^{2 \overline{\mathcal{Y}}} \frac{\bar{X}^{2} \bar{P}^{2}}{r^{2}}+6 e^{2 \bar{\psi}} \frac{\left(\partial_{r} \bar{P}-\partial_{t} \bar{P}\right)^{2}}{\overline{\mathcal{W}}^{2} r^{2} \epsilon^{2}}\right.
\end{aligned}
$$

The Einstein propagation equations to order $\omega^{(0)}$

We obtain the propagation equations by substituting back the integrated equations:

$$
\begin{aligned}
\partial_{t} \dot{h}_{11}= & \partial_{r} \dot{h}_{11}+\frac{e^{2 \bar{\gamma}}}{r^{2}}\left(\partial_{r} \bar{\psi}-\partial_{t} \bar{\psi}-\frac{1}{2 r}\right) \dot{h}_{44}+\frac{1}{2}\left(\ddot{k}_{22}+\ddot{k}_{11}\right)-\ddot{k}_{12}+\frac{2}{\overline{\mathcal{N}}}\left(\partial_{t} \overline{\mathcal{N}}-\partial_{r} \overline{\mathcal{W}}\right. \\
& \left.+\overline{\mathcal{W}}\left(\partial_{r} \bar{\psi}-\partial_{t} \bar{\psi}+\partial_{t} \bar{\gamma}-\partial_{r} \bar{\gamma}\right)\right) \dot{h}_{11}+\frac{1}{2} e^{2 \bar{\gamma}-2 \bar{\psi}} \overline{\mathcal{N}}^{2}\left(\frac{\partial_{r} \overline{\mathcal{W}}-\partial_{t} \overline{\mathcal{W}}}{\overline{\mathcal{W}}}+\frac{1}{2 r}\right) \dot{h}_{55} \\
& +\kappa_{4}^{2} e^{2 \bar{\gamma}-2 \bar{\psi}} \overline{\mathcal{N}}^{2}\left(\partial_{t} \bar{X}-\partial_{r} X\right) \dot{\Psi} \cos \varphi
\end{aligned}
$$

$$
\begin{aligned}
\partial_{t} \dot{h}_{44}= & \partial_{r} \dot{h}_{44}+\left(2 \partial_{r} \bar{\psi}-2 \partial_{t} \bar{\psi}-\frac{3}{2 r}+\frac{\partial_{r} \overline{\mathcal{W}}-\partial_{t} \overline{\mathcal{W}}}{\overline{\mathcal{W}}}\right) \dot{h}_{44}+\frac{\kappa_{4}^{2}}{\varepsilon}\left(\partial_{t} \bar{P}-\partial_{r} \bar{P}\right) \dot{B} \\
& +\frac{1}{2} r^{2} e^{-2 \bar{\psi}} \overline{\mathcal{W}}^{2}\left(\partial_{t} \bar{\psi}-\partial_{r} \bar{\psi}+\frac{1}{2 r}\right) \dot{h}_{55} \\
\partial_{t} \dot{h}_{13}= & \partial_{r} \dot{h}_{13}+2\left(\frac{\partial_{t} \overline{\mathcal{W}}-\partial_{t} \dot{h}_{55} \overline{\mathcal{W}}}{\overline{\mathcal{W}}}+\partial_{r} \dot{h}_{55}\right. \\
\partial_{t} \dot{h}_{14}= & \partial_{r} \dot{h}_{14}+2\left(\partial_{t} \bar{\psi}-\partial_{r} \bar{\psi}\right) \dot{h}_{13}+\ddot{k}_{13}-\ddot{k}_{23} \\
& \left.+2 \kappa_{4}^{2} e^{2 \bar{\psi}-2 \bar{\psi}} \overline{\mathcal{W}}+\frac{\partial_{r} \overline{\mathcal{W}}-\partial_{t} \overline{\mathcal{W}}}{\overline{\mathcal{P}}} \overline{\mathcal{W}}\right) \dot{h}_{14}+\ddot{k}_{24}-\ddot{k}_{14}
\end{aligned}
$$

- These propagation equations are linear in the first order derivative.

Appearance of combinations of $\ddot{h}_{\mu \nu}$ and $\ddot{k}_{\mu \nu}$ terms:
distortion of the shape of the waves

- The equation for \dot{h}_{55} is as expected: $\dot{h}_{55}=\mathcal{N}_{1}(t, r) . \mathcal{N}_{2}(\varphi, y, \xi)$: the brane part must be separable from the bulk part.
- There is an interaction between the HF perturbations from the bulk, the matterfields on the brane and the evolution of $\dot{h}_{i j}$
- The bulk contribution \dot{h}_{55} is amplified by the warpfactor!
- It is a reflection of the massive KK-modes felt on the brane.
- The \dot{h}_{55} contribution disappears when: $\left[\partial_{r} \bar{\psi}-\partial_{t} \bar{\psi}-\frac{1}{2 r}\right]=0$ (physically not very interesting: $\quad \bar{\psi}=a \log (r)+b$; so a testparticle in this field is repelled from the cylinder
- Effectively a dark-energy term in Einstein equations

However: a more general solution must be investigated with $\kappa_{5}^{4}\left(\bar{S}_{\mu \nu}+S_{\mu \nu}^{(0)}\right)$ For example in $\bar{\psi}_{t t}:$ terms at rhs: $\quad \kappa_{5}^{4} \int\left(\dot{\Psi} \dot{B}\left(\bar{X}_{t}-\bar{X}_{r}\right)\left(\bar{P}_{t}-\bar{P}_{r}\right) \cos \varphi\right) d \xi$

Example of a solution

Consider the last eq. for $\dot{h}_{14}:$ For $\dot{h}_{14}=0$ (for the moment): integration to φ :

$$
\dot{h}_{11}=e^{2 \bar{\gamma}-2 \bar{\psi}} \overline{\mathcal{W}}^{2}\left[\dot{h}_{55}-2 \kappa_{4}^{2} \bar{X} \bar{P} \int(\dot{\Psi} \sin \varphi) d \varphi\right]
$$

Let us consider $\Psi=\widehat{\Psi}(t, r, \xi) \cos \varphi$ Then we obtain:

$$
\dot{h}_{11}=2 \kappa_{4}^{2} \bar{X} \bar{P} e^{2 \bar{\gamma}-2 \bar{\psi}} \overline{\mathcal{W}}^{2} \dot{\Psi} \cos 2 \varphi
$$

With two extremal values on $[0, \pi]$ and amplified by warpfactor. γ_{t} can also be written as:

$$
\begin{align*}
& \partial_{t} \bar{\gamma}=\frac{2 r}{\bar{W}_{1}+2 r \partial_{r} \bar{W}_{1}}\left[\partial_{r} \bar{W}_{1} \partial_{t} \bar{\psi}+\partial_{t} \bar{W}_{1} \partial_{r} \bar{\psi}+\partial_{t r} \bar{W}_{1}-\partial_{r} \bar{\gamma} \partial_{t} \bar{W}_{1}+\bar{W}_{1} \partial_{r} \bar{\psi} \partial_{t} \bar{\psi}\right. \\
& -\frac{2}{\bar{W}_{1}} \partial_{r} \bar{W}_{1} \partial_{t} \bar{W}_{1}+\frac{3}{4} \kappa_{4}^{2}\left\{\bar{W}_{1} \partial_{r} \bar{X} \partial_{t} \bar{X}+\frac{e^{2 \bar{\psi}}}{r^{2} e^{2} \bar{W}_{1}} \partial_{r} \bar{P} \partial_{t} \bar{P}+\frac{1}{\tau} \int\left(\bar{W}_{1} \dot{\Psi}^{2}+\frac{e^{2 \bar{\psi}}}{r^{2} \bar{W}_{1}} \dot{B}^{2}\right) d \xi\right\} \\
& -\frac{3}{16 \tau} \int\left(\bar{W}_{1} \dot{h}_{55}^{2}-\frac{2 e^{4} \bar{\psi}}{r^{4} \bar{W}_{1}^{3}} \dot{h}_{44}^{2}-\frac{4 e^{2 \bar{\psi}-2 \bar{\gamma}}}{\bar{W}_{1}}\left(\dot{h}_{11} \dot{h}_{55}\right)\right] \tag{20}
\end{align*}
$$

Possible evidence of cosmic strings via alignment of quasar and BH polarizations?

There appeared two investigations on polarization vectors on BH and quasars: D.Hutsemekers, et al, Alignment of quasar polarizations with large-scale structures A. Taylor, et al, Alignment of Radio Galaxies in deep radio imaging of ELAIS N1

Alignment of quasar polarizations with large-scale structures ${ }^{\star}$ D. Hutsemékers ${ }^{1}$, L. Braibant ${ }^{1}$, V. Pelgrims ${ }^{1}$, D. Sluse ${ }^{2}$
${ }^{1}$ Institut d'Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, B5c, B-4000 Liège, Belgium Argelander-Institut für Astronomie, Auf dem Hügel 71,53121 Bonn, Germany
Received ; accepted:

Alignments of Radio Galaxies in Deep Radio Imaging of ELAIS N1

A. R. Taylor, ${ }^{1,2 \star}$ P. Jagannathan 1,3

${ }^{1}$ Department of Astronomy University of Cape Town, Rondebosch, South Africa
${ }^{2}$ Department of Physic and Astronomy, University of the Western Cape, Street Address, Cape Town Postal Code, South Africa
${ }^{3}$ National Radio Astronomy Observatory, Socorro, New Mexico, USA

Accepted XXX. Received YYY; in original form $Z Z Z$

ABSTRRACT
We present a study of the distribution of radio jet position angles of radio galaxies over an area of 1 square degree in the ELAIS N1 field. ELAIS N1 was observed with the Giant Metrewave Radio Telescope at 612 MHz to an rms noise level of $10 \mu \mathrm{Jy}$ and angular resolution of $6^{\prime \prime} \times 5^{\prime \prime}$. The image contains 65 resolved radio galaxy jets. The spatial distribution reveals a prominent alignment of jet position angles along a "filament" of about 1°. We examine the possibility that the apparent alignment arises from an underlying random distribution and find that the probability of chance

Figure 4. The length of the 64 radio jets plotted against jet position angle. The longest jets are preferentially present in the excess of object with polarisation angle $\sim-40^{\circ}$.
 tested.

