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Horndeski theory



Horndeski /1974/

ly=+/—-g (ﬁz + L3+ L4+ £5),

where

Ly = Gy(X.9),

L3 = Gy(X, )00,

Ly = Ga(X,®)R+IxGa(X, )65 VIOV]D,

L5 = Go(X,9) GV — £ xGs(X, )51 ViOVIOVo,

with X = —1v,0Vre, 68 =216307, 607 =315

[v™a] [v

P
5aég].
The most general theory with second order field equations.
Contains all studied models with a scalar field — Brans-Dicke,
quintessence, k-essence, F(R), etc. (recently — beyond Horndeski,
extended Horndeski.)



Fab Four (F4)

LF4:\/—g(£J+£P+£G+£R—2/\)

with
Ly = V()G V'OV,
EP = VP((D) uupa’vﬂcbqu)vyaq)
L = Vg(®)R
Lr = Vgr(®)( M,,angaﬂ — 4R, R" + R?),
. ynz _ 1 spvyd po) poe o~
the dual of Riemann P op = "1 60/\aﬂ R » P™ 0 =G

The most general Horndeski subset where flat space is a solution,
despite A # 0 = screening of the cosmological constant.

/Charmousis, Copeland, Padilla, Saffin, 2012/



Fab Five (F5)

V)= —a, Vp= Vg =0, Vg = M3, also scalar kinetic term
S= / Mg R — (o Gy + € gu)VFOVY® — 20) /=g d*x + Sy,

@ Static, spherically symmetric sector is completely integrable
(black holes, solitons, stars)

@ Cosmologies with the early and late acceleration phases and
with the Hubble rate determined not by A but by ¢/«
(cosmological constant problem is solved ?)

o We wish to study these cosmologies in more detail



FLRW cosmologies



Field equations

6S = /(EW 58" + Ep 0®)y/—gd*x =0
= gravitational equations,

E/u/ = MI%I Gl“/ + /\gw/ - a77u/ — € T;S,Iqj) - T;Srlfl) = 07

1
T = PoupVoOVI0 4 g,y 5,07 VeOVI® — XGy
[0}
T = V,0V,0+ Xgu,
TS = (p+P)UuUu + pguw

and the scalar equation
Eo =V,u((aG" +eg")V,0) =0 = &= >+ d

= ® sees effective “optical” metric M, = aG,, + cgu..



FLRW

ds? = —dt? + az(t) [ + r2(d192 + sin 19dcp2)]

1— Kr?

K =0,=+1. Hubble rate H = a/a, 1) = ® = Friedmann+scalar
K 1 3 K

3M3 (H? + = | = Ze? —Zay? (3H?> + = | + A+ p,
a2 2 a2

1d /[, > K
o dt < (3“ (” +az> ‘5) ¢) =9
= first integral

a3<3a(H2 f) )w c

Solutions with C # 0 approach C = 0 solutions as a — co.



C = 0 solutions

GR branch

p=0, W R Atr

a2 3/\/11%1

The screening branch

K €

H? + = =
T2 3 a (e —3a K /a?)

cosmological term is £/3a while the A is screened (p as well).
Flat space is obtained for ¢ = 0,

A+Pg

K:_17 a:t7 Q’Z)2: 3
«




C # 0 solutions

Scalar field

C

= ad [Ba(H2+ K) —¢]’

= everything reduces to algebraic equation for H(a)

32, <H2+K) _ C?[e —3a (3H? + K)] A
a? 220 [5—304(H2+§)]2

Solution gives

t:/ f,()

There are several solution branches, some of them show ghost.



No-ghost conditions



Generic perturbations g, — guu + 08w, ® — ® + 6P give rise to

5ElW = 5(M1%1 G,ul/ =+ /\g,uu - T — & T T(m))
6o = O(Vu((0G" +cg")V, b)),

which is used to compute the second varition
52S = /(5EW 58" + 6Ep 60)\/—g d*x = /62L d*x.

The kinetic part of 6°L is a quadratic form in 08w, §®, it should
be positive definite. It splits into scalar ® vector ® tensor sectors.

Result in the scalar sector is K-dependent

525 = §2 (/ (/\/IFZ,I R — (0 G + € gu) VIOV — 2/\) V=g d4x>



Anisotropic deformations of K = 0 solutions

ds? = —N2dt? + a2 dx® + a3 dx3 + a3 dx3
2M2 $2 $?
L=- (w‘”%s) Q+ <€N—2NA) 713233

with Q = a7 a» a3 + a» 41 33 + a3 a1 a» . Constraint

oL 2M3, 3o d? £ P2
C:8N:< N§)1—|— N )Q_<N2+2A> ayaraz =0.

perturbations
ax = a—+dag, ¢:/wdt+6¢.

6C=0= 6 ~ (031 + 8ap + 043) + ... = 0%L is a quadratic in
day form. Its eigenvalues should be positive-definite =



No-ghost conditions for K =0

8L = Miaiar + ...
Positivity of M, requires in the scalar sector

[18aH?y? + 6 M3 H? — =42
X [9a2H2p? — 6aMB H? + & (ay? + 2M3)] > 0

while in the tensor and vector sectors
2M3, + ay? >0

This is confirmed by the analysis of generic perturbations.
The scalar condition can also be obtained by considering only the
isotropic deformations of the FLRW metric

a—a+da, d—d+0d

which can be repeated also for K # 0.



No-ghost conditions for all K

In the scalar sector

[18aH?4)? + 6 M3 H? — e1)?]
X [902H?*? — 6aMB H? + € (ap? + 2M3)] > 0

€e=¢—
22
in the tensor and vector sectors

M3 + > >0 = a>0

These are used to select stable and unstable solution branches.



No-ghost conditions for flat space



FLRW in F4

ds? = —N2dt? + a*(t) [

2
1— Kr?

+ r?(dv? + sinzﬁdgpz)} ,

= reduced Lagrangian

Lry

38\/_[ D) . . 33Vp o) . .
N?f ) ¢2(a2 =+ KNZ) _ N5( ) (D3 (32 + KNZ)
ba 2 -2 / N .-
" <VG(<1>)(KN _P) - VG(CD)CDaa>
8ab VL (D), .
Tg(ﬁ + 3KN?) — 2 A Na®

Varying gives the field equations. For any Vp(®), V,(®), Vi(P),
Vr(®) (unless Vp = V; = V[ = 0) the flat space solution

N=1  K=-1, a=t,
. . . A
Vp¢3—tVJ¢2+t2Vé;¢:§t3.



No-ghost conditions for flat space

OVp p® — 5tV + (2t2 VL + 8VR)Y + 2tV > 0,
3Vp 3 — tV % + 8Vhy 4+ 2tV > 0

P = ®. Fulfilled within the £ — 0 limit of F5
Vp=Vr=0, V,=-a<0, Vc=Mp,

In general impose non-trivial conditions on the coefficient functions
VJ(CD), ey VR((D) =

flat space within the full F4 theory can have ghost, unless the
coefficients V/j, ..., Vg are properly chosen.



Ghost-free cosmologies



Master equation

K C% e —3a (3H? +
3ME) <H2 2) _Cl ( )]2 N+ p.
a 230 [ — 3o (H2+ K)]
determines H(a). Dimensionless parameters
H2:H§y, a=apa, pcr:3M1%1Hg,
A K C?
Q=— QD=-p Q= _—6,5 C_ FYSTL
Per Hj 6aag Hy per 3« H

Q Q
P = Per (: + 3) = radiation+dust
a



Dimensionless master equation, y = (H/Hy)?

0

B B U Qe[C—3}/+?§}
y:QO—F?‘F?‘F?‘F 2
¢y +%]

(¢ ~ €/a) is equivalent to
P(a,y) = cs(a) y* + c2(a) y* + cu(a) y + co(a) = 0
No-ghost conditions are

Qe > 0,
y (v —y)?a®+ Qg (6y — y*)] [(y« — ¥)3a® + Q6 (3y + y4)] >0,

with y, = ¢ + Qp/a°.



Late time solutions, a — oo

¢ > Qo: GR branch, stable (=ghost free)

QW B U (C—32) 1
Q %3
y=Q+ 5+ +a4+(Qo—C)2a6+O =)

0 < ¢ < Qq: Unstable GR branch + stable screening branches

N Q) X Q>0 1
EECT 2 QR T +O<)’

with x = 1/2¢ Q6(20 — ()

¢ < 0: Only the unstable GR branch.




Early time solutions, a — 0

GR solution is always unstable

Qo Q3 Q2 —3Q 302306
= 1
at T3 as + Qqa? + Qua +0(1)

Screening solutions exist if 0% = Qg(8Q224 + 9Q6) > 0,

2004 + 30 0 Q3Q6(4220 + 906 + 3(7)

_ 1
Y 20,2 + 2002 2 o(1)

stable if (52284 £ 30 + 9Q6)(8Q22Q4 + 30 + 9Q6) > 0.

If Q> = K = 0 then the GR remains unstable, while the screening
branches are both stable,

3% 3Q3Q6 5 3Q6Q% + 9Q%

¢, 4¢
y. = § + 2779 (Q4 32 + Q3 33) + 0(34)



Early time solutions for 2, = 0

There is always a stable branch

Q4503 ¢ 803 160303

T 322 27Q6a 3 81Q 24302

y + O(a).

Additional branches exist if w? = Q% — 1206 >0

Qg +w Q2(Q§ + w§23 - 1696) 1
= @
Y+ 25 T w(w £ Q3)a? * ’

here y_ is stable while y, is unstable. If Q3 = Q4 = 0 then

Y =322 737 810, 270 72902

and if Q = Q3 = Q4 = 0 then there remains only

2 _
y = % + 44(5?860 L+0 (312) which is stable



Ghost-free solutions

Late times
1
= Q Y=+ .. Q
y 0+ ) (a—Qo)a3+ ) o<
Qo —¢
= V=4 Q
y ¢+ , 2CQ6+ , O0<a<Q

Early times (K = Q2 = 0). One branch

¢ 3
=2 +4... V=——+4...
y=3t- 2B
Another branch
3Q6 Q4
= —=+... V=—
Y Q4a2+ ’ 3Qsa+ ’
if Q4 # 0 and if Q4 = 0 but w? = Q% — 12Qg > 0 then
Q3 —w 2
= e, U=
y 2as T Q3—(,u+ ’

The matter-dominated solution with y ~ Q4/a* + ... has ghost.



Global solutions, €23 =Q, =0, > Qor <0

One local solution at small and large a = one global solution

g<—y—>Qo

Figure: y(a) for Qo = Qs =1, Qo = Q3 = Q4 = 0.

Left: ( = 6, stable; Right: ( = —3, cosmological bounce, unstable



Global solutions, €23 £ 0, 2, #0, > Qpor <0

One local solution in one limit and three in the other = one global

50

¢
40
30

20

1 2 3 4 5 05 1.0 15 20 25 3.0

Figure: y(a) for Qo = Q6 =1, Q2 = Q3 = Qy =0, ¢ = 0.2 (left) and for
Q=% =1,02=0, Q=5 Q =0, C:6(I’Ight)

Solutions A,S are stable, (/3 + y —(
Solutions B,C — "beginning of time"; P,Q — “end of time"; one of the
merging branches has ghost, a(t) = a. + a./ys|t — t.| + O ((t — t.)%/?).



Global solutions, €23 £ 0, 2, #0, 0 < < €

Three global solutions; A,B are stable; one has for B

Q3 — /Q2 — 1204

3Q6

—— ¢y —>( or

Q4a2

233

20

05

0.0
0

—y—=C if Qp=0.

1

2

3 4 5

Figure: Qo = Qﬁ = ]., Q3 = 5, Q4 = 0, C: 02, QQ =0 (Ieft) and Q2 =1

(right).



Three types of ghost-free solutions

Solution S exists only for ¢ > €, sourced by the scalar field but
may also contain matter,

¢ —y—>Q

3
At late times — standard dynamic dominated by the A + matter.
At early times matter and A are screened, the Hubble rate is
determined by ( ~ £/a. Can be an hierarchy between the Hubble
scales. A is not screened at late times = cosmological constant
problem.



Three types of ghost-free solutions

Solutions A and B exist for 0 < { < €. Solution A can exist with
or without matter terms,

¢
§<_y_><7

solution B exists only with matter,

30 Q3 — /93 — 12Q6

—y—C( or
Q.2 Y 223

—y—=C if Qp=0.

Both show screening at late times, because their late time
behaviour is controlled by { ~ ¢/a and not by A = could in
principle describe the late time acceleration while circumventing
the cosmological constant problem. Cannot describe the early
inflationary phase. Solution B does not show inflation at all, while
for A there is no hierarchy between the two Hubble scales.



Stability of the solutions



Perturbations of FLRW with K =0

Eu = g;(u(p + 08w o = /l/)(t) dt + 6® with

(5g0u =0, (5g,-k = 2a2(t) h,‘k(t)eipx, 0P = ¢(t)eipx’

the momentum is along the third axis, p = (0,0, p),

W |
W - |

OO O O o
_H OO O+ O
OO +r O OO
O OO O o



Scalar sector

dimensionless 7 = Hyt and h = a/a, independent amplitudes
w(T) = Ri(7), u(t) = R2(7), and ¢(71),

3Q6V (¢ — 3h%) ¢ — 3h(3Q W2 + 1) W
P2

- (QW? + 1)(w + u) + 2Q6hV ¢} = 0,

QW2 + 1) (W + 1) + 2Q6h ¢ + 3QW(¢ — h*) ¢ =0,

(¢ = 1) & — 20w i+ (3(C — 30°)W — 20 — 2Wh)

+(3¢ = 2h = 3h?) h + [3(C — )W +9(C — h?)hV)] w

2P? . P?

—3z (V) (wtu) - 3?(2h+3h2 —3n) ¢ =0.



Tensor sector

Each of the two tensor amplitudes w(7) = Rs(7) and
u(T) = Re(7) fulfills exactly the same equation

(W2 + 1) W + (296w\i1 1 3(QW2 + 1)h> W

- (2(Qew2 + 1)(2h 4 3h?) 4 2Q6(3C W2 + 4hV W) — 6Q
P2

t (QeV? — 1)) w =0.

Solutions of linear equations can become unbounded only in the
vicinity of singular points, a = 0, cc.



Late time limit

GR branch:

1
y = Qo+..., W:m“—, Qo<Oé

tensor sector:  w,u= C; + Gy e 3"
scalar sector:  w = (i, u= G, ¢=C+ Cpe3hm

perturbations are bounded. Screening branch:

_ S
y = (+..., V=4 2% + ..., 0<a<Q

solutions are very similar to those for the GR branch.

All solutions are stable at late times = the model is OK in this
[imit.



Early times, homogeneous modes with P =0

3

First branch: y = = ﬂ—i—...,

TV

W [

perturbations are ~ C; + C2e+3h7, bounded for 7 — —oo.

30
=qAt

Q4

V=
3Qﬁa+ ’

Second branch: y

perturbations w = C; cos(V6In(1) + C2),

bounded as 7 — 0 but their derivatives grow and the curvature
blows up. In the scalar sector ¢ contains a piece proportional to
1/73, hence ¢/V is unbounded = this branch is unstable

The first branch may be stable



Inhomogeneous modes with P # 0

Equation for tensor perturbations of the first branch reduces to

2
W—3Ww— —5—w=0 with a(r)=e"

a%(7)

)

whose solution

w = G a*(r)[P — ha(r)]exp <ha’(37>

)
+ G 32(7')[P + ha(7)] exp <— hai-))

diverges as a(7) — 0, and the divergence is very strong — it is
proportional to the exponent of exponent of 7. This effect is
produced by terms proportional to Qg, hence by the background
scalar. Therefore, the screening branch is unstable as well.



Conclusions

o All isotropic ghost-free solutions in the F5 theory are unstable
in the vicinity of the initial spacetime singularity. The
instability is very strong — it is exponential and not power law
as in GR. Therefore, the F5 theory does not have viable
solutions describing the whole of the cosmological history.

o However, at late times it admits stable solutions with an
accelerating phase. For 0 < ¢ < g they show the screening,
since their Hubble parameter is determined not by the
conventional A-term but by ¢ ~ ¢/a, which circumvents the
cosmological constant problem. Hence the model, although
not completely satisfactory, could be used to explain the
current cosmic acceleration.

o It could be that more realistic models can be obtained by
adjusting the coefficient functions G, (X, ®) in the Horndeski
Lagrangian. It seems therefore that the Horndeski theory may
indeed offer interesting for cosmology features, but a detailed
analysis is needed each time.



