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Generalized spacetime

Consider a smooth manifold M, dimM = 4, with chart (U , x)
and some smooth tensor fields G called geometry and F called
matter of, for now, arbitrary rank.

Spacetime geometry is probed by test matter, with linear field
equations. The most general such PDE in (U , x) is[

k∑
d=1

(D µ̄

λ̄
)(G )ν1...νd

∂

∂xν1
. . .

∂

∂xνd

]
Fµ̄ = 0, (∗)

µ̄ multi-index of test matter fields components,
νi ∈ {0, . . . , 3} generalized spacetime coordinates,
i ∈ {1, . . . , d}, d ∈ {1, . . . , k} partial derivative order (k highest),
D µ̄

λ̄
square matrix of derivative coefficients.
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Eikonal approximation

Causality of (∗) is determined by its principal polynomial, which
emerges from the eikonal approximation of geometrical optics:

let

Fµ̄(x , λ) = e i
S(x)
λ

∞∑
j=0

Fµ̄j(x)λ
j , and λ→ 0.

Hence, from (∗),

e i
S(x)
λ

(
i

λ

)k [
D µ̄ν1...νk
λ̄

(x)
∂S

∂xν1
. . .

∂S

∂xνk

]
Fµ̄0(x)+ lower terms in

1

λ
= 0.

Lower order terms are negligible as λ→ 0, leaving the first term.
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Eikonal approximation

By linear algebra, this has a non-trivial solution for Fµ̄0 if S satisfies

det

[
D µ̄ν1...νk
λ̄

(x)
∂S

∂xν1
. . .

∂S

∂xνk

]
= 0,

that is, the eikonal equation of (∗), with the wave covector
(momentum) field

dS =
∂S

∂xν
dxν ∈ T ∗M.

For any p ∈ T ∗M, this defines the principal polynomial of (∗).
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Principal polynomial

The principal polynomial of (∗) is P : T ∗M → R such that

P(x , p) = ωG det
[
D µ̄ν1...νk
λ̄

(x)pν1 . . . pνk

]
= Pν1...νdeg Ppν1 . . . pνdeg P

,

where we have
Pν1...νdeg P totally symmetric principal polynomial (Fresnel) tensor,
degP the polynomial degree of P in p,
ωG some appropriate weight function to make P scalar.

Note two interesting facts:

..1 although (∗) was written in (U , x), P is indeed tensorial,

..2 degP ̸= k , the highest derivative order, in general.
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Null cones

Given the principal polynomial, the condition on p ∈ T ∗
xM,

P(x , p) = 0,

is called the massless dispersion relation, and the p is called null
momentum.

Then the (generalized) null cone at x ∈ M is

Nx = {p ∈ T ∗
xM : P(x , p) = 0}.

Note:

..1 Nx is independent of the choice of ωG ;

..2 if P is reducible, P =
∏

i P
ni
i , ni ≥ 1, one removes repeated

factors to obtain the reduced (irreducible) principal
polynomial P̄ =

∏
i Pi . Again, Nx remains unaffected.
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Cauchy problem

We are interested in causal kinematics of the generalized spacetime
(M,G ,F ), which is determined by the Cauchy problem.

Given (∗) and initial data, the Cauchy problem is well-posed if

..1 (∗) has a unique solution in U

..2 which depends continuously on the initial data.

Then necessarily (⇒), P is hyperbolic. [Gårding (1959)]

Note: By contraposition, this hyperbolicity criterion can be used to
check theories for causality.
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Hyperbolicity
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A polynomial P : T ∗M → R homogeneous of degP is hyperbolic
if ∃ h ∈ T ∗M, h ̸= 0, such that ∀ p ∈ T ∗M,

P(x , p + fh) = 0 with real f : M → R.

Then, moreover, h is called hyperbolic with respect to P , and the
hyperbolicity cone at x ∈ M is

Cx = {h ∈ T ∗
xM : h hyperbolic w.r.t. P}.
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Dual polynomial

So far, only covectors (momenta) have been considered.

However,
for predictivity, we also need time-orientation and hence dual
vectors (trajectories). It turns out that: [Rätzel, Rivera & Schuller (2011)]

If P is hyperbolic, then the dual polynomial P♯ : TM → R exists,

P♯(x ,X ) = P♯(x)ν1...νdeg P♯
X ν1 . . .X

ν
deg P♯ , X ∈ TxM,

via the Gauss map p 7→ X such that P(x , p) = 0,P♯(x ,X ) = 0.

Note:

..1 in general, degP ̸= degP♯;

..2 P♯ is to be reduced like P ;

..3 hyperbolicity of P does not imply hyperbolicity of P♯.
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Bihyperbolicity

Now introduce a time-orientation vector field T ∈ TM over U .

Denoting a null vector field by N, P♯(N) = 0, then any vector field
X can be decomposed as X = N + tT , for some t : U → R.

Recasting, this yields

0 = P♯(N) = P♯(X − tT ), t real,

in other words, a hyperbolicity condition for P♯.

Hence, a predictive kinematics for (M,G ,F ) implies that

..1 P be hyperbolic for causality; then also P♯ exists;

..2 P♯ be hyperbolic as well, for time-orientation.

This is called bihyperbolicity. [Rätzel, Rivera & Schuller (2011): illustrations]

Property: Lorentzian metrics are bihyperbolic.
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Example: vacuum electromagnetism

Standard theory: in M = R4, xν = (t, x) = (t, x1, x2, x3),
Maxwell’s equations in vacuum are ∇ · E = 0, ∇ · B = 0 and

∂E

∂t
−∇× B = 0,

∂B

∂t
+∇× E = 0.

Introducing Fµ̄ = (−E,B), µ̄ ∈ {1, . . . , 6}, they can be recast as

D µ̄ν

λ̄

∂Fµ̄
∂xν

= 0.
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Example: principal polynomial

Now the corresponding principal polynomial is proportional to

det[D µ̄ν

λ̄
pν ] = det



−p0 0 0 0 p3 −p2
0 −p0 0 −p3 0 p1
0 0 −p0 p2 −p1 0
0 p3 −p2 p0 0 0

−p3 0 p1 0 p0 0
p2 −p1 0 0 0 p0



= p20(−p20 + p21 + p22 + p23)
2.
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Example: bihyperbolicity

For p0 ̸= 0, we can read off a reduced principal
polynomial with deg P̄ = 2,

P̄(x , p) = −p20 + p21 + p22 + p23 = P̄µνpµpν ,

principal polynomial tensor P̄µν = diag(−1, 1, 1, 1)
= ηµν , the inverse Minkowski metric.

At every x ∈ R4, the null cone is given by
N = {p : ηµνpµpν = 0}, and the hyperbolicity
cone is C = {h : h timelike, ηµνhµhν < 0}.

Moreover, P̄♯
µν = ηµν . Thus, we have bihyperbolic (R4,G ,F )

with G = η.



. . . . . .

Example: bihyperbolicity

For p0 ̸= 0, we can read off a reduced principal
polynomial with deg P̄ = 2,

P̄(x , p) = −p20 + p21 + p22 + p23 = P̄µνpµpν ,

principal polynomial tensor P̄µν = diag(−1, 1, 1, 1)
= ηµν , the inverse Minkowski metric.

At every x ∈ R4, the null cone is given by
N = {p : ηµνpµpν = 0}, and the hyperbolicity
cone is C = {h : h timelike, ηµνhµhν < 0}.

Moreover, P̄♯
µν = ηµν . Thus, we have bihyperbolic (R4,G ,F )

with G = η.



. . . . . .

Example: bihyperbolicity

For p0 ̸= 0, we can read off a reduced principal
polynomial with deg P̄ = 2,

P̄(x , p) = −p20 + p21 + p22 + p23 = P̄µνpµpν ,

principal polynomial tensor P̄µν = diag(−1, 1, 1, 1)
= ηµν , the inverse Minkowski metric.

At every x ∈ R4, the null cone is given by
N = {p : ηµνpµpν = 0}, and the hyperbolicity
cone is C = {h : h timelike, ηµνhµhν < 0}.

Moreover, P̄♯
µν = ηµν . Thus, we have bihyperbolic (R4,G ,F )

with G = η.



. . . . . .

Example: bihyperbolicity

For p0 ̸= 0, we can read off a reduced principal
polynomial with deg P̄ = 2,

P̄(x , p) = −p20 + p21 + p22 + p23 = P̄µνpµpν ,

principal polynomial tensor P̄µν = diag(−1, 1, 1, 1)
= ηµν , the inverse Minkowski metric.

At every x ∈ R4, the null cone is given by
N = {p : ηµνpµpν = 0}, and the hyperbolicity
cone is C = {h : h timelike, ηµνhµhν < 0}.

Moreover, P̄♯
µν = ηµν . Thus, we have bihyperbolic (R4,G ,F )

with G = η.



. . . . . .

Constitutive tensor

The Lagrangian of Minkowski vacuum electromagnetism is

LM,vac = −1

4
FµνFµν = −1

8
(ηµρηνσ − ηνρηµσ)FµνFρσ

= −1

8
χµ̄ν̄
M,vacFµ̄Fν̄ ,

introducing Petrov pair notation for the field tensor Fµν with

µ̄ ∈ {[01], [02], [03], [23], [31], [12]},

and the corresponding constitutive tensor in vacuum,

χµ̄ν̄
M,vac =

[
−I 0

0 I

]
,

where I is the 3× 3 identity.
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Generalized electromagnetism

More generally, in a dielectric medium, the Maxwell action
becomes [e.g. Post (1962)]

LM = −1

8
χµνρσ
M FµνFρσ,

whose (real) constitutive tensor has symmetries,

χµνρσ
M = −χνµρσ

M , χµνρσ
M = −χµνσρ

M , χµνρσ
M = χρσµν

M ,

and the Petrov form

χµ̄ν̄
M =

[
−ϵ ϕ

ϕT µ−1

]
,

with 3× 3 matrix blocks, where ϵ denotes electrical permittivity, µ
magnetic permeability and ϕ contains the Fresnel-Fizeau effect
(tracefree part) and the axion (trace part).
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Generalized electromagnetism

The principal polynomial for a
general χM is quartic, which may
or may not be (bi)hyperbolic:

The constitutive tensor field χM may be regarded as fundamental,
replacing the Lorentzian metric structure, for example in:

..1 premetric electromagnetism [e.g. Hehl, Obukhov & Rubilar (2002)]

..2 area metric geometry [e.g. Schuller, Witte & Wohlfarth (2010)]

Alternatively, it may be regarded as effective, modelling optical
effects e.g. of fundamental scalar fields or HEP effects.
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Observational implications

..1 Birefringence
If the diagonalized permittivity matrix in χM is

ϵ =

 ϵ1 0 0
0 ϵ2 0
0 0 ϵ3

 without ϵ1 = ϵ2 = ϵ3,

then the vacuum is optically anisotropic (e.g., Lorentz-
violating),

leading to birefringence in gravitational lensing.
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Observational implications

..2 Etherington
Etherington reciprocity relates the luminosity distance DL,
redshift z and angular diameter distance DA, [cf. Etherington (1933)]

DL = (1 + z)2DA,

a purely kinematical result requiring only Lorentzian spacetime
geometry and light ray conservation.

Measuring DL with SNIa, DA with BAO, this is now testable,
taking into account opacity (absorption), DL,obs = DLe

τz/2.

There are indications of a violation, e.g. τ0.35 − τ0.20 =
−0.30± 0.26 at 95% [More, Bovy & Hogg (2009)], to be modelled by a
cosmological constitutive tensor χ. [Schneider & Werner (2016), in prep.]
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Cosmological magnetogenesis

Primordial magnetic fields may be understood by means of F
coupling to scalar field(s) φ, . . . on the background geometry of a
Lorentzian cosmological metric g : (M, g ,F , φ . . .).[Turner & Widrow (1988)]

For instance, Giovannini (2013/15), omitting the axion, proposed

L = −
√
−g

16π

(
λ(φ,ψ)FµνF

µν +Mρ
σ(φ)FραF

σα −N ρ
σ (ψ)F̃ραF̃

σα
)
,

with scalar fields φ,ψ, field tensor Fµν and dual F̃µν = 1
2ϵ

µναβFαβ .

Here, we are interested in studying the bihyperbolicity properties of
such theories, by identifying the corresponding cosmological
constitutive tensor, [Vikman & Werner (2016), in prep.]

L = −1

8
χµνρσFµνFρσ
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van der Waals interaction

In a neutral but polarizable medium with δE = −∇δV ≃ const.,

δE =

∫
d3xρδV ≃ −

∫
d3xρ(x)x · δE = −P · δE,

whence, with P = αEE, and analogously for B,

E = −1

2
(αEE

2 + αBB
2).

Thus, with the neutral system described by φ, and metric g ,

L = −
√
−g

(
α1∂αφ∂βφF

αρF β
ρ + α2φ

2FµνFµν
)
,

where constants α1, α2 depend on αE , αB . [c.f. Itzykson & Zuber (1980)]
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Cosmological van der Waals

Now, on a conformally flat cosmological background with gµν
= a(t)2ηµν , and φ = φ(t), φ̇ = dφ

dt ,

the cosmological constitutive
tensor χ can be identified from

χµνρσFµνFρσ = 8
√
−g

(
α1∂αφ∂βφF

αρF β
ρ + α2φ

2FµνFµν
)
,

whence we obtain, in Petrov notation,

χµ̄ν̄ =

[
(2α1

a2
φ̇2 − 4α2φ

2)I 0

0 4α2φ
2I

]
≡

[
φ1I 0

0 φ2I

]
,

where I is again the 3× 3 identity.
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dt , the cosmological constitutive
tensor χ can be identified from

χµνρσFµνFρσ = 8
√
−g

(
α1∂αφ∂βφF

αρF β
ρ + α2φ

2FµνFµν
)
,

whence we obtain, in Petrov notation,

χµ̄ν̄ =

[
(2α1

a2
φ̇2 − 4α2φ

2)I 0

0 4α2φ
2I

]
≡

[
φ1I 0

0 φ2I
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,

where I is again the 3× 3 identity.
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. . . . . .

Checking bihyperbolicity

The eight generalized Maxwell field equations corresponding to
cosmological van der Waals interactions are

∂ν(χ
µνρσFρσ) = 0,

∂[νFρσ] = 0,

which need to be recast in the form discussed before,

D µ̄ν

λ̄
∂νFµ̄ + D̃ µ̄

λ̄
Fµ̄ = 0,

in order to read off the principal polynomial determined only by the
matrix D of highest derivative order,

P(x , p) ∝ det[D µ̄ν

λ̄
pν ].
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. . . . . .

Checking bihyperbolicity

Thus, the first set of generalized Maxwell equations yields four
equations.

Three have terms like χµνµ̄∂νFµ̄ contributing to D:

µ = 0 : χ0νµ̄∂νFµ̄ = φ1(∂1F01 + ∂2F02 + ∂2F03),

µ = 1 : χ1νµ̄∂νFµ̄ = −φ1∂0F01 + φ2∂2F12 − φ2∂3F31

= D010
01 ∂0F01 + D122

01 ∂2F12 + D313
01 ∂3F31,

µ = 2 : χ2νµ̄∂νFµ̄ = −φ1∂0F02 − φ2∂1F12 + φ2∂3F23

= D020
02 ∂0F02 + D121

02 ∂1F12 + D233
02 ∂3F23,

µ = 3 : χ3νµ̄∂νFµ̄ = −φ1∂0F03 + φ2∂1F31 − φ2∂2F23

= D030
03 ∂0F03 + D311

03 ∂1F31 + D232
03 ∂2F23.



. . . . . .

Checking bihyperbolicity

Thus, the first set of generalized Maxwell equations yields four
equations. Three have terms like χµνµ̄∂νFµ̄ contributing to D:

µ = 0 : χ0νµ̄∂νFµ̄ = φ1(∂1F01 + ∂2F02 + ∂2F03),

µ = 1 : χ1νµ̄∂νFµ̄ = −φ1∂0F01 + φ2∂2F12 − φ2∂3F31

= D010
01 ∂0F01 + D122

01 ∂2F12 + D313
01 ∂3F31,

µ = 2 : χ2νµ̄∂νFµ̄ = −φ1∂0F02 − φ2∂1F12 + φ2∂3F23

= D020
02 ∂0F02 + D121

02 ∂1F12 + D233
02 ∂3F23,

µ = 3 : χ3νµ̄∂νFµ̄ = −φ1∂0F03 + φ2∂1F31 − φ2∂2F23

= D030
03 ∂0F03 + D311

03 ∂1F31 + D232
03 ∂2F23.
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Checking bihyperbolicity

The second set of generalized Maxwell equations, ∂[νFρσ] = 0, also

gives
(4
3

)
= 4 equations,

again three of whom contribute to D:

ν = 0, ρ = 1, σ = 2 : 0 = ∂0F12 − ∂1F02 + ∂2F01

= D120
12 ∂0F12 + D021

12 ∂1F02 + D012
12 ∂2F01,

ν = 0, ρ = 1, σ = 3 : 0 = −∂0F31 − ∂1F03 + ∂3F01

= D310
31 ∂0F31 + D031

31 ∂1F03 + D013
31 ∂3F01,

ν = 0, ρ = 2, σ = 3 : 0 = ∂0F23 − ∂2F03 + ∂3F02

= D230
23 ∂0F23 + D032

23 ∂2F03 + D023
23 ∂3F02,

ν = 1, ρ = 2, σ = 3 : 0 = ∂1F23 + ∂2F31 + ∂3F12.
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Checking bihyperbolicity

Overall, therefore, we obtain the 6× 6 matrix

D µ̄ν

λ̄
pν =



φ1p0 0 0 0 φ2p3 −φ2p2
0 φ1p0 0 −φ2p3 0 φ2p1
0 0 φ1p0 φ2p2 −φ2p1 0
0 p3 −p2 p0 0 0

−p3 0 p1 0 p0 0
p2 −p1 0 0 0 p0

 .
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Checking bihyperbolicity

Now, the principal polynomial is

P(x , p) ∝ det[D µ̄ν

λ̄
pν ]

=

(
2α1

a2
φ̇2 − 4α2φ

2

)3

p20

−p20 +
p21 + p22 + p23

1− α1
2α2a2

(
φ̇
φ

)2


2

,

whence the reduced principal polynomial becomes

P̄(x , p) = −p20 +
p21 + p22 + p23

1− α1
2α2a2

(
φ̇
φ

)2
.

Thus, the cosmological van der Waals interaction is Lorentzian and
hence bihyperbolic, albeit with a metric different from the
cosmological background.
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. . . . . .

Concluding remarks

..1 Bihyperbolicity is a useful criterion to study the predictivity of
modified theories.

..2 The constitutive tensor is convenient to interpret modified
electromagnetic theories in terms of optical effects, such as
birefringence.

..3 The cosmological van der Waals interaction for inflationary
magnetogenesis is bihyperbolic, but dynamical extensions
should be investigated.

..4 Finally, using geometrodynamics, it is also possible to
construct bihyperbolic gravitational dynamics from the
kinematics. [cf. Giesel, Schuller, Witte & Wohlfarth (2012)]
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