Bihyperbolic Spacetimes and Inflationary Magnetogenesis

Marcus C. Werner, Kyoto University

SW X, Institut d'Etudes Scientifiques de Cargèse, 10 May 2016 Hot Topics in Modern Cosmology

Motivation

(1) Current interest in modified theories, e.g. bimetric theories, Hořava-Lifshitz, some of them breaking Lorentz-invariance

Motivation

(1) Current interest in modified theories, e.g. bimetric theories, Hořava-Lifshitz, some of them breaking Lorentz-invariance
(2) Physics seeks predictive theories, i.e. a well-posed Cauchy problem with time-orientation

Motivation

(1) Current interest in modified theories, e.g. bimetric theories, Hořava-Lifshitz, some of them breaking Lorentz-invariance
(2) Physics seeks predictive theories, i.e. a well-posed Cauchy problem with time-orientation \rightarrow bihyperbolicity

Motivation

(1) Current interest in modified theories, e.g. bimetric theories, Hořava-Lifshitz, some of them breaking Lorentz-invariance
(2) Physics seeks predictive theories, i.e. a well-posed Cauchy problem with time-orientation \rightarrow bihyperbolicity
(3) How can this be ensured, or checked, in modified theories? What are the observational implications?

Outline

(1) Generalized tensorial spacetimes: the principal polynomial and the Cauchy problem

Outline

(1) Generalized tensorial spacetimes: the principal polynomial and the Cauchy problem
(2) Predictive kinematics: bihyperbolicity
(1) Generalized tensorial spacetimes: the principal polynomial and the Cauchy problem
(2) Predictive kinematics: bihyperbolicity
(3) Generalizing the Maxwell Lagrangian: the constitutive tensor and its cosmological observational implications
(1) Generalized tensorial spacetimes: the principal polynomial and the Cauchy problem
(2) Predictive kinematics: bihyperbolicity
(3) Generalizing the Maxwell Lagrangian: the constitutive tensor and its cosmological observational implications
(4) Application to inflationary magnetogenesis

Generalized spacetime

Consider a smooth manifold $\mathcal{M}, \operatorname{dim} \mathcal{M}=4$, with chart (\mathcal{U}, x) and some smooth tensor fields G called geometry and F called matter of, for now, arbitrary rank.

Generalized spacetime

Consider a smooth manifold $\mathcal{M}, \operatorname{dim} \mathcal{M}=4$, with chart (\mathcal{U}, x) and some smooth tensor fields G called geometry and F called matter of, for now, arbitrary rank.

Spacetime geometry is probed by test matter, with linear field equations.

Generalized spacetime

Consider a smooth manifold $\mathcal{M}, \operatorname{dim} \mathcal{M}=4$, with chart (\mathcal{U}, x) and some smooth tensor fields G called geometry and F called matter of, for now, arbitrary rank.

Spacetime geometry is probed by test matter, with linear field equations. The most general such PDE in (\mathcal{U}, x) is

$$
\begin{equation*}
\left[\sum_{d=1}^{k}\left(D_{\bar{\lambda}}^{\bar{\mu}}\right)(G)^{\nu_{1} \ldots \nu_{d}} \frac{\partial}{\partial x^{\nu_{1}}} \cdots \frac{\partial}{\partial x^{\nu_{d}}}\right] F_{\bar{\mu}}=0 \tag{*}
\end{equation*}
$$

$\bar{\mu}$ multi-index of test matter fields components, $\nu_{i} \in\{0, \ldots, 3\}$ generalized spacetime coordinates, $i \in\{1, \ldots, d\}, \quad d \in\{1, \ldots, k\}$ partial derivative order (k highest), $D_{\bar{\lambda}}^{\bar{\mu}}$ square matrix of derivative coefficients.

Eikonal approximation

Causality of $(*)$ is determined by its principal polynomial, which emerges from the eikonal approximation of geometrical optics:

Eikonal approximation

Causality of $(*)$ is determined by its principal polynomial, which emerges from the eikonal approximation of geometrical optics: let

$$
F_{\bar{\mu}}(x, \lambda)=e^{i \frac{S(x)}{\lambda}} \sum_{j=0}^{\infty} F_{\bar{\mu} j}(x) \lambda^{j}, \quad \text { and } \quad \lambda \rightarrow 0
$$

Eikonal approximation

Causality of $(*)$ is determined by its principal polynomial, which emerges from the eikonal approximation of geometrical optics: let

$$
F_{\bar{\mu}}(x, \lambda)=e^{i \frac{S(x)}{\lambda}} \sum_{j=0}^{\infty} F_{\bar{\mu} j}(x) \lambda^{j}, \quad \text { and } \quad \lambda \rightarrow 0
$$

Hence, from (*),
$e^{i \frac{S(x)}{\lambda}}\left(\frac{i}{\lambda}\right)^{k}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu_{1} \ldots \nu_{k}}(x) \frac{\partial S}{\partial x^{\nu_{1}}} \cdots \frac{\partial S}{\partial x^{\nu_{k}}}\right] F_{\bar{\mu} 0}(x)+$ lower terms in $\frac{1}{\lambda}=0$.

Eikonal approximation

Causality of $(*)$ is determined by its principal polynomial, which emerges from the eikonal approximation of geometrical optics: let

$$
F_{\bar{\mu}}(x, \lambda)=e^{i \frac{S(x)}{\lambda}} \sum_{j=0}^{\infty} F_{\bar{\mu} j}(x) \lambda^{j}, \quad \text { and } \quad \lambda \rightarrow 0
$$

Hence, from (*),
$e^{i \frac{S(x)}{\lambda}}\left(\frac{i}{\lambda}\right)^{k}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu_{1} \ldots \nu_{k}}(x) \frac{\partial S}{\partial x^{\nu_{1}}} \cdots \frac{\partial S}{\partial x^{\nu_{k}}}\right] F_{\bar{\mu} 0}(x)+$ lower terms in $\frac{1}{\lambda}=0$.
Lower order terms are negligible as $\lambda \rightarrow 0$, leaving the first term.

Eikonal approximation

By linear algebra, this has a non-trivial solution for $F_{\bar{\mu} 0}$ if S satisfies

$$
\operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu_{1} \ldots \nu_{k}}(x) \frac{\partial S}{\partial x^{\nu_{1}}} \cdots \frac{\partial S}{\partial x^{\nu_{k}}}\right]=0
$$

Eikonal approximation

By linear algebra, this has a non-trivial solution for $F_{\bar{\mu} 0}$ if S satisfies

$$
\operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu_{1} \ldots \nu_{k}}(x) \frac{\partial S}{\partial x^{\nu_{1}}} \cdots \frac{\partial S}{\partial x^{\nu_{k}}}\right]=0
$$

that is, the eikonal equation of $(*)$, with the wave covector (momentum) field

$$
\mathrm{d} S=\frac{\partial S}{\partial x^{\nu}} \mathrm{d} x^{\nu} \in T^{*} \mathcal{M}
$$

Eikonal approximation

By linear algebra, this has a non-trivial solution for $F_{\bar{\mu} 0}$ if S satisfies

$$
\operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu_{1} \ldots \nu_{k}}(x) \frac{\partial S}{\partial x^{\nu_{1}}} \cdots \frac{\partial S}{\partial x^{\nu_{k}}}\right]=0
$$

that is, the eikonal equation of $(*)$, with the wave covector (momentum) field

$$
\mathrm{d} S=\frac{\partial S}{\partial x^{\nu}} \mathrm{d} x^{\nu} \in T^{*} \mathcal{M}
$$

For any $p \in T^{*} \mathcal{M}$, this defines the principal polynomial of $(*)$.

Principal polynomial

The principal polynomial of $(*)$ is $P: T^{*} \mathcal{M} \rightarrow \mathbb{R}$ such that
$P(x, p)=\omega_{G} \operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu_{1} \ldots \nu_{k}}(x) p_{\nu_{1}} \ldots p_{\nu_{k}}\right]=P^{\nu_{1} \ldots \nu_{\operatorname{deg}} P} p_{\nu_{1}} \ldots p_{\nu_{\operatorname{deg}} P}$,
where we have
$P^{\nu_{1} \ldots \nu_{\operatorname{deg} P}}$ totally symmetric principal polynomial (Fresnel) tensor, $\operatorname{deg} P$ the polynomial degree of P in p,
ω_{G} some appropriate weight function to make P scalar.

Principal polynomial

The principal polynomial of $(*)$ is $P: T^{*} \mathcal{M} \rightarrow \mathbb{R}$ such that
$P(x, p)=\omega_{G} \operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu_{1} \ldots \nu_{k}}(x) p_{\nu_{1}} \ldots p_{\nu_{k}}\right]=P^{\nu_{1} \ldots \nu_{\operatorname{deg}} P} p_{\nu_{1}} \ldots p_{\nu_{\operatorname{deg}} P}$,
where we have
$P^{\nu_{1} \ldots \nu_{\operatorname{deg} P}}$ totally symmetric principal polynomial (Fresnel) tensor, $\operatorname{deg} P$ the polynomial degree of P in p,
ω_{G} some appropriate weight function to make P scalar.
Note two interesting facts:

Principal polynomial

The principal polynomial of $(*)$ is $P: T^{*} \mathcal{M} \rightarrow \mathbb{R}$ such that
$P(x, p)=\omega_{G} \operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu_{1} \ldots \nu_{k}}(x) p_{\nu_{1}} \ldots p_{\nu_{k}}\right]=P^{\nu_{1} \ldots \nu_{\operatorname{deg}} P} p_{\nu_{1}} \ldots p_{\nu_{\operatorname{deg}} P}$,
where we have
$P^{\nu_{1} \ldots \nu_{\operatorname{deg} P}}$ totally symmetric principal polynomial (Fresnel) tensor, $\operatorname{deg} P$ the polynomial degree of P in p,
ω_{G} some appropriate weight function to make P scalar.
Note two interesting facts:
(1) although $(*)$ was written in $(\mathcal{U}, x), P$ is indeed tensorial,

Principal polynomial

The principal polynomial of $(*)$ is $P: T^{*} \mathcal{M} \rightarrow \mathbb{R}$ such that
$P(x, p)=\omega_{G} \operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu_{1} \ldots \nu_{k}}(x) p_{\nu_{1}} \ldots p_{\nu_{k}}\right]=P^{\nu_{1} \ldots \nu_{\operatorname{deg}} P} p_{\nu_{1}} \ldots p_{\nu_{\operatorname{deg}} P}$,
where we have
$P^{\nu_{1} \ldots \nu_{\operatorname{deg} P} P}$ totally symmetric principal polynomial (Fresnel) tensor, $\operatorname{deg} P$ the polynomial degree of P in p,
ω_{G} some appropriate weight function to make P scalar.
Note two interesting facts:
(1) although $(*)$ was written in $(\mathcal{U}, x), P$ is indeed tensorial,
(2) $\operatorname{deg} P \neq k$, the highest derivative order, in general.

Given the principal polynomial, the condition on $p \in T_{x}^{*} \mathcal{M}$,

$$
P(x, p)=0
$$

is called the massless dispersion relation, and the p is called null momentum.

Given the principal polynomial, the condition on $p \in T_{x}^{*} \mathcal{M}$,

$$
P(x, p)=0
$$

is called the massless dispersion relation, and the p is called null momentum. Then the (generalized) null cone at $x \in \mathcal{M}$ is

$$
N_{x}=\left\{p \in T_{x}^{*} \mathcal{M}: P(x, p)=0\right\}
$$

Given the principal polynomial, the condition on $p \in T_{x}^{*} \mathcal{M}$,

$$
P(x, p)=0
$$

is called the massless dispersion relation, and the p is called null momentum. Then the (generalized) null cone at $x \in \mathcal{M}$ is

$$
N_{x}=\left\{p \in T_{x}^{*} \mathcal{M}: P(x, p)=0\right\}
$$

Note:
(1) N_{x} is independent of the choice of ω_{G};

Given the principal polynomial, the condition on $p \in T_{x}^{*} \mathcal{M}$,

$$
P(x, p)=0
$$

is called the massless dispersion relation, and the p is called null momentum. Then the (generalized) null cone at $x \in \mathcal{M}$ is

$$
N_{x}=\left\{p \in T_{x}^{*} \mathcal{M}: P(x, p)=0\right\}
$$

Note:
(1) N_{x} is independent of the choice of ω_{G};
(2) if P is reducible, $P=\prod_{i} P_{i}^{n_{i}}, n_{i} \geq 1$, one removes repeated factors to obtain the reduced (irreducible) principal polynomial $\bar{P}=\prod_{i} P_{i}$. Again, N_{x} remains unaffected.

Cauchy problem

We are interested in causal kinematics of the generalized spacetime (\mathcal{M}, G, F), which is determined by the Cauchy problem.

Cauchy problem

We are interested in causal kinematics of the generalized spacetime (\mathcal{M}, G, F), which is determined by the Cauchy problem.

Given $(*)$ and initial data, the Cauchy problem is well-posed if

Cauchy problem

We are interested in causal kinematics of the generalized spacetime (\mathcal{M}, G, F), which is determined by the Cauchy problem.

Given $(*)$ and initial data, the Cauchy problem is well-posed if
(1) $(*)$ has a unique solution in \mathcal{U}

Cauchy problem

We are interested in causal kinematics of the generalized spacetime (\mathcal{M}, G, F), which is determined by the Cauchy problem.

Given $(*)$ and initial data, the Cauchy problem is well-posed if
(1) $(*)$ has a unique solution in \mathcal{U}
(2) which depends continuously on the initial data.

Cauchy problem

We are interested in causal kinematics of the generalized spacetime (\mathcal{M}, G, F), which is determined by the Cauchy problem.

Given $(*)$ and initial data, the Cauchy problem is well-posed if
(1) $(*)$ has a unique solution in \mathcal{U}
(2) which depends continuously on the initial data.

Then necessarily $(\Rightarrow), P$ is hyperbolic. [Gårding (1959)]

Cauchy problem

We are interested in causal kinematics of the generalized spacetime (\mathcal{M}, G, F), which is determined by the Cauchy problem.

Given $(*)$ and initial data, the Cauchy problem is well-posed if
(1) $(*)$ has a unique solution in \mathcal{U}
(2) which depends continuously on the initial data.

Then necessarily $(\Rightarrow), P$ is hyperbolic. [Gärding (1959)]
Note: By contraposition, this hyperbolicity criterion can be used to check theories for causality.

Hyperbolicity

Definition:
A polynomial $P: T^{*} \mathcal{M} \rightarrow \mathbb{R}$ homogeneous of $\operatorname{deg} P$ is hyperbolic if $\exists h \in T^{*} \mathcal{M}, h \neq 0$, such that $\forall p \in T^{*} \mathcal{M}$,

$$
P(x, p+f h)=0 \text { with real } f: \mathcal{M} \rightarrow \mathbb{R} .
$$

Definition:
A polynomial $P: T^{*} \mathcal{M} \rightarrow \mathbb{R}$ homogeneous of $\operatorname{deg} P$ is hyperbolic if $\exists h \in T^{*} \mathcal{M}, h \neq 0$, such that $\forall p \in T^{*} \mathcal{M}$,

$$
P(x, p+f h)=0 \text { with real } f: \mathcal{M} \rightarrow \mathbb{R}
$$

Then, moreover, h is called hyperbolic with respect to P,

Definition:
A polynomial $P: T^{*} \mathcal{M} \rightarrow \mathbb{R}$ homogeneous of $\operatorname{deg} P$ is hyperbolic if $\exists h \in T^{*} \mathcal{M}, h \neq 0$, such that $\forall p \in T^{*} \mathcal{M}$,

$$
P(x, p+f h)=0 \text { with real } f: \mathcal{M} \rightarrow \mathbb{R} .
$$

Then, moreover, h is called hyperbolic with respect to P, and the hyperbolicity cone at $x \in \mathcal{M}$ is

$$
C_{x}=\left\{h \in T_{x}^{*} \mathcal{M}: h \text { hyperbolic w.r.t. } P\right\}
$$

Dual polynomial

So far, only covectors (momenta) have been considered.

Dual polynomial

So far, only covectors (momenta) have been considered. However, for predictivity, we also need time-orientation and hence dual vectors (trajectories).

Dual polynomial

So far, only covectors (momenta) have been considered. However, for predictivity, we also need time-orientation and hence dual vectors (trajectories). It turns out that: [Rätzel, Rivera \& Schuller (2011)] If P is hyperbolic, then the dual polynomial $P^{\sharp}: T \mathcal{M} \rightarrow \mathbb{R}$ exists,

$$
P^{\sharp}(x, X)=P^{\sharp}(x)_{\nu_{1} \ldots \nu_{\operatorname{deg} p}{ }^{\sharp}} X^{\nu_{1}} \ldots X^{\nu_{\operatorname{deg}} p \sharp}, X \in T_{x} \mathcal{M},
$$

Dual polynomial

So far, only covectors (momenta) have been considered. However, for predictivity, we also need time-orientation and hence dual vectors (trajectories). It turns out that: [Rätzel, Rivera \& Schuller (2011)] If P is hyperbolic, then the dual polynomial $P^{\sharp}: T \mathcal{M} \rightarrow \mathbb{R}$ exists,

$$
P^{\sharp}(x, X)=P^{\sharp}(x)_{\nu_{1} \ldots \nu_{\operatorname{deg} p}{ }^{\sharp}} X^{\nu_{1}} \ldots X^{\nu_{\operatorname{deg}} P^{\sharp}}, X \in T_{x} \mathcal{M},
$$

via the Gauss map $p \mapsto X$ such that $P(x, p)=0, P^{\sharp}(x, X)=0$.

Dual polynomial

So far, only covectors (momenta) have been considered. However, for predictivity, we also need time-orientation and hence dual vectors (trajectories). It turns out that: [Räzzel, Rivera \& Schuller (2011)] If P is hyperbolic, then the dual polynomial $P^{\sharp}: T \mathcal{M} \rightarrow \mathbb{R}$ exists,

$$
P^{\sharp}(x, X)=P^{\sharp}(x)_{\nu_{1} \ldots \nu_{\operatorname{deg} p}{ }^{\sharp}} X^{\nu_{1}} \ldots X^{\nu_{\operatorname{deg}} P^{\sharp}}, X \in T_{x} \mathcal{M},
$$

via the Gauss map $p \mapsto X$ such that $P(x, p)=0, P^{\sharp}(x, X)=0$.
Note:
(1) in general, $\operatorname{deg} P \neq \operatorname{deg} P^{\sharp}$;

Dual polynomial

So far, only covectors (momenta) have been considered. However, for predictivity, we also need time-orientation and hence dual vectors (trajectories). It turns out that: [Räzzel, Rivera \& Schuller (2011)] If P is hyperbolic, then the dual polynomial $P^{\sharp}: T \mathcal{M} \rightarrow \mathbb{R}$ exists,

$$
P^{\sharp}(x, X)=P^{\sharp}(x)_{\nu_{1} \ldots \nu_{\operatorname{deg} p}{ }^{\sharp}} X^{\nu_{1}} \ldots X^{\nu_{\operatorname{deg}} P^{\sharp}}, X \in T_{x} \mathcal{M},
$$

via the Gauss map $p \mapsto X$ such that $P(x, p)=0, P^{\sharp}(x, X)=0$.
Note:
(1) in general, $\operatorname{deg} P \neq \operatorname{deg} P^{\sharp}$;
(2) P^{\sharp} is to be reduced like P;

Dual polynomial

So far, only covectors (momenta) have been considered. However, for predictivity, we also need time-orientation and hence dual vectors (trajectories). It turns out that: [Rätzel, Rivera \& Schuller (2011)] If P is hyperbolic, then the dual polynomial $P^{\sharp}: T \mathcal{M} \rightarrow \mathbb{R}$ exists,

$$
P^{\sharp}(x, X)=P^{\sharp}(x)_{\nu_{1} \ldots \nu_{\operatorname{deg} p}{ }^{\sharp}} X^{\nu_{1}} \ldots X^{\nu_{\operatorname{deg}} P^{\sharp}}, X \in T_{x} \mathcal{M},
$$

via the Gauss map $p \mapsto X$ such that $P(x, p)=0, P^{\sharp}(x, X)=0$.
Note:
(1) in general, $\operatorname{deg} P \neq \operatorname{deg} P^{\sharp}$;
(2) P^{\sharp} is to be reduced like P;
(3) hyperbolicity of P does not imply hyperbolicity of P^{\sharp}.

Bihyperbolicity

Now introduce a time-orientation vector field $T \in T \mathcal{M}$ over \mathcal{U}.

Bihyperbolicity

Now introduce a time-orientation vector field $T \in T \mathcal{M}$ over \mathcal{U}.
Denoting a null vector field by $N, P^{\sharp}(N)=0$, then any vector field X can be decomposed as $X=N+t T$, for some $t: \mathcal{U} \rightarrow \mathbb{R}$.

Bihyperbolicity

Now introduce a time-orientation vector field $T \in T \mathcal{M}$ over \mathcal{U}.
Denoting a null vector field by $N, P^{\sharp}(N)=0$, then any vector field X can be decomposed as $X=N+t T$, for some $t: \mathcal{U} \rightarrow \mathbb{R}$.

Recasting, this yields

$$
0=P^{\sharp}(N)=P^{\sharp}(X-t T), t \text { real, }
$$

Bihyperbolicity

Now introduce a time-orientation vector field $T \in T \mathcal{M}$ over \mathcal{U}.
Denoting a null vector field by $N, P^{\sharp}(N)=0$, then any vector field X can be decomposed as $X=N+t T$, for some $t: \mathcal{U} \rightarrow \mathbb{R}$.

Recasting, this yields

$$
0=P^{\sharp}(N)=P^{\sharp}(X-t T), t \text { real },
$$

in other words, a hyperbolicity condition for P^{\sharp}.

Bihyperbolicity

Now introduce a time-orientation vector field $T \in T \mathcal{M}$ over \mathcal{U}.
Denoting a null vector field by $N, P^{\sharp}(N)=0$, then any vector field X can be decomposed as $X=N+t T$, for some $t: \mathcal{U} \rightarrow \mathbb{R}$.

Recasting, this yields

$$
0=P^{\sharp}(N)=P^{\sharp}(X-t T), t \text { real },
$$

in other words, a hyperbolicity condition for P^{\sharp}.
Hence, a predictive kinematics for (\mathcal{M}, G, F) implies that

Bihyperbolicity

Now introduce a time-orientation vector field $T \in T \mathcal{M}$ over \mathcal{U}.
Denoting a null vector field by $N, P^{\sharp}(N)=0$, then any vector field X can be decomposed as $X=N+t T$, for some $t: \mathcal{U} \rightarrow \mathbb{R}$.

Recasting, this yields

$$
0=P^{\sharp}(N)=P^{\sharp}(X-t T), t \text { real },
$$

in other words, a hyperbolicity condition for P^{\sharp}.
Hence, a predictive kinematics for (\mathcal{M}, G, F) implies that
(1) P be hyperbolic for causality; then also P^{\sharp} exists;

Bihyperbolicity

Now introduce a time-orientation vector field $T \in T \mathcal{M}$ over \mathcal{U}.
Denoting a null vector field by $N, P^{\sharp}(N)=0$, then any vector field X can be decomposed as $X=N+t T$, for some $t: \mathcal{U} \rightarrow \mathbb{R}$.

Recasting, this yields

$$
0=P^{\sharp}(N)=P^{\sharp}(X-t T), t \text { real },
$$

in other words, a hyperbolicity condition for P^{\sharp}.
Hence, a predictive kinematics for (\mathcal{M}, G, F) implies that
(1) P be hyperbolic for causality; then also P^{\sharp} exists;
(2) P^{\sharp} be hyperbolic as well, for time-orientation.

Bihyperbolicity

Now introduce a time-orientation vector field $T \in T \mathcal{M}$ over \mathcal{U}.
Denoting a null vector field by $N, P^{\sharp}(N)=0$, then any vector field X can be decomposed as $X=N+t T$, for some $t: \mathcal{U} \rightarrow \mathbb{R}$.

Recasting, this yields

$$
0=P^{\sharp}(N)=P^{\sharp}(X-t T), t \text { real, }
$$

in other words, a hyperbolicity condition for P^{\sharp}.
Hence, a predictive kinematics for (\mathcal{M}, G, F) implies that
(1) P be hyperbolic for causality; then also P^{\sharp} exists;
(2) P^{\sharp} be hyperbolic as well, for time-orientation.

This is called bihyperbolicity. [Rätzel, Rivera \& Schuller (2011): illustrations]

Bihyperbolicity

Now introduce a time-orientation vector field $T \in T \mathcal{M}$ over \mathcal{U}.
Denoting a null vector field by $N, P^{\sharp}(N)=0$, then any vector field X can be decomposed as $X=N+t T$, for some $t: \mathcal{U} \rightarrow \mathbb{R}$.

Recasting, this yields

$$
0=P^{\sharp}(N)=P^{\sharp}(X-t T), t \text { real, }
$$

in other words, a hyperbolicity condition for P^{\sharp}.
Hence, a predictive kinematics for (\mathcal{M}, G, F) implies that
(1) P be hyperbolic for causality; then also P^{\sharp} exists;
(2) P^{\sharp} be hyperbolic as well, for time-orientation.

This is called bihyperbolicity. [Rätzel, Rivera \& Schuller (2011): illustrations] Property: Lorentzian metrics are bihyperbolic.

Example: vacuum electromagnetism

Standard theory: in $\mathcal{M}=\mathbb{R}^{4}, x^{\nu}=(t, \mathbf{x})=\left(t, x^{1}, x^{2}, x^{3}\right)$, Maxwell's equations in vacuum are $\nabla \cdot \mathbf{E}=0, \nabla \cdot \mathbf{B}=0$ and

$$
\begin{aligned}
& \frac{\partial \mathbf{E}}{\partial t}-\nabla \times \mathbf{B}=0 \\
& \frac{\partial \mathbf{B}}{\partial t}+\nabla \times \mathbf{E}=0
\end{aligned}
$$

Example: vacuum electromagnetism

Standard theory: in $\mathcal{M}=\mathbb{R}^{4}, x^{\nu}=(t, \mathbf{x})=\left(t, x^{1}, x^{2}, x^{3}\right)$, Maxwell's equations in vacuum are $\nabla \cdot \mathbf{E}=0, \nabla \cdot \mathbf{B}=0$ and

$$
\begin{aligned}
& \frac{\partial \mathbf{E}}{\partial t}-\nabla \times \mathbf{B}=0 \\
& \frac{\partial \mathbf{B}}{\partial t}+\nabla \times \mathbf{E}=0
\end{aligned}
$$

Introducing $F_{\bar{\mu}}=(-\mathbf{E}, \mathbf{B}), \bar{\mu} \in\{1, \ldots, 6\}$, they can be recast as

Example: vacuum electromagnetism

Standard theory: in $\mathcal{M}=\mathbb{R}^{4}, x^{\nu}=(t, \mathbf{x})=\left(t, x^{1}, x^{2}, x^{3}\right)$, Maxwell's equations in vacuum are $\nabla \cdot \mathbf{E}=0, \nabla \cdot \mathbf{B}=0$ and

$$
\begin{aligned}
& \frac{\partial \mathbf{E}}{\partial t}-\nabla \times \mathbf{B}=0 \\
& \frac{\partial \mathbf{B}}{\partial t}+\nabla \times \mathbf{E}=0
\end{aligned}
$$

Introducing $F_{\bar{\mu}}=(-\mathbf{E}, \mathbf{B}), \bar{\mu} \in\{1, \ldots, 6\}$, they can be recast as

$$
D_{\bar{\lambda}}^{\bar{\mu} \nu} \frac{\partial F_{\bar{\mu}}}{\partial x^{\nu}}=0 .
$$

Example: principal polynomial

Now the corresponding principal polynomial is proportional to

$$
\operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu} p_{\nu}\right]=\operatorname{det}\left[\begin{array}{cccccc}
-p_{0} & 0 & 0 & 0 & p_{3} & -p_{2} \\
0 & -p_{0} & 0 & -p_{3} & 0 & p_{1} \\
0 & 0 & -p_{0} & p_{2} & -p_{1} & 0 \\
0 & p_{3} & -p_{2} & p_{0} & 0 & 0 \\
-p_{3} & 0 & p_{1} & 0 & p_{0} & 0 \\
p_{2} & -p_{1} & 0 & 0 & 0 & p_{0}
\end{array}\right]
$$

Example: principal polynomial

Now the corresponding principal polynomial is proportional to

$$
\begin{aligned}
\operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu} p_{\nu}\right] & =\operatorname{det}\left[\begin{array}{cccccc}
-p_{0} & 0 & 0 & 0 & p_{3} & -p_{2} \\
0 & -p_{0} & 0 & -p_{3} & 0 & p_{1} \\
0 & 0 & -p_{0} & p_{2} & -p_{1} & 0 \\
0 & p_{3} & -p_{2} & p_{0} & 0 & 0 \\
-p_{3} & 0 & p_{1} & 0 & p_{0} & 0 \\
p_{2} & -p_{1} & 0 & 0 & 0 & p_{0}
\end{array}\right] \\
& =p_{0}^{2}\left(-p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)^{2} .
\end{aligned}
$$

Example: bihyperbolicity

For $p_{0} \neq 0$, we can read off a reduced principal polynomial with $\operatorname{deg} \bar{P}=2$,

$$
\bar{P}(x, p)=-p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}=\bar{P}^{\mu \nu} p_{\mu} p_{\nu}
$$

Example: bihyperbolicity

For $p_{0} \neq 0$, we can read off a reduced principal polynomial with $\operatorname{deg} \bar{P}=2$,

$$
\bar{P}(x, p)=-p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}=\bar{P}^{\mu \nu} p_{\mu} p_{\nu}
$$

principal polynomial tensor $\bar{P}^{\mu \nu}=\operatorname{diag}(-1,1,1,1)$
$=\eta^{\mu \nu}$, the inverse Minkowski metric.

Example: bihyperbolicity

For $p_{0} \neq 0$, we can read off a reduced principal polynomial with $\operatorname{deg} \bar{P}=2$,

$$
\bar{P}(x, p)=-p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}=\bar{P}^{\mu \nu} p_{\mu} p_{\nu}
$$

principal polynomial tensor $\bar{P}^{\mu \nu}=\operatorname{diag}(-1,1,1,1)$
$=\eta^{\mu \nu}$, the inverse Minkowski metric.
At every $x \in \mathbb{R}^{4}$, the null cone is given by $N=\left\{p: \eta^{\mu \nu} p_{\mu} p_{\nu}=0\right\}$, and the hyperbolicity cone is $C=\left\{h: h\right.$ timelike, $\left.\eta^{\mu \nu} h_{\mu} h_{\nu}<0\right\}$.

Example: bihyperbolicity

For $p_{0} \neq 0$, we can read off a reduced principal polynomial with $\operatorname{deg} \bar{P}=2$,

$$
\bar{P}(x, p)=-p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}=\bar{P}^{\mu \nu} p_{\mu} p_{\nu}
$$

principal polynomial tensor $\bar{P}^{\mu \nu}=\operatorname{diag}(-1,1,1,1)$
$=\eta^{\mu \nu}$, the inverse Minkowski metric.
At every $x \in \mathbb{R}^{4}$, the null cone is given by $N=\left\{p: \eta^{\mu \nu} p_{\mu} p_{\nu}=0\right\}$, and the hyperbolicity cone is $C=\left\{h: h\right.$ timelike, $\left.\eta^{\mu \nu} h_{\mu} h_{\nu}<0\right\}$.

Moreover, $\bar{P}_{\mu \nu}^{\sharp}=\eta_{\mu \nu}$. Thus, we have bihyperbolic $\left(\mathbb{R}^{4}, G, F\right)$ with $G=\eta$.

Constitutive tensor

The Lagrangian of Minkowski vacuum electromagnetism is

$$
\mathcal{L}_{M, v a c}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}=-\frac{1}{8}\left(\eta^{\mu \rho} \eta^{\nu \sigma}-\eta^{\nu \rho} \eta^{\mu \sigma}\right) F_{\mu \nu} F_{\rho \sigma}
$$

Constitutive tensor

The Lagrangian of Minkowski vacuum electromagnetism is

$$
\begin{aligned}
\mathcal{L}_{M, v a c} & =-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}=-\frac{1}{8}\left(\eta^{\mu \rho} \eta^{\nu \sigma}-\eta^{\nu \rho} \eta^{\mu \sigma}\right) F_{\mu \nu} F_{\rho \sigma} \\
& =-\frac{1}{8} \chi_{M, v a c}^{\bar{\mu} \bar{\nu}} F_{\bar{\mu}} F_{\bar{\nu}}
\end{aligned}
$$

introducing Petrov pair notation for the field tensor $F_{\mu \nu}$ with

$$
\bar{\mu} \in\{[01],[02],[03],[23],[31],[12]\},
$$

Constitutive tensor

The Lagrangian of Minkowski vacuum electromagnetism is

$$
\begin{aligned}
\mathcal{L}_{M, v a c} & =-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}=-\frac{1}{8}\left(\eta^{\mu \rho} \eta^{\nu \sigma}-\eta^{\nu \rho} \eta^{\mu \sigma}\right) F_{\mu \nu} F_{\rho \sigma} \\
& =-\frac{1}{8} \chi_{M, v a c}^{\bar{\mu} \bar{\nu}} F_{\bar{\mu}} F_{\bar{\nu}}
\end{aligned}
$$

introducing Petrov pair notation for the field tensor $F_{\mu \nu}$ with

$$
\bar{\mu} \in\{[01],[02],[03],[23],[31],[12]\},
$$

and the corresponding constitutive tensor in vacuum,

$$
\chi_{M, \text { vac }}^{\bar{\mu} \bar{\nu}}=\left[\begin{array}{c|c}
-I & 0 \\
\hline 0 & I
\end{array}\right],
$$

where I is the 3×3 identity.

Generalized electromagnetism

More generally, in a dielectric medium, the Maxwell action becomes [e.g. Post (1962)]

$$
\mathcal{L}_{M}=-\frac{1}{8} \chi_{M}^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}
$$

Generalized electromagnetism

More generally, in a dielectric medium, the Maxwell action becomes [e.g. Post (1962)]

$$
\mathcal{L}_{M}=-\frac{1}{8} \chi_{M}^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma},
$$

whose (real) constitutive tensor has symmetries,

$$
\chi_{M}^{\mu \nu \rho \sigma}=-\chi_{M}^{\nu \mu \rho \sigma}, \quad \chi_{M}^{\mu \nu \rho \sigma}=-\chi_{M}^{\mu \nu \sigma \rho}, \quad \chi_{M}^{\mu \nu \rho \sigma}=\chi_{M}^{\rho \sigma \mu \nu},
$$

Generalized electromagnetism

More generally, in a dielectric medium, the Maxwell action becomes [e.g. Post (1962)]

$$
\mathcal{L}_{M}=-\frac{1}{8} \chi_{M}^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}
$$

whose (real) constitutive tensor has symmetries,

$$
\chi_{M}^{\mu \nu \rho \sigma}=-\chi_{M}^{\nu \mu \rho \sigma}, \quad \chi_{M}^{\mu \nu \rho \sigma}=-\chi_{M}^{\mu \nu \sigma \rho}, \quad \chi_{M}^{\mu \nu \rho \sigma}=\chi_{M}^{\rho \sigma \mu \nu},
$$

and the Petrov form

$$
\chi_{M}^{\bar{\mu} \bar{\nu}}=\left[\begin{array}{c|c}
-\epsilon & \phi \\
\hline \phi^{\top} & \mu^{-1}
\end{array}\right],
$$

with 3×3 matrix blocks, where ϵ denotes electrical permittivity, μ magnetic permeability and ϕ contains the Fresnel-Fizeau effect (tracefree part) and the axion (trace part).

Generalized electromagnetism

The principal polynomial for a general χ_{M} is quartic, which may or may not be (bi)hyperbolic:

Generalized electromagnetism

The principal polynomial for a general χ_{M} is quartic, which may or may not be (bi)hyperbolic:

The constitutive tensor field χ_{M} may be regarded as fundamental, replacing the Lorentzian metric structure, for example in:

Generalized electromagnetism

The principal polynomial for a general χ_{M} is quartic, which may or may not be (bi)hyperbolic:

The constitutive tensor field χ_{M} may be regarded as fundamental, replacing the Lorentzian metric structure, for example in:
(1) premetric electromagnetism [e.g. Hehl, Obukhov \& Rubilar (2002)]

Generalized electromagnetism

The principal polynomial for a general χ_{M} is quartic, which may or may not be (bi)hyperbolic:

The constitutive tensor field χ_{M} may be regarded as fundamental, replacing the Lorentzian metric structure, for example in:
(1) premetric electromagnetism [e.g. Hehl, Obukhov \& Rubilar (2002)]
(2) area metric geometry [e.g. Schuller, Witte \& Wohlfarth (2010)]

Generalized electromagnetism

The principal polynomial for a general χ_{M} is quartic, which may or may not be (bi)hyperbolic:

The constitutive tensor field χ_{M} may be regarded as fundamental, replacing the Lorentzian metric structure, for example in:
(1) premetric electromagnetism [e.g. Hehl, Obukhov \& Rubilar (2002)]
(2) area metric geometry [e.g. Schuller, Witte \& Wohlfarth (2010)]

Alternatively, it may be regarded as effective, modelling optical effects e.g. of fundamental scalar fields or HEP effects.

Observational implications

(1) Birefringence

If the diagonalized permittivity matrix in χ_{M} is

$$
\epsilon=\left[\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right] \text { without } \epsilon_{1}=\epsilon_{2}=\epsilon_{3},
$$

then the vacuum is optically anisotropic (e.g., Lorentzviolating),

Observational implications

(1) Birefringence

If the diagonalized permittivity matrix in χ_{M} is

$$
\epsilon=\left[\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right] \text { without } \epsilon_{1}=\epsilon_{2}=\epsilon_{3},
$$

then the vacuum is optically anisotropic (e.g., Lorentzviolating), leading to birefringence in gravitational lensing.

Observational implications

(2) Etherington

Etherington reciprocity relates the luminosity distance D_{L}, redshift z and angular diameter distance D_{A}, [cf. Etherington (1933)]

$$
D_{L}=(1+z)^{2} D_{A},
$$

Observational implications

(2) Etherington

Etherington reciprocity relates the luminosity distance D_{L}, redshift z and angular diameter distance D_{A}, [cf. Etherington (1933)]

$$
D_{L}=(1+z)^{2} D_{A},
$$

a purely kinematical result requiring only Lorentzian spacetime geometry and light ray conservation.

Observational implications

(2) Etherington

Etherington reciprocity relates the luminosity distance D_{L}, redshift z and angular diameter distance D_{A}, [cf. Etherington (1933)]

$$
D_{L}=(1+z)^{2} D_{A}
$$

a purely kinematical result requiring only Lorentzian spacetime geometry and light ray conservation.

Measuring D_{L} with SNIa, D_{A} with BAO , this is now testable, taking into account opacity (absorption), $D_{L, o b s}=D_{L} e^{\tau_{z} / 2}$.

Observational implications

(2) Etherington

Etherington reciprocity relates the luminosity distance D_{L}, redshift z and angular diameter distance D_{A}, [cf. Etherington (1933)]

$$
D_{L}=(1+z)^{2} D_{A},
$$

a purely kinematical result requiring only Lorentzian spacetime geometry and light ray conservation.

Measuring D_{L} with SNIa, D_{A} with BAO , this is now testable, taking into account opacity (absorption), $D_{L, o b s}=D_{L} e^{\tau_{z} / 2}$.

There are indications of a violation, e.g. $\tau_{0.35}-\tau_{0.20}=$ -0.30 ± 0.26 at 95% [More, Bovy \& Hogg (2009)],

Observational implications

(2) Etherington

Etherington reciprocity relates the luminosity distance D_{L}, redshift z and angular diameter distance D_{A}, [cf. Etherington (1933)]

$$
D_{L}=(1+z)^{2} D_{A},
$$

a purely kinematical result requiring only Lorentzian spacetime geometry and light ray conservation.

Measuring D_{L} with SNla, D_{A} with BAO , this is now testable, taking into account opacity (absorption), $D_{L, o b s}=D_{L} e^{\tau_{z} / 2}$.

There are indications of a violation, e.g. $\tau_{0.35}-\tau_{0.20}=$ -0.30 ± 0.26 at 95% [More, Bovy \& Hogg (2009)], to be modelled by a cosmological constitutive tensor χ. [Schneider \& Werner (2016), in prep.]

Cosmological magnetogenesis

Primordial magnetic fields may be understood by means of F coupling to scalar field(s) φ, \ldots on the background geometry of a Lorentzian cosmological metric $g:(\mathcal{M}, g, F, \varphi \ldots)$.[Turner \& Widrow (1988)]

Cosmological magnetogenesis

Primordial magnetic fields may be understood by means of F coupling to scalar field(s) φ, \ldots on the background geometry of a Lorentzian cosmological metric $g:(\mathcal{M}, g, F, \varphi \ldots)$.[Turner \& Widrow (1988)]

For instance, Giovannini (2013/15), omitting the axion, proposed
$\mathcal{L}=-\frac{\sqrt{-g}}{16 \pi}\left(\lambda(\varphi, \psi) F_{\mu \nu} F^{\mu \nu}+\mathcal{M}_{\sigma}^{\rho}(\varphi) F_{\rho \alpha} F^{\sigma \alpha}-\mathcal{N}_{\sigma}^{\rho}(\psi) \tilde{F}_{\rho \alpha} \tilde{F}^{\sigma \alpha}\right)$,
with scalar fields φ, ψ, field tensor $F_{\mu \nu}$ and dual $\tilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} F_{\alpha \beta}$.

Cosmological magnetogenesis

Primordial magnetic fields may be understood by means of F coupling to scalar field(s) φ, \ldots on the background geometry of a Lorentzian cosmological metric $g:(\mathcal{M}, g, F, \varphi \ldots)$. [Turner \& Widrow (1988)]

For instance, Giovannini (2013/15), omitting the axion, proposed

$$
\mathcal{L}=-\frac{\sqrt{-g}}{16 \pi}\left(\lambda(\varphi, \psi) F_{\mu \nu} F^{\mu \nu}+\mathcal{M}_{\sigma}^{\rho}(\varphi) F_{\rho \alpha} F^{\sigma \alpha}-\mathcal{N}_{\sigma}^{\rho}(\psi) \tilde{F}_{\rho \alpha} \tilde{F}^{\sigma \alpha}\right),
$$

with scalar fields φ, ψ, field tensor $F_{\mu \nu}$ and dual $\tilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} F_{\alpha \beta}$. Here, we are interested in studying the bihyperbolicity properties of such theories, by identifying the corresponding cosmological constitutive tensor, [Vikman \& Werner (2016), in prep.]

$$
\mathcal{L}=-\frac{1}{8} \chi^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}
$$

van der Waals interaction

In a neutral but polarizable medium with $\delta \mathbf{E}=-\nabla \delta V \simeq$ const.,

van der Waals interaction

In a neutral but polarizable medium with $\delta \mathbf{E}=-\nabla \delta V \simeq$ const.,

$$
\delta E=\int \mathrm{d}^{3} x \rho \delta V \simeq-\int \mathrm{d}^{3} x \rho(x) \mathbf{x} \cdot \delta \mathbf{E}=-\mathbf{P} \cdot \delta \mathbf{E}
$$

van der Waals interaction

In a neutral but polarizable medium with $\delta \mathbf{E}=-\nabla \delta V \simeq$ const.,

$$
\delta E=\int \mathrm{d}^{3} x \rho \delta V \simeq-\int \mathrm{d}^{3} x \rho(x) \mathbf{x} \cdot \delta \mathbf{E}=-\mathbf{P} \cdot \delta \mathbf{E}
$$

whence, with $\mathbf{P}=\alpha_{E} \mathbf{E}$, and analogously for \mathbf{B},

$$
E=-\frac{1}{2}\left(\alpha_{E} \mathbf{E}^{2}+\alpha_{B} \mathbf{B}^{2}\right)
$$

van der Waals interaction

In a neutral but polarizable medium with $\delta \mathbf{E}=-\nabla \delta V \simeq$ const.,

$$
\delta E=\int \mathrm{d}^{3} x \rho \delta V \simeq-\int \mathrm{d}^{3} x \rho(x) \mathbf{x} \cdot \delta \mathbf{E}=-\mathbf{P} \cdot \delta \mathbf{E}
$$

whence, with $\mathbf{P}=\alpha_{E} \mathbf{E}$, and analogously for \mathbf{B},

$$
E=-\frac{1}{2}\left(\alpha_{E} \mathbf{E}^{2}+\alpha_{B} \mathbf{B}^{2}\right) .
$$

Thus, with the neutral system described by φ, and metric g,

$$
\mathcal{L}=-\sqrt{-g}\left(\alpha_{1} \partial_{\alpha} \varphi \partial_{\beta} \varphi F^{\alpha \rho} F_{\rho}^{\beta}+\alpha_{2} \varphi^{2} F^{\mu \nu} F_{\mu \nu}\right)
$$

where constants α_{1}, α_{2} depend on α_{E}, α_{B}. [c.f. Itzykson \& Zuber (1980)]

Cosmological van der Waals

Now, on a conformally flat cosmological background with $g_{\mu \nu}$
$=a(t)^{2} \eta_{\mu \nu}$, and $\varphi=\varphi(t), \dot{\varphi}=\frac{\mathrm{d} \varphi}{\mathrm{d} t}$,

Cosmological van der Waals

Now, on a conformally flat cosmological background with $g_{\mu \nu}$ $=a(t)^{2} \eta_{\mu \nu}$, and $\varphi=\varphi(t), \dot{\varphi}=\frac{\mathrm{d} \varphi}{\mathrm{d} t}$, the cosmological constitutive tensor χ can be identified from

$$
\chi^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}=8 \sqrt{-g}\left(\alpha_{1} \partial_{\alpha} \varphi \partial_{\beta} \varphi F^{\alpha \rho} F_{\rho}^{\beta}+\alpha_{2} \varphi^{2} F^{\mu \nu} F_{\mu \nu}\right),
$$

Cosmological van der Waals

Now, on a conformally flat cosmological background with $g_{\mu \nu}$ $=a(t)^{2} \eta_{\mu \nu}$, and $\varphi=\varphi(t), \dot{\varphi}=\frac{\mathrm{d} \varphi}{\mathrm{d} t}$, the cosmological constitutive tensor χ can be identified from

$$
\chi^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}=8 \sqrt{-g}\left(\alpha_{1} \partial_{\alpha} \varphi \partial_{\beta} \varphi F^{\alpha \rho} F_{\rho}^{\beta}+\alpha_{2} \varphi^{2} F^{\mu \nu} F_{\mu \nu}\right),
$$

whence we obtain, in Petrov notation,

$$
\chi^{\bar{\mu} \bar{\nu}}=\left[\begin{array}{c|c}
\left(\frac{2 \alpha_{1}}{2^{2}} \dot{\varphi}^{2}-4 \alpha_{2} \varphi^{2}\right) I & 0 \\
\hline 0 & 4 \alpha_{2} \varphi^{2} I
\end{array}\right] \equiv\left[\begin{array}{c|c}
\varphi_{1} I & 0 \\
\hline 0 & \varphi_{2} I
\end{array}\right],
$$

where I is again the 3×3 identity.

Checking bihyperbolicity

The eight generalized Maxwell field equations corresponding to cosmological van der Waals interactions are

$$
\begin{array}{r}
\partial_{\nu}\left(\chi^{\mu \nu \rho \sigma} F_{\rho \sigma}\right)=0 \\
\partial_{[\nu} F_{\rho \sigma]}=0,
\end{array}
$$

Checking bihyperbolicity

The eight generalized Maxwell field equations corresponding to cosmological van der Waals interactions are

$$
\begin{aligned}
\partial_{\nu}\left(\chi^{\mu \nu \rho \sigma} F_{\rho \sigma}\right) & =0, \\
\partial_{[\nu} F_{\rho \sigma]} & =0,
\end{aligned}
$$

which need to be recast in the form discussed before,

$$
D_{\bar{\lambda}}^{\bar{\mu} \nu} \partial_{\nu} F_{\bar{\mu}}+\tilde{D}_{\bar{\lambda}}^{\bar{\mu}} F_{\bar{\mu}}=0
$$

in order to read off the principal polynomial determined only by the matrix D of highest derivative order,

$$
P(x, p) \propto \operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu} p_{\nu}\right]
$$

Checking bihyperbolicity

Thus, the first set of generalized Maxwell equations yields four equations.

Checking bihyperbolicity

Thus, the first set of generalized Maxwell equations yields four equations. Three have terms like $\chi^{\mu \nu \bar{\mu}} \partial_{\nu} F_{\bar{\mu}}$ contributing to D :

$$
\begin{array}{rlrl}
\mu=0: & & \chi^{0 \nu \bar{\mu}} \partial_{\nu} F_{\bar{\mu}} & =\varphi_{1}\left(\partial_{1} F_{01}+\partial_{2} F_{02}+\partial_{2} F_{03}\right), \\
\mu=1: & & \chi^{1 \nu \bar{\mu}} \partial_{\nu} F_{\bar{\mu}} & =-\varphi_{1} \partial_{0} F_{01}+\varphi_{2} \partial_{2} F_{12}-\varphi_{2} \partial_{3} F_{31} \\
& & & =D_{01}^{010} \partial_{0} F_{01}+D_{01}^{122} \partial_{2} F_{12}+D_{01}^{313} \partial_{3} F_{31}, \\
\mu=2: & & \chi^{2 \nu \bar{\mu}} \partial_{\nu} F_{\bar{\mu}} & =-\varphi_{1} \partial_{0} F_{02}-\varphi_{2} \partial_{1} F_{12}+\varphi_{2} \partial_{3} F_{23} \\
& & =D_{02}^{020} \partial_{0} F_{02}+D_{02}^{121} \partial_{1} F_{12}+D_{02}^{233} \partial_{3} F_{23}, \\
\mu=3: & & \chi^{3 \nu \bar{\mu}} \partial_{\nu} F_{\bar{\mu}} & =-\varphi_{1} \partial_{0} F_{03}+\varphi_{2} \partial_{1} F_{31}-\varphi_{2} \partial_{2} F_{23} \\
& & =D_{03}^{030} \partial_{0} F_{03}+D_{03}^{311} \partial_{1} F_{31}+D_{03}^{232} \partial_{2} F_{23} .
\end{array}
$$

Checking bihyperbolicity

The second set of generalized Maxwell equations, $\partial_{[\nu} F_{\rho \sigma]}=0$, also gives $\binom{4}{3}=4$ equations,

Checking bihyperbolicity

The second set of generalized Maxwell equations, $\partial_{[\nu} F_{\rho \sigma]}=0$, also gives $\binom{4}{3}=4$ equations, again three of whom contribute to D :
$\nu=0, \rho=1, \sigma=2: \quad 0=\partial_{0} F_{12}-\partial_{1} F_{02}+\partial_{2} F_{01}$ $=D_{12}^{120} \partial_{0} F_{12}+D_{12}^{021} \partial_{1} F_{02}+D_{12}^{012} \partial_{2} F_{01}$,
$\nu=0, \rho=1, \sigma=3: \quad 0=-\partial_{0} F_{31}-\partial_{1} F_{03}+\partial_{3} F_{01}$ $=D_{31}^{310} \partial_{0} F_{31}+D_{31}^{031} \partial_{1} F_{03}+D_{31}^{013} \partial_{3} F_{01}$,
$\nu=0, \rho=2, \sigma=3: \quad 0=\partial_{0} F_{23}-\partial_{2} F_{03}+\partial_{3} F_{02}$
$=D_{23}^{230} \partial_{0} F_{23}+D_{23}^{032} \partial_{2} F_{03}+D_{23}^{023} \partial_{3} F_{02}$,
$\nu=1, \rho=2, \sigma=3: \quad 0=\partial_{1} F_{23}+\partial_{2} F_{31}+\partial_{3} F_{12}$.

Checking bihyperbolicity

Overall, therefore, we obtain the 6×6 matrix

$$
D_{\bar{\lambda}}^{\bar{\mu} \nu} p_{\nu}=\left[\begin{array}{cccccc}
\varphi_{1} p_{0} & 0 & 0 & 0 & \varphi_{2} p_{3} & -\varphi_{2} p_{2} \\
0 & \varphi_{1} p_{0} & 0 & -\varphi_{2} p_{3} & 0 & \varphi_{2} p_{1} \\
0 & 0 & \varphi_{1} p_{0} & \varphi_{2} p_{2} & -\varphi_{2} p_{1} & 0 \\
0 & p_{3} & -p_{2} & p_{0} & 0 & 0 \\
-p_{3} & 0 & p_{1} & 0 & p_{0} & 0 \\
p_{2} & -p_{1} & 0 & 0 & 0 & p_{0}
\end{array}\right] .
$$

Checking bihyperbolicity

Now, the principal polynomial is

$$
P(x, p) \propto \operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu} p_{\nu}\right]
$$

Checking bihyperbolicity

Now, the principal polynomial is

$$
\begin{aligned}
P(x, p) & \propto \operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu} p_{\nu}\right] \\
& =\left(\frac{2 \alpha_{1}}{a^{2}} \dot{\varphi}^{2}-4 \alpha_{2} \varphi^{2}\right)^{3} p_{0}^{2}\left(-p_{0}^{2}+\frac{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}{1-\frac{\alpha_{1}}{2 \alpha_{2} a^{2}}\left(\frac{\dot{\varphi}}{\varphi}\right)^{2}}\right)^{2}
\end{aligned}
$$

Checking bihyperbolicity

Now, the principal polynomial is

$$
\begin{aligned}
P(x, p) & \propto \operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu} p_{\nu}\right] \\
& =\left(\frac{2 \alpha_{1}}{a^{2}} \dot{\varphi}^{2}-4 \alpha_{2} \varphi^{2}\right)^{3} p_{0}^{2}\left(-p_{0}^{2}+\frac{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}{1-\frac{\alpha_{1}}{2 \alpha_{2} a^{2}}\left(\frac{\dot{\varphi}}{\varphi}\right)^{2}}\right)^{2}
\end{aligned}
$$

whence the reduced principal polynomial becomes

$$
\bar{P}(x, p)=-p_{0}^{2}+\frac{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}{1-\frac{\alpha_{1}}{2 \alpha_{2} a^{2}}\left(\frac{\dot{\varphi}}{\varphi}\right)^{2}} .
$$

Checking bihyperbolicity

Now, the principal polynomial is

$$
\begin{aligned}
P(x, p) & \propto \operatorname{det}\left[D_{\bar{\lambda}}^{\bar{\mu} \nu} p_{\nu}\right] \\
& =\left(\frac{2 \alpha_{1}}{a^{2}} \dot{\varphi}^{2}-4 \alpha_{2} \varphi^{2}\right)^{3} p_{0}^{2}\left(-p_{0}^{2}+\frac{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}{1-\frac{\alpha_{1}}{2 \alpha_{2} a^{2}}\left(\frac{\dot{\varphi}}{\varphi}\right)^{2}}\right)^{2}
\end{aligned}
$$

whence the reduced principal polynomial becomes

$$
\bar{P}(x, p)=-p_{0}^{2}+\frac{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}{1-\frac{\alpha_{1}}{2 \alpha_{2} a^{2}}\left(\frac{\dot{\varphi}}{\varphi}\right)^{2}} .
$$

Thus, the cosmological van der Waals interaction is Lorentzian and hence bihyperbolic, albeit with a metric different from the cosmological background.

Concluding remarks

Concluding remarks

(1) Bihyperbolicity is a useful criterion to study the predictivity of modified theories.

Concluding remarks

(1) Bihyperbolicity is a useful criterion to study the predictivity of modified theories.
(2) The constitutive tensor is convenient to interpret modified electromagnetic theories in terms of optical effects, such as birefringence.

Concluding remarks

(1) Bihyperbolicity is a useful criterion to study the predictivity of modified theories.
2 The constitutive tensor is convenient to interpret modified electromagnetic theories in terms of optical effects, such as birefringence.
(3) The cosmological van der Waals interaction for inflationary magnetogenesis is bihyperbolic, but dynamical extensions should be investigated.

Concluding remarks

(1) Bihyperbolicity is a useful criterion to study the predictivity of modified theories.
2 The constitutive tensor is convenient to interpret modified electromagnetic theories in terms of optical effects, such as birefringence.
(3) The cosmological van der Waals interaction for inflationary magnetogenesis is bihyperbolic, but dynamical extensions should be investigated.
(4) Finally, using geometrodynamics, it is also possible to construct bihyperbolic gravitational dynamics from the kinematics. [cf. Giesel, Schuller, Witte \& Wohlfarth (2012)]

