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® Physics seeks predictive theories, i.e. a well-posed Cauchy
problem with time-orientation — bihyperbolicity

©® How can this be ensured, or checked, in modified theories?
What are the observational implications?
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® Predictive kinematics: bihyperbolicity

© Generalizing the Maxwell Lagrangian: the constitutive tensor
and its cosmological observational implications

O Application to inflationary magnetogenesis
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Generalized spacetime

Consider a smooth manifold M, dim M = 4, with chart (i, x)
and some smooth tensor fields G called geometry and F called
matter of, for now, arbitrary rank.

Spacetime geometry is probed by test matter, with linear field
equations. The most general such PDE in (U, x) is

k
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[ multi-index of test matter fields components,

v; €40,...,3} generalized spacetime coordinates,

i€{l,...,d}, de{l,...,k} partial derivative order (k highest),
Df—\‘ square matrix of derivative coefficients.
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Eikonal approximation

Causality of (x) is determined by its principal polynomial, which
emerges from the eikonal approximation of geometrical optics: let

Fa(,\) = &% S Fy(x)N, and A — 0.
=0

Hence, from (x),
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iseo (i gy 95 95 | o in < —
° <A> [Di () g+ o | Fro(x)+ lower terms in = 0.

Lower order terms are negligible as A — 0, leaving the first term.
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Eikonal approximation

By linear algebra, this has a non-trivial solution for Fjq if S satisfies

v S oS
v -
det [DA (x) ENZREE 8x”k] ,

that is, the eikonal equation of (x), with the wave covector
(momentum) field

dS = aasd Ve T*M.

For any p € T*M, this defines the principal polynomial of (x).
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Principal polynomial

The principal polynomial of (%) is P : T*M — R such that
P(x,p) = wg det Dé\_“'l"'”k(x)p,,1 Py | = PP D Py

where we have
pvi--VaeeP totally symmetric principal polynomial (Fresnel) tensor,
deg P the polynomial degree of P in p,
wg some appropriate weight function to make P scalar.
Note two interesting facts:
@ although (*) was written in (U, x), P is indeed tensorial,
® deg P # k, the highest derivative order, in general.
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Null cones

Given the principal polynomial, the condition on p € T; M,
P(x,p) =0,

is called the massless dispersion relation, and the p is called null
momentum. Then the (generalized) null cone at x € M is

Ny={pe T;M : P(x,p) =0}

Note:
® N, is independent of the choice of wg;

® if P is reducible, P = H,- Pf", n; > 1, one removes repeated
factors to obtain the reduced (irreducible) principal
polynomial P = []; P;. Again, N remains unaffected.
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Cauchy problem

We are interested in causal kinematics of the generalized spacetime
(M, G, F), which is determined by the Cauchy problem.
Given (x) and initial data, the Cauchy problem is well-posed if
@ (x) has a unique solution in U
® which depends continuously on the initial data.
Then necessarily (=), P is hyperbolic. (carding (1950)]

Note: By contraposition, this hyperbolicity criterion can be used to
check theories for causality.
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Hyperbolicity

Definition:
A polynomial P : T* M — R homogeneous of deg P is hyperbolic
if 3he T*M,h+#0, such that V p e T*M,

P(x, p + fh) = 0 with real f : M — R.

Then, moreover, h is called hyperbolic with respect to P, and the
hyperbolicity cone at x € M is

Cc={he T;M : hhyperbolic w.r.t. P}.
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Dual polynomial

So far, only covectors (momenta) have been considered. However,
for predictivity, we also need time-orientation and hence dual
vectors (trajectories). It turns out that: [Rawel, Rivera & Schuler (2011)]

If P is hyperbolic, then the dual polynomial Pf: TM — R exists,

PH(x, X) = PH(xX)uy..r,,

deg Pt

X", XYasPt X € TM,

via the Gauss map p — X such that P(x, p) = 0, P¥(x, X) = 0.
Note:

© in general, deg P # deg P*;

® P! is to be reduced like P;

© hyperbolicity of P does not imply hyperbolicity of P¥.
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Bihyperbolicity

Now introduce a time-orientation vector field T € T M over U.

Denoting a null vector field by N, P!(N) = 0, then any vector field
X can be decomposed as X = N + tT, for some t : U — R.

Recasting, this yields
0= P¥(N) = P*(X — tT), t real,

in other words, a hyperbolicity condition for P

Hence, a predictive kinematics for (M, G, F) implies that
® P be hyperbolic for causality; then also P! exists;
@® P! be hyperbolic as well, for time-orientation.

ThIS |S Ca”ed blhyperb0|ICIty [Rétzel, Rivera & Schuller (2011): illustrations]
Property: Lorentzian metrics are bihyperbolic.



Example: vacuum electromagnetism

OE
— —-VxB =0
ot X ’
B
a—+V><E = 0.

ot



Example: vacuum electromagnetism

OE
— —-VxB =0
ot % ’
B
a—+V><E = 0.
ot

Introducing F; = (—E,B), it € {1,...,6}, they can be recast as



Example: vacuum electromagnetism

OE

——-VxB = 0

ot 8 ’

0B

—+VxXxE = 0.

ot VX

Introducing F; = (—E,B), it € {1,...,6}, they can be recast as
pr9Fi _ g,

A OxY
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Now the corresponding principal polynomial is proportional to

det[DI" p,]

det 0

—P3
P2

P3
0

—P1

0
0
—Po
—p2
p1
0

0
—P3
P2

Po
0

0

p(—pg + P + p3 + p3)°.

P3
0
—P1
0

Po
0

—p2

P1
0
0
0
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Example: bihyperbolicity

For po # 0, we can read off a reduced principal
polynomial with deg P = 2,

P(x,p) = —p§ + pi + p5 + p3 = P pups,
principal polynomial tensor P* = diag(—1,1,1,1)
= n*¥, the inverse Minkowski metric.

At every x € R*, the null cone is given by

N={p : n""pup, = 0}, and the hyperbolicity
coneis C = {h : h timelike, n*"h,h, < 0}.

Moreover, .E’,u“, = 7. Thus, we have bihyperbolic (R* G, F)
with G = n.
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Constitutive tensor

The Lagrangian of Minkowski vacuum electromagnetism is

1 1
['M,vac = _ZFW}FMV = —g(ﬂ“pﬁw - UVpU“U)Fuqua

1

= 8XM vacF FV’

introducing Petrov pair notation for the field tensor F,, with
fi € {[01], [02], [03], [23], [31], [12]},

and the corresponding constitutive tensor in vacuum,
v | =110
XM vac — 0 / ’

where [ is the 3 x 3 identity.
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Generalized electromagnetism

More generally, in a dielectric medium, the Maxwell action
becomes [eg. Post (1962)]

1
Ly = _éxlﬁpaFuVFpaa

whose (real) constitutive tensor has symmetries,

urpo vupo urpo uvop UVpo __  pouv
Xv = Xm > Xm = XM > Xm —Xm >

and the Petrov form

with 3 x 3 matrix blocks, where € denotes electrical permittivity, u
magnetic permeability and ¢ contains the Fresnel-Fizeau effect
(tracefree part) and the axion (trace part).
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Generalized electromagnetism

The principal polynomial for a
general x s is quartic, which may
or may not be (bi)hyperbolic:

The constitutive tensor field yp; may be regarded as fundamental,
replacing the Lorentzian metric structure, for example in:

@ premetric electromagnetiSm [eg. Hehl, Obukhov & Rubilar (2002)]

@ area metric geometry [eg. Schuller, Witte & Wohlfarth (2010)]

Alternatively, it may be regarded as effective, modelling optical
effects e.g. of fundamental scalar fields or HEP effects.
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Observational implications

@ Birefringence
If the diagonalized permittivity matrix in xp is

ege 0 O
€= e 0 without €1 = €3 = €3,
0 0 e3

then the vacuum is optically anisotropic (e.g., Lorentz-
violating), leading to birefringence in gravitational lensing.
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® Etherington
Etherington reciprocity relates the luminosity distance Dy,
redshift z and angular diameter distance Dpg, [cf. Etherington (1933)]

D, = (1 + Z)2DA,
a purely kinematical result requiring only Lorentzian spacetime

geometry and light ray conservation.

Measuring D; with SNla, D4 with BAO, this is now testable,
taking into account opacity (absorption), Dj ops = D;e™/2.

There are indications of a violation, e.g. T9.35 — T0.20 =
—0.30 £ 0.26 at 95% [More, Bovy & Hoge (2009)], to be modelled by a
cosmological constitutive tensor . [schneider & Werner (2016), in prep]
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Cosmological magnetogenesis

Primordial magnetic fields may be understood by means of F
coupling to scalar field(s) ¢, ... on the background geometry of a
Lorentzian cosmological metric g: (M, g, F,@...).[Tumer & widrow (1988)]

For instance, Giovannini (2013/15), omitting the axion, proposed

L= —\{6_? (Mo )P P + ME() Foa F = NE()FpuF )

with scalar fields ¢, 1, field tensor F,, and dual Frv — %EW‘WFQB.

Here, we are interested in studying the bihyperbolicity properties of
such theories, by identifying the corresponding cosmological
constitutive tensor, [Vikman & Werner (2016), in prep]

1 vpo
L= X" FusFpo



van der Waals interaction

In a neutral but polarizable medium with 0E = —V{§V =~ const.,



van der Waals interaction

In a neutral but polarizable medium with 0E = —V{§V =~ const.,

OE = /d3xp(5V ~ —/d3xp(x)x -0E=—P - {E,



van der Waals interaction

In a neutral but polarizable medium with 0E = —V{§V =~ const.,
OE = /d3xp(5V ~ —/d3x,o(x)x -0E=—P - {E,
whence, with P = agE, and analogously for B,

1
E = _5(045E2 + apB?).



van der Waals interaction

In a neutral but polarizable medium with 0E = —V{§V =~ const.,
OE = /d3xp(5V ~ —/d3x,o(x)x -0E=—P - {E,
whence, with P = agE, and analogously for B,
1 2 2
E = —§(CMEE + agB )
Thus, with the neutral system described by ¢, and metric g,
L=—/-g (alaacpaggoFo‘pr + ozggozF””FW) ,

where constants a1, ap depend on aue, . [cf. Itzykson & Zuber (1980)]
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Cosmological van der Waals

Now, on a conformally flat cosmological background with g,
= a(t)?nw, and ¢ = @(t), ¢ = fj—f, the cosmological constitutive
tensor x can be identified from

XMVPUF/LVFpO' = 8\/ —8 (alaagpaﬁgoFaprﬂ + a2S02FI“/F/Ll/> )

whence we obtain, in Petrov notation,

[ (2:21@ — danp?)l ‘ 0 ]
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where [ is again the 3 x 3 identity.
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Checking bihyperbolicity

The eight generalized Maxwell field equations corresponding to
cosmological van der Waals interactions are

(X7 Fpe) = 0,
O Fp) = O,

which need to be recast in the form discussed before,
Dg‘”&,Fﬁ + D/-\“F,; =0,

in order to read off the principal polynomial determined only by the
matrix D of highest derivative order,

P(x, p) det[Dg”jp,,].
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Checking bihyperbolicity

Thus, the first set of generalized Maxwell equations yields four
equations. Three have terms like x**#9, F; contributing to D:

p=0: x"0,F; = ¢1(01Fo1+ O2Fo2 + 02Fo3),

p=1: x"0,F; = —100F01 + p202F12 — ¢203F31
D81°00Fo1 + D§Z20xFrp 4 D305 F31,
—100F02 — 201 F12 + 203 F23
D33°00Fo2 + D33 01 Fio + D332 03 Fas,
—100F03 + 201 F31 — 202 F23

= D3°00Fo3 + Dgz' 01F31 + D§3° 02 Fas.

w=2: X2V’18,,Fﬁ

w=3: X3”‘_’“8,,Fﬂ



Checking bihyperbolicity

The second set of generalized Maxwell equations, J}, F s = 0, also
gives (g) = 4 equations,



Checking bihyperbolicity

The second set of generalized Maxwell equations, J}, F s = 0, also
gives (g) = 4 equations, again three of whom contribute to D:

v=0,p=10=2: 0 = 0oFi2— 01Fo2+ hFn
D3390 F12 + D501 Foz + DY5 02 For,
v=0,p=1 0=3: 0 = —0oF31 —01Fo3+ 03F0n1

= D31%0F31 + D301 Fos + D31303Fo1,
v=0,p=2,0=3: 0 = 0OyFa3— 02Fo3+ O3Fp2

= D390 Fa3 + DI320xFo3 + D03 Fo2,
v=1 p=2,0=3: 0 = 01Fx+ 0F31 + 0sF1>.



Checking bihyperbolicity

Overall, therefore, we obtain the 6 x 6 matrix

[ o1po O 0 0 ©2p3 —p2p2 |
0 ¢ipo 0 —pop3 0 P2p1
D p, — 0 0  wipo  w2p2  —p2m 0
A 0 p3 —p2  po 0 0
-p3 0 p1 0 Po 0
L 2 - O 0 0 po
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Now, the principal polynomial is
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Checking bihyperbolicity

Now, the principal polynomial is

P(x,p) o det[Dé\]pr]

207 | 3 p? + p3 + p3
=< <p2—4a2902> po | —po+ ——2—25

2 N2 |
a 1 o a1 f
2ap0a2 \ ¢
whence the reduced principal polynomial becomes

2 2 2
_ pi+p5+p
P(x,p) = —pg + ——2—=35.
o1 »
2&232 ((,0)

Thus, the cosmological van der Waals interaction is Lorentzian and
hence bihyperbolic, albeit with a metric different from the
cosmological background.
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Concluding remarks

@ Bihyperbolicity is a useful criterion to study the predictivity of
modified theories.

® The constitutive tensor is convenient to interpret modified
electromagnetic theories in terms of optical effects, such as
birefringence.

© The cosmological van der Waals interaction for inflationary
magnetogenesis is bihyperbolic, but dynamical extensions
should be investigated.

O Finally, using geometrodynamics, it is also possible to
construct bihyperbolic gravitational dynamics from the
klnematICS [cf. Giesel, Schuller, Witte & Wobhlfarth (2012)]



