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[ Overview ]

I. Note on the Cauchy problem for GR

Il. How to handle nonlinear gravitational waves

lll. The Multiple-scale method

IV. Application to warped brane world models with U(1)
scalar-gauge field(in the brane)
Spin-off:
a. Self-acceleration of FLRW possible without A?
[Slagter, Pan: Found of Phys, 2016]
b. Evidence via alignment of quasar polarization?
[Slagter: Journ Mod Phys,2016]

Overview article: R.Maartens: Liv.Rev. 2010 “Brane world models”



Artist impression of a cosmic string




[ Some considerations on the Cauchy problem in GR ]

For linear problems: well understood
For nonlinear problems: we have
local Cauchy problem [well understood]
global Cauchy problem ( strong cosmic censorship problem)

General: Given a solution uy(x), does there exist a unique solution u(t, x)

of the PDE’s with u(0,x) = uy(x)

Connection with practical physics:

It is seldom that exact solutions of the Einstein eq. can be used: one needs numerical
solutions or analytic approx ( expansion in a small parameter)

» The Einstein eq are essentially global hyperbolic eq:

» A spacelike hypersurface S is called Cauchy surface, if each inextendible

causal curve hits it precisely once

» Cauchy surfaces are the correct places to give data for the Cauchy problem

» n, unit normal vector on S; define: g,, = h,, + n,n, , k., = V,nsh,h
they constitute the initial data for the Einstein eq.

» There are constraints:

1
R — kopk® + (h%kyy)” = KTgg  VPkgp — Va(hbkye) = — > KToq



[ Considerations on gravitational waves in GR }

Weak field approx:

Guy = Ny + huv wr O'(h;wz) |hMV| <K 1

Einstein equations:

d7d,h"° + 3°9,h"Y — 8Y0°h — 8"d,h?° — n¥?(dpd, hP* + 3*d,h) = 16nGT"°

Note that h,, is invariant under a coordinate transformation x, - x, + ¢,
SO huv = huv T (aufv + avfu)

One usually choose the Lorentz-gauge: d, (h’“’ — %n”"h) = 0 and additional
gauge freedom d%d,5% = 0.

However: in high-energy situations ( or high curvature):

weak field approximation not suitable
The background metric itself may respond to the strong gravitational field

And: weak-field approx runs into divergences when pushed to second order!
[long time ago:Trautman, Fock]



[ The multiple-scale analysis J

[ Or: high-frequency or “two-timing” method]

It is known that:

» In d>4 the equations of (stringy) gravity are fully non-linear ( the usual Einstein
equations are quasi-linear).

» Non-uniformity can appear in a regular perturbation expansion by interaction
between consecutive orders of the perturbation scheme: secular terms can appear.

» Discontinuities of the 2-th order derivatives of the metric across a (d-1) dim
submanifold

» dispersion of gravitational waves or shocks
Now:
» The MS method is a powerful method [ Choquet-Bruhat, 1969] to solve this
Cauchy problem: the unknowns and their first derivatives cannot be given
arbitrarily on a (d-1) dim submanifold: the Cauchy data must satisfy constraints

» Find an asymptotic solution of order p in an expansion parameter w.
» This is also an approximate solution for appropriate boundedness conditions
» One obtains from lower to higher order: “gauge”-conditions on the fieldvariables
“back-reaction” on the background metric
propagation equations

» Make additional restrictions on the expansion to maintain boundedness.



First of all:  We need a physical meaningful expansion parameter:

wavelength perturbation

for example' typical background dimension

typical dimension of the extra dimension
background dimension

or.

So: wave-like solutons of the non-linear hyperbolic system are
characterized by different scales:

Regions with smooth variation of the solution: background
Regions with strong variation: waves

Some results:

Isaacson-1967; Choquet-Bruhat-Taub-1973;Choquet-Bruhat-1969,1976,1988
Slagter-Ap.J 1986

For sringy gravity ( Gauss-Bonnet term): Choquet-Bruhat-1988



[ Simple example 1: Duffing’s equation ]

2
d_zz +ay+ey? = € small When t is of order i one gets serious problems:
dt Secular terms in all orders, so violation

of boundedness.
Proof: Expand: y(t) = 2 'y (t) then:

0
Y'0tyo=0 - Yo= cos(t)

1 3
y'1+y1=-ys > y;=Acos(t) + Bsin(t) + 3—2cos(3t) Ml sin(t)

y1 contains a secular term. However: the solution is bounded for all t!

Solution: all secular terms sum up to zero. A hell of a job for many DE’s!
Result: y(t) = cos|t (1 + %e)]

For the multiple scale method not necessary:

Substitute: y(t) =Yo(t, )+ €Y (t,T) + . T=¢t



collecting powers of ¢ :  02Y, S 0%Y, PR TS 0%Y,
otz 0 otz 1T 0 T oot

The general solution for Y,: Y,(t,7) = A(7)e' + A*(1t)e ™
Substituting this solution in righthand side in Eq. for Y;:

. dA . dA . .
elt [—3,42,4* — ZiE] + et [—BA(A*)Z + 2iF — e3A3 — 73U (4")3

If we do not want secular terms in Y;-equation to order &, then the two terms in
brackets must be zero! The solution is: A(t) = R(0)el6(®+3iR(0)?/2
After substituting t=¢et and proper boundary conditions, we obtain

y(t) = cos [t (1 + %e)] + o(g), &—0, et=0(1), [compare with sum sec.terms]

So: one can keep track of the several orders of approximation



[ Example 2: Nonlinear Schrodinger equation ]

Consider:

D — Dy = CD(,BCDZ —a) u
® = 0 is a stable solution. For a = 1,4 = % and @ small / /\
Then an approx.: U =1 —cos® (sin-Gordon eq) f = -

How to handle the disturbances?
Multiple-Scale-method: o

d(x,t;€) = z gkp (k) (x,t; €)

k=1

We define “slow” variables”: X, = e*x T, = €t
Then: ~
d(t,x;e) = d(x, t, X, T, X, Ty, .....)
And we can keep track of the several orders and can handle secular terms.

(axx _ att - a)q)(l) =0

Lowest order: [linearized eq.]

Next order: (Oxx — O — )PP + 2(0x, 5 — 07, )@ = 0

(Oxx — Opr — )PP + (0y,x, — Opy1, + 20x,5 — 207, )P + ’B(¢(1))3
+2(0y,x — 07,0 )@@ = 0



The multiple scale method formally

1\

Let us consider the formal series of the relevant fields F; in x on a manifold M,
dependent on different scales (x,¢,yx,..)

Féx)= ) o FP@E )
n=0

with £ = wO(x), x = @wIl(x), ... scalar ( phase functions) on M.
Here: i is the ratio of the characteristic wavelength of the perturbations to

the dimension of the background; % ratio extra dim. to background dim.

~—

F; are the metric components (and the scalar-gauge fields).

dguy . - _ . _ g . _ g,

If one substitutes the expansions into the fieldequations, one says that F;
are asymptotic solutions, if in the replaced %gries

. fi(xE 5. = nzmw-"ff")(x, £2.)
fi=0 :
all l




[ The multiple scale method formally

Now
Fi(x,&x..) = Yoo ar"Fg") (x,& x..) isalso an approximate wavelike

solution of order p on W c M, if for all xe W

Ifix, & x..)| < C.wP forall& y,... Cconst

Nice example: stringy gravity—Choquet-Bruhat; J Math. Phys.1988
» gravity+Gauss-Bonnet term in n-dim: field eq second order PDE’s

» Cauchy problem is well described with constraints
>



Why Warped 5D Space times?

«The explanation of the acceleration with a cosmological constant is rather
problematic:

» Coincidence-problem: Q,~Qy

> Finetuning-problem: pj,ps~107°7GeV*  py iheor~1TeV?

» Ad hoc modifications: of the Friedmann equation risky, specially when
considering density perturbations: do it covariantly

» Disturbances don’t survive in 4D models : at least some of them are
needed for the observed large-scale structures

In warped 5D model: they do survive

So modify GR : D-branes. 1. Dvali-Gabadadze- Porrati (DGP)
=2. Randall-Sundrum (RS)
In general:
Gravity leakage at late-times initiates acceleration, due to weakening of gravity on

the brane - not due to any negative pressure field.
4D gravity is recovered at high energy via the lightest KK modes of the graviton

By-product: hierarchy problem solved [ for example in RS-1 model]




Present State of our Universe

» The expansion of our universe is accelerating.

» One needs dark energy with an effectively negative pressure, p < —%p

LCDM: w = -1

[ Planck 2015: w> —1 7]

» We should live now in the cosmological constant dominated era (and approx. )
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Why Cosmological Cosmic Strings?

e The U(1) scalar gauge field has 1.lived up to his reputation! W
2.triggered inflation Yeamm .
3.GL theory of super-cond. ——
4.Nielsen-Olesen vortex Sl

e Gen Rel field eq:

Gy = k%4 Ty, D,DFD—2 a"d‘)’* =0 VFF,, — %ie[(b(D,,(b)*-(b*(Dvd))] =0
**Cosmic string collection of points in false vacuum.
** Angle deficit Minkowski minus wedge

[ ds? = —e%(dt? — dz?) + dr? + e 2% (kyr + a,)? d? ]

Question: What about cylindrical GW from CS in ,
expanding universe? [ Gregory, 1989] T

Cosmic String

It turns out: C-energy ~ % extremely small
H

Expected disturbances fade away during expansion

3-5pace
[Importance of cyl symm grav waves was already noticed
by Einstein-Rosen[1936]]




Why Cosmological Cosmic Strings?
«U(1) CS can be embedded into a flat 4D FRW along the polar axis

eHowever: The approx spacetime becomes conical:[ not pleasant]

[ ds? = a(t)*[—dt? + dr* + K(r)?dz* + (1 — 4nGu)*S(r)*de?] J

and can be matched on the well known FLRW spacetime by suitable transformation

1 — kR?

dR*
[ ds? = a(t)?|—dt?> + ———— + R?d0? + (1 — 4nGu)*R?*sin?0d¢p? J

«Result: No contribution from the gravitation waves from the CS because

Tes & 10720
Ry a

Disturbances are damped rapidly by (;L; 2

» Asymptotic conical ST ( angle deficit) is problematic. Also found in radiative cyl.
Einstein-Rosen ST: C-energy related to angle deficit [just as mass is related to angle

deficit for CS].
So: Surviving disturbances must be very small ( otherwise conflict with observ)



Problems for Cosmic Strings from
Observations

» density perturbations : %p ~Gp=n? /M, %~ 10° for GUT scale

» in first instance correct with observations

» Now: inconsistencies with new CBM power spectrum COBE, WMAP

» They cannot provide a satisfactory explanation for the magnitude of  the
initial density perturbations

» How to handle super-massive CS with Gu >>1 [ phase transition at energy much
larger than GUT ]

This is interesting for perturbation analysis

[The angle deficit will increase with the energy scale of symmetry breaking]

» where is the axially symmetric gravitational lensing-effect? e
i ==
» Cosmological CS: late-time conical residu [unwanted] P u ~Ay/

[Gregory, 1989]

So Exit CS study??




Rescue of CS

rebornCS — Go to warped 5D RS model

*** in the brane:  unobservable angle deficit
*** asymptotically: no conical space time

[Slagter, 2012, 1UMPD]

*** So no conflict with:
1. CMB-spectrum
2. Absence of axially symm. double images
3. The effective 4D spacetime of the CS in agreement with GUT;

— CS can be produced in superstring theory
— Super massive CS with Gu >> 1 will be warped down to GUT scale( 1077)

— Disturbances in the spatial components of the stress-energy tensor cause cylindrical
symmetric waves, amplified due to the presence of the bulk space with warp factor

> > Mass: n=2mnF(y) fooo e AKodr With F the WARPFACTOR

SO: building up a huge mass in the bulk : KK-modes on brane
» » Test of RS type models against observational constraint possible !

Cern: KK-particles detectable?







[ The warped 5D model with the U(1) scalar-gauge field }

We consider the warped spacetime: [*g,, = °>g,, —n,n,] (n normal to brane)

ds? = W(t,1,y)?[e20ENYEN) (—d¢? + dr?) + e¥ENdz? + rle ¥ dp?]| + dy?

With W the warpfactor. We reside on the BRANE y=0. Gravity can prop. in BULK
We consider: scalar-gauge field in brane: [empty BULK; only A ]

©=nX(tre, 4, =2IPET) -G, V@) =@ )

1

From the 5D-eq: e 6150 7Y0)

[Slagter-Pan;2016] W = T J(die® — dye=)(d3e™ — dye=")
Found of Phys

The modified 4D effective Einstein equations:

4Guv — eff guv + K4 4Tuv + KS Suv guv

S is the quadratic term in the energy-momentum tensor [from extrinsic curv. terms
in proj. Einstein tensor]
€ is part of the 5D Weyl tensor C and carries inf.of grav.field outside the brane

guv — ScayﬁSnyn gﬁ 495

Acrr = 0 (RS-finetuning)



*Exact solutions

warpfactor warpfactor
] 161
7 14
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Slagter-Pan;2016--Found of Phys 14

10.1007_s10701-016-0002-2 pdf



[ The warped 5D model with the U(1) scalar-gauge field }

The scalar-gauge field equations:
dV A 1. .
DD, =2 VEFy, = 5 ie(P(D, @) ~&"D,P)
With D, ® = *V,® + ied,q.

» The scalar gauge field can build-up a huge mass
per unit length (or angle-deficit) by the iy S

warpfactor W: Gu~1 ( Y ,MN\‘\\[\\

» Can induce massive KK-modes felt on the brane.
[while manifestation on brane will be warped
down to GUT scale consistent with observation]

» Disturbances can cause cyl. symm waves amplified by the warpfactor and could
survive natural damping due to the expansion of the universe.

» Could possible explane “self-acceleration” [ dark energy] with A,¢¢=0!



[ The nonlinear wave approximation in 5D GenRel

We expand: X )
Iu = guv(x) + th,(x, E,X,..) + ?kuv(x, E:X:--) + ...

— 1 1

AM = AH(X) +ZBM(X,€,X,..) -I-?Cﬂ(x,f,x,__) Elorr
_ 1 1
D=0x)+—¥Yx&x,..)t+t—=SExEx..) +
(/) W
We define

dguv ag”v . B aguv

dx° = 9uv,e + wlaguv + (\l/)kvy‘w-l-.. o = 30 Iy = af

The rapid variations occur in the directions of [, , k, transversal to the sub-
minifolds of constant phase .

For the time being: only [, = :Ti [ now O =t — 1]

The perturbations can be ¢-dep.



We write:

_ 1
_ a(0) a(1)
[ = TR +00 + =057 + ..

Ly = 1
R%, = w RIS ™ + RIp, + RIS + — RO + -+

UTV UTV w MV
| 0 1, | |
with Lo =337 (Luhgy + gy, = lghys)

1 1 . . . . 0

We substitute the expansions into the fieldequations and subsequently put zero the
various powers of ®

' . (-1) _ -1
From the w~ ' Einstein: 4Guv =~y (“gauge” cond)
Scalar: ",% =0 [note: this is the Eikonal eq., or ¥ ]

gaugefield: "B, =0

1 _ .o
Normally one imposes a priori gauge-conditions:  [* (h,,w B gguvh) =0
The contribution of 8,(;,1) changes the conditions on 4,

Further: we take  1#l, =0 (Eikonal cond)
"1, # 0 means that b, arises from a coord transformation.



[ The effective brane Einstein equations J

The @?)- Einstein equations:

= 0 _ = 0 < 0 r <
G + 163 = = Ao Gy + KTy + TS + K2 (50 + S ) — Epv + E)

where the part of the Weyl tensor is:
1
g[w S5 nyn84gﬁ4gf[5Rayﬁ6 - § (SgaysRé‘,B N Sgaé‘SRyB _ Sg,BSSRya - SgBSSRya)

1
+ E (Sgay SQSB I Sgaé‘ Sgyﬁ) SR]

Now we take only hqyq,hyy hqy3 hys hss + 0

One can also integrate the equations wrt to { : propagation equations
Then: substitute back these equations: (A = 0 (RS finetuning)

= = ra < 1 0 0 0 0
G = K T+ 188 — Byt~ | (T + it S — 160 — £)ag

one says:» — | SS",) dg is the KK-mode contribution of the perturbative 5D graviton
» can play the role of effective CC ( same sign)
» is an extra “back-reaction” term which contain hs:



[ The scalar-gauge field equations J

Simplified case: [, = [1,—1,0,0,0]
Then: first order gauge field: B, = [By, By, 0, B, 0]

From the gauge field eq: : The /TH is as the unperturbed case.
The first order perturbations:

atl'p = arl'p +

— + Y
2r
2% (0,P — 0,P) .
2r2W2e 4

— e WK sin pre?V L g

: : _ - 1].
atB=arB+[arl/)_atl/)__]B+e

a(,,B

atBO = atBO — ezy

» We observe: @-dependent parts arise, amplified by warpfactor!
» One needs: [“4, = 0 , otherwise real and imaginary parts interacts as

propagation progresses.
» We omitted for time being C, and the k3 (fm, + S,(g,)) term
» Approximate wave solution no longer axially symmetric! [also found by Choquet B]



[ The scalar background field equation

After integration we obtain for the background scalar field

1 1 . .
DDy® — S fB(PD" —1*) = ;j (thﬂlvtP + gﬂvrﬁo)w) dé

» There is a “backreaction” from the HF perturbations



[ The background Einstein equations to order »(® J

In our special model, we have decoupled background equations:

2117 2 117 2 172 172 17 1,2 1,2 w = =
0nGW = =05 W + W O W* + 0, W*) — W0y + 0, ¥~) + T (0,7 — 0¢7)
o, Wo, W
w

3 ( 2w(atp ap)z

== ZK4 Wr2e?

+ W(0.X — a,.X)2>

W 32V
AW?2r2¢e2

02 = 02 +°2L + Z (8, Wa,9 — 0,W0,9) — 2
aTPZ WZ 2X2P2 2y — 21[))

Kz% (atpz —

at? — ar?
+ [ W0 — 0,9)* +

+ (0, W — atW)(arl/J — 0Y) —

W +0,, W +

9, W? + 30, W?*

2W
Wl i} o o XEP? (0P —8,P)?
+ K4 1_6 <7atX + 561'X - 1zatXaTX + 58 4 ,r2 + 68 l/) 'M_]ZT-ZEZ

AT A 2= r S0 __7.\7.\]



{ The Einstein propagation equations to order o(® ]

We obtain the propagation equations by substituting back the integrated equations:

ey 1
0:hyy = 8-hyq + 2 ( P — 0P —_> hys += (kzz + k11) ki + = (5tw 0, W

o 1 N am_)—atw 1),
+ W0, — 0. +0, ¥ — 0,7))hy1 + €2V 2V = + hss

2 w 2r
+ k22729 W2(9,X — 0, X)Wcos ¢

| | i} A
O¢hyy = Ophys +| 20 — 209 — 27" W

Ky .
h44 ?(atp - arP)B

1 1
+ Zr e~ 2P P2 <8t1/) 0, + >h55

ath55_: arilss

| . oW —oW  _ _ \. ..
0¢hy3 = 0phy3 + 2 T + 0 — 0. | hys + k13 — k3

1 o, W-—0oW

0chyy = 0phyy + 2 (51;1,5 -0, Y + - + W ) Pyg + koq — kg

— 7 — —_—— Zy
+ 2K2e2Y2VW2XPWsin ¢ + 0 [hn + —h4 — eV 2 P2,



» These propagation equations are linear in the first order derivative.

Appearance of combinations of h,, and k,, terms:
distortion of the shape of the waves

» The equation for A is as expected: hes = M4 (L, 7). M, (@,y, %) :
the brane part must be separable from the bulk part.

» There is an interaction between the HF perturbations from the bulk, the
matterfields on the brane and the evolution of A; ;

» The bulk contribution h:: is amplified by the warpfactor!

P [t is a reflection of the massive KK-modes felt on the brane.

» The h-- contribution disappears when: [ P — 0, — —] ( physically not very

interesting: Y = alog(r) + b; so a testparticle in this field is repelled from the
cylinder

» Effectively a dark-energy term in Einstein equations
However: a more general solution must be investigated with k- (S + S(O))

For example in y,,: terms at rhs: K f(LIJB(Xt — X)) (P, — Pr)cosq))df




[ Example of a solution

Consider the last eq. for hy, : For h;,=0 (for the moment): integration to @:
by, = eV~ 292 | he — 2K4XPf(‘P sin @)dg

Let us consider ¥ = ®(t,r,&)cosgp Then we obtain:
by, = 2k2XPe?V 29 2P cos2¢

With two extremal values on [0,r] and amplified by warpfactor.
¥: can also be written as:
or

8, 7 = iR [z),.ﬁfl Op + O, W10, + 0, Wi — 8,730, Wy + W,0,90,9)

2 i e? :/) 1 o 20
— —8,W,8,W _‘{ i . R
WI( 1O W1 + 14 W10, X8, X + 2T, 0, P&, P + - /(W,\p | T B )(15}
3 2P . 5 4> ,
- l6r, (Wi - ri s~ g (b o) (20)

l/~_’




Possible evidence of cosmic strings via alignment of quasar
and BH polarizations?

There appeared two investigations on polarization vectors on BH and quasars:
D.Hutsemekers, et al, Alignment of quasar polarizations with large-scale structures
A.Taylor, et al, Alignment of Radio Galaxies in deep radio imaging of ELAIS N1

Alignment of quasar polarizations with large-scale structures™

D. Hutsemékers! , L. Braibant!, V. Pclgrinxs' , D. Sluse?
! Institut d’ Astrophysique et de Géophysique, Université de Liege, Allée du 6 Aoht 17, B5c, B-4000 Licge, Belgium
? Argelander-Institut fiir Astronomie, Auf dem Higel 71, 53121 Bonn, Germany

Received ; accepted:

ABSTRACT

We have measured the optical linear polarization of quasars belonging to Gpc-scale quasar groups at redshift z ~ 1.3. Out of 93 quasars
observed, 19 are significantly polarized. We found that quasar polarization vectors are cither parallel or perpendicular to the directions
of the large-scale structures to which they belong. Statistical tests indicate that the probability that this effect can be attributed to

Alignments of Radio Galaxies in Deep Radio Imaging of
ELAIS N1

A. R. Taylor,!2* P. Jagannathan !-3

! Department of Astronomy University of Cape Town, Rondebosch, South Africa

2 Department of Physic and Astronomy, University of the Western Cape, Street Address, Cape Town Postal Code, South Africa
3 National Radio Astronomy Observatory, Socorro, New Mezico, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We present a study of the distribution of radio jet position angles of radio galaxies
over an area of 1 square degree in the ELAIS N1 field. ELAIS N1 was observed with
the Giant Metrewave Radio Telescope at 612 MHz to an rms noise level of 10 nJy

A and angular resolution of 6”7 x5”7. The image contains 65 resolved radio galaxy jets.
| The spatial distribution reveals a prominent aligsnment of jet position angles along

" 2 L ! gnn jet § g g
T’ a “filament” of about 1°. We examine the possibility that the apparent alignment

i, arises from an underlying random distribution and find that the probability of chance
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20 = n.. ° .. : . : .. » 2 L] g o ° *
Two preferred directions 5 -

Jet Position Angle (degrees)

Figure 4. The length of the 64 radio jets plotted against jet
position angle. The longest jets are preferentially present in the
excess of object with polarisation angle ~ —40°.



Artist's impression of the alignment of the spin axes of quasars to the I
Universe. These alignments are over billions of light-years, the larges
Credits : ESO/M. Kornmesser

Prospect: Wait for new data from
Gaia! [500 000 pulsars?]

Then: next order results can be
tested.
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Fig. 4. The quasar groups and their orientations on the sky. Right ascen-
sions and declinations are in degree. The superimposed lines illustrate
the orientations of the four groups labelled 1, 2, 3, 4. The comoving
distance scale at redshift z = 1.3 is indicated assuming a flat Universe
with Hy = 70 km s™' Mpc™! and Q,, = 0.27.



