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Inflation

The inflationary scenario is based on the two main cornerstone
ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) – a stage of
accelerated, close to exponential expansion of our Universe in
the past preceding the hot Big Bang with decelerated,
power-law expansion.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of particles and field
fluctuations during inflation from the adiabatic vacuum
(no-particle) state for Fourier modes covering all observable
range of scales (and possibly somewhat beyond).



Present status of inflation
Now we have numbers: P. A. R. Ade et al., arXiv:1502.01589

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1 has been discovered (using
the multipole range ` > 40):

< ζ2(r) >=

∫
Pζ(k)

k
dk , Pζ(k) =

(
2.21+0.07

−0.08

)
10−9

(
k

k0

)ns−1

k0 = 0.05Mpc−1, ns − 1 = −0.035± 0.005

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1, relating it finally to
ln kBTγ

~H0
≈ 67.2.



From ”proving” inflation to using it as a tool
Simple (one-parameter, in particular) models may be good in
the first approximation (indeed so), but it is difficult to expect
them to be absolutely exact, small corrections due to new
physics should exist (indeed so).

Present status of inflation: transition from ”proving” it in
general and testing some of its simplest models to applying
the inflationary paradigm to investigate particle physics at
super-high energies and the actual history of the Universe in
the remote past using real observational data on ns(k)− 1 and
r(k).

The reconstruction approach – determining curvature and
inflaton potential from observational data.

The most important quantities:
1) for classical gravity – H , Ḣ
2) for super-high energy particle physics – m2

infl .



Physical scales related to inflation

”Naive” estimate where I use the reduced Planck mass
M̃Pl = (8πG )−1.

I. Curvature scale

H ∼
√

PζM̃Pl ∼ 1014GeV

II. Inflaton mass scale

|minfl | ∼ H
√
|1− ns | ∼ 1013GeV

New range of mass scales significantly less than the GUT scale.



Outcome of inflation

In the super-Hubble regime in the coordinate representation:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l , m = 1, 2, 3

hlm = 2ζ(r)δlm +
2∑

a=1

g (a)(r) e
(a)
lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

ζ describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).



In fact, metric perturbations hlm are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in ζ, g).

Remaining quantum coherence: deterministic correlation
between k and −k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



Dynamical origin of scalar perturbations

Local duration of inflation in terms of Ntot = ln
(

a(tfin)
a(tin)

)
is

different in different points of space: Ntot = Ntot(r). Then

ζ(r) = δNtot(r)

Correct generalization to the non-linear case: the space-time
metric after the end of inflation at super-Hubble scales

ds2 = dt2 − a2(t)e2Ntot(r)(dx2 + dy 2 + dz2)

First derived in A. A. Starobinsky, Phys. Lett. B 117, 175

(1982) in the case of one-field inflation.



Comparison with some simple models
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FLRW dynamics with a scalar field

In the absence of spatial curvature and other matter:

H2 =
κ2

3

(
φ̇2

2
+ V (φ)

)

Ḣ = −κ2

2
φ̇2

φ̈ + 3Hφ̇ + V ′(φ) = 0

where κ2 = 8πG (~ = c = 1).



Reduction to the first order equation

It can be reduced to the first order Hamilton-Jacobi-like
equation for H(φ). From the equation for Ḣ , dH

dφ
= −κ2

2
φ̇.

Inserting this into the equation for H2, we get

2

3κ2

(
dH

dφ

)2

= H2 − κ2

3
V (φ)

Time dependence is determined using the relation

t = −κ2

2

∫ (
dH

dφ

)−1

dφ

However, during oscillations of φ, H(φ) acquires non-analytic
behaviour of the type const +O(|φ− φ1|3/2) at the points
where φ̇ = 0, and then the correct matching with another
solution is needed.



Inflationary slow-roll dynamics

Slow-roll occurs if: |φ̈| � H |φ̇|, φ̇2 � V , and then |Ḣ | � H2.

Necessary conditions: |V ′| � κV , |V ′′| � κ2V . Then

H2 ≈ κ2V

3
, φ̇ ≈ − V ′

3H
, N ≡ ln

af

a
≈ κ2

∫ φ

φf

V

V ′ dφ

First obtained in A. A. Starobinsky, Sov. Astron. Lett. 4, 82
(1978) in the V = m2φ2

2
case and for a bouncing model.



Spectral predictions of the one-field inflationary

scenario in GR
Scalar (adiabatic) perturbations:

Pζ(k) =
H4

k

4π2φ̇2
=

GH4
k

π|Ḣ |k
=

128πG 3V 3
k

3V ′2
k

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk). Through this
relation, the number of e-folds from the end of inflation back
in time N(t) transforms to N(k) = ln kf

k
where

kf = a(tf )H(tf ), tf denotes the end of inflation.
The spectral slope

ns(k)− 1 ≡ d ln Pζ(k)

d ln k
=

1

κ2

(
2

V ′′
k

Vk
− 3

(
V ′

k

Vk

)2
)



Tensor perturbations (A. A. Starobinsky, JETP Lett. 50, 844
(1979)):

Pg (k) =
16GH2

k

π
; ng (k) ≡ d ln Pg (k)

d ln k
= − 1

κ2

(
V ′

k

Vk

)2

The consistency relation:

r(k) ≡ Pg

Pζ

=
16|Ḣk |

H2
k

= 8|ng (k)|

Tensor perturbations are always suppressed by at least the
factor ∼ 8/N(k) compared to scalar ones. For the present
Hubble scale, N(kH) = (50− 60).
The latest BICEP2/Keck Array/Planck upper limit: r < 0.07
at 95% c.f. (P. A. R. Ade et al., arXiv:1510.09217 ).



Potential reconstruction from scalar power

spectrum
In the slow-roll approximation:

V 3

V ′2 = CPζ(k(t(φ))), C =
12π2

κ6

Changing variables for φ to N(φ) and integrating, we get:

1

V (N)
= − κ4

12π2

∫
dN

Pζ(N)

κφ =

∫
dN

√
d ln V

dN

Here, N � 1 stands both for ln(kf /k) at the present time and
the number of e-folds back in time from the end of inflation.
First derived in H. M. Hodges and G. R. Blumenthal, Phys.
Rev. D 42, 3329 (1990).



”Scale-free” reconstruction
Numerical coincidence between 2/N(kH) ∼ 0.04 and 1− ns .

Let us assume that it is not a coincidence but happens for all
1� N . 60:

Pζ = P0N
2

Then:

V = V0
N

N + N0
= V0 tanh2 κφ

2
√

N0

r =
8N0

N(N + N0)

r ∼ 0.003 for N0 ∼ 1. From the upper limit r < 0.07:

N0 <
0.07N2

8− 0.07N

. N0 < 57 for N = 57.



Another example: Pζ = P0N
3/2.

V (φ) = V0
φ2 + 2φφ0

(φ + φ0)2

Not bounded from below (of course, in the region where the
slow-roll approximation is not valid anymore). Crosses zero
linearly.

More generally, the two ”aesthetic” assumptions – ”no-scale”
scalar power spectrum and V ∝ φ2n, n = 1, 2... at the
minimum of the potential – lead to
Pζ = P0N

n+1, ns − 1 = −n+1
N

unambiguously. From this, only
n = 1 is permitted by observations. Still an additional
parameter appears due to tensor power spectrum – no
preferred one-parameter model (if the V (φ) ∝ φ2 model is
excluded).



Inflation in f (R) gravity
The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

S =
1

16πG

∫
f (R)

√
−g d4x + Sm

f (R) = R + F (R), R ≡ Rµ
µ

Here f ′′(R) is not identically zero. Usual matter described by
the action Sm is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f (R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) ms ≈ const.

Metric variation is assumed everywhere. Palatini variation
leads to a different theory with a different number of degrees
of freedom.



Field equations

1

8πG

(
Rν

µ −
1

2
δν
µR

)
= −

(
T ν

µ (vis) + T ν
µ (DM) + T ν

µ (DE)

)
,

where G = G0 = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

8πGT ν
µ (DE) = F ′(R) Rν

µ−
1

2
F (R)δν

µ+
(
∇µ∇ν − δν

µ∇γ∇γ
)
F ′(R) .

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = RdS of the algebraic equation

Rf ′(R) = 2f (R) .

The special role of f (R) ∝ R2 gravity: admits de Sitter
solutions with any curvature.



Transformation to the Einstein frame and back
In the Einstein frame, free particles of usual matter do not
follow geodesics and atomic clocks do not measure proper
time.
From the Jordan (physical) frame to the Einstein one:

gE
µν = f ′g J

µν , κφ =

√
3

2
ln f ′, V (φ) =

f ′R − f

2κ2f ′2

where κ2 = 8πG .
Inverse transformation:

R =

(√
6κ

dV (φ)

dφ
+ 4κ2V (φ)

)
exp

(√
2

3
κφ

)

f (R) =

(√
6κ

dV (φ)

dφ
+ 2κ2V (φ)

)
exp

(
2

√
2

3
κφ

)
V (φ) should be at least C 1.



Background FRW equations in f (R) gravity

ds2 = dt2 − a2(t)
(
dx2 + dy 2 + dz2

)
H ≡ ȧ

a
, R = 6(Ḣ + 2H2)

The trace equation (4th order)

3

a3

d

dt

(
a3 df ′(R)

dt

)
− Rf ′(R) + 2f (R) = 8πG (ρm − 3pm)

The 0-0 equation (3d order)

3H
df ′(R)

dt
− 3(Ḣ + H2)f ′(R) +

f (R)

2
= 8πGρm



Reduction to the first order equation

In the absence of spatial curvature and ρm = 0, it is always
possible to reduce these equations to a first order one using
either the transformation to the Einstein frame and the
Hamilton-Jacobi-like equation for a minimally coupled scalar
field in a spatially flat FLRW metric, or by directly
transforming the 0-0 equation to the equation for R(H):

dR

dH
=

(R − 6H2)f ′(R)− f (R)

H(R − 12H2)f ′′(R)



Analogues of large-field (chaotic) inflation: F (R) ≈ R2A(R)
for R →∞ with A(R) being a slowly varying function of R ,
namely

|A′(R)| � A(R)

R
, |A′′(R)| � A(R)

R2
.

In particular,

f (R) ≈ R2

6m2 ln2(R/m2)

for R � m2 to have the same ns , r as for V = m2φ2/2.

Analogues of small-field (new) inflation, R ≈ R1:

F ′(R1) =
2F (R1)

R1
, F ′′(R1) ≈

2F (R1)

R2
1

.

Thus, all inflationary models in f (R) gravity are close to the
simplest one over some range of R .



Inflation reconstruction in f (R) gravity

f (R) = R2 A(R)

A = const − κ2

96π2

∫
dN

Pζ(N)

ln R = const +

∫
dN

√
−2 d ln A

3 dN

Here, the additional assumptions that Pζ ∝ Nβ and that the
resulting f (R) can be analytically continued to the region of
small R without introducing a new scale, and it has the linear
(Einstein) behaviour there, leads to β = 2 and the R + R2

inflationary model with r = 12
N2 = 3(ns − 1)2 unambiguously.



For Pζ = P0N
2:

A =
1

6M2

(
1 +

N0

N

)
, M2 ≡ 16π2N0Pζ

κ2

Two cases:
1. N � N0 always.

A =
1

6M2

1 +

(
R0

R

)√3/(2N0)


For N0 = 3/2, R0 = 6M2 we return to the simplest R + R2

inflationary model.

2. N0 � 1.

A =
1

6M2

1 +
(

R0

R

)√3/(2N0)

1−
(

R0

R

)√3/(2N0)

2



The simplest models producing the observed scalar

slope

f (R) = R +
R2

6M2

M = 2.6× 10−6

(
55

N

)
MPl ≈ 3.2× 1013 GeV

ns − 1 = − 2

N
≈ −0.036, r =

12

N2
≈ 0.004

HdS(N = 55) = 1.4× 1014 GeV

The same prediction from a scalar field model with
V (φ) = λφ4

4
at large φ and strong non-minimal coupling to

gravity ξRφ2 with ξ < 0, |ξ| � 1, including the
Brout-Englert-Higgs inflationary model.



The Lagrangian density for the simplest 1-parametric model:

L =
R

16πG
+

N2

288π2Pζ(k)
R2 =

R

16πG
+ 5× 108 R2

1. The specific case of the fourth order gravity in 4D

L =
R

16πG
+ AR2 + BCαβγδC

αβγδ

for which A� 1, A� |B |.
2. Another, completely different way: a non-minimally coupled
scalar field with a large negative coupling ξ (ξconf = 1

6
):

L =
R

16πG
− ξRφ2

2
+

1

2
φ,µφ

,µ − V (φ), ξ < 0, |ξ| � 1 .

In this limit, the Higgs-like scalar tree level potential

V (φ) =
λ(φ2−φ2

0)
2

4
just produces f (R) = 1

16πG

(
R + R2

6M2

)
with

M2 = λ/24πξ2G and φ2 = |ξ|R/λ (plus small corrections
∝ |ξ|−1).



Conclusions

I From the scalar power spectrum Pζ(k), it is possible to
reconstruct an inflationary model both in the Einstein and
f (R) gravity up to one arbitrary physical constant of
integration.

I Using the measured value of ns − 1 and assuming a
scale-free scalar power spectrum leads to the prediction
that the value r > 10−3 is well possible.

I Under the same assumptions, r can be even larger and
close to its present observational upper limit in
two-parametric inflationary models having large, but not
too large N0 . N . However, this requires a moderate
amount of parameter tuning.



I Even without using the observed value of ns − 1, the
assumptions of the absence of any new physical scale
both during inflation and after it and of the model
applicability up to the zero values of energy and
space-time curvature distinguish the case
Pζ(k) ∝ ln2(kf /k) just corresponding to this slope.

I In the Einstein gravity, the simplest inflationary models
permitted by observational data are two-parametric, no
preferred quantitative prediction for r , apart from its
parametric dependence on ns − 1, namely, ∼ (ns − 1)2 or
larger.

I In the f (R) gravity, the simplest model is one-parametric
and has the preferred value r = 12

N2 = 3(ns − 1)2.

I Thus, it has sense to search for primordial GW from
inflation at the level r > 10−3!
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