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[nhomogeneous (and time-dependent) field
configuration

motivation:

e DM candidate (soliton), to avoid restrictions on WIMP,
e clumping of DM, Axion/Bose star,

e baryogenesis, cogenesis,

main 1ssues:

e stability

e energy (mass) spectrum

e long-range forces (massless fields)

Stability Charge| or Topology




Static solutions in theories with V' > 0 — problem with Derrick theorem
(nonlinear kinetic term, gauge fields)
For pure scalar field theory scaling arguments restrict number of space-time

dimensions D < 3

Stationary (but not static!) solution for U(1)-invariant scalar field theory:
b = i f(r)
in ordinary (3 4 1) space-time
(we also turn off gravity) only r dependence — Q-ball
Energy and Charge indeed static!



Charge (not electric!) — global U(1) symmetry,
G. Rosen, J. Math. Phys. 9 (1968) 996
or -balls; S.R. Coleman, Nucl. Phys. B 262 (1985) 263 |Erratum 269 (1986) 744]

L=0,00"'d — V(D)
Single complex scalar field — Eq. of motion can be studied by method of classical

mechanics (overshoot-undershoot method, where r corresponds to time)

thin-wall, like a snowball

Eq. is nonlinear, how to check (numerical) result?

dFE/dQ = w

here

E = [ d®x(00¢*00p + 0;0* 00 + V),
and Q =1 [ d*z(0p™ ¢ — ¢* o)



generalisation with additional real (massive) mediator scalar field —

NONTOPOLOGICAL SOLITONS
L = 0,0*0"D + 10, V0"V — V(U) — A(D*P) >
R.Friedberg, T.D. Lee, A.Sirlin, PRD 13(1976) 2739

Time-dependent background: how to investigate stability?

D.L.T. Anderson, G.H. Derrick, J. Math. Phys. 11 (1970) 1336

00 = ™1l (v (r) + ¥3(r))
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Are the stable solutions in any other theory?

- Yes

. - dQ
Q-criterion of stability: =< < 0

N.G. Vakhitov, A.A. Kolokolov, Radiophys. Quantum Electron. 16 (1973) 783 -NSE

R.Friedberg, T.D. Lee, A.Sirlin, PRD 13(1976) 2739



The simplest U(1)-invariant Lagrangian with massless fields (E.N., M. smolyakov 1605.02056)

L =0,00"® + 10,U0MT — h(D* D)V




Stable (classically) vacuum solution W = W > 0, ® = 0. Then after shift

U = qfo + v
WeE ha\/e (not lenearization)
L =0,0*0"® + 10, U0"V — m’O*d — h(D* D)V

where m = \/h\,

ThlS 1S WiCk—CutkOSky mOdel studied in Bethe-Salpeter formalism

Negative potential — critical bubble?

1.e. unstable static solution

For more solutions let us try
d = W f(r)
U = ¢(r)
and rederive dF /dQ = w.



The system of ODE:
(m? —w?)f — Af + héf =0,
—A¢+ hf:=0.
The Schrédinger-Poisson system.

With boundary conditions
Or flr=0 =0, lim f(r) =0,
r—00
Or@|r—o = 0, lim ¢(r) = 0.
r—00

Main reparametrization

R=1Va?—o?,  F(R)==5f(r), G(R) = =—0(r)
resulting in
—ApF+ F+ FG =0,
—AgG + F? =0,
with the boundary conditions

OrFlro=0, lm F(R)=0, 0rGlro=0, lim G(R)=0.
—00

R—o0




Exponentially localized complex field, /' ~ e™V m*=w* and real field with tail %
G(R)
— - R

‘2”‘4‘“6”‘8‘”10”‘12‘”14‘

~05}

~1.0}

~15}

N - :
2 4 6 8 10 12 14 —20F

The only value needed for the F(Q) is I = 47 [ F*R*dR.
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Numerically, 1 = 44.05.
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Expression for the lowest branch
E = f <2m . \/,m4 @2h4) \/mz \/m4 ﬁ

2 ] 3
here Q00 = —Qmin = h2 , and maximal energy F,,.: = 2\/3%
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Conclusions

e Critical bubble and 2-particle bound state are connected by continuous family of

solutions

e Interesting connection with the Schrodinger—Poisson systems, which appear, for

example, when one considers the Newtonian limit for boson stars

e Order of magnitude coincidence with bound energy for Wick-Cutkosky solution

even for () = 2
e Reparametrization helps to consider model in 3 spatial dimensions

e Massless real field — we are working beyond thin-wall approximation
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JANK YOU!
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