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Introduction & Motivation

Understanding gravity & particularly cosmology and 
the Dark sectors since they are modifications of GR 

Natural & direct generalisations of standard field 
theory (including GR), i.e. not ad hoc modifications. 
Therefore promising for understanding gravity at a 
deeper level. Immediately lead to two alternatives: 

Either not realised in nature, but then we must 
understand why that is so 

Or are realised in nature and therefore extremely 
important and almost certainly will increase our 
understanding of the Dark sectors —> pointing 
back to motivation I

I)

II)



Motivation I: Cosmology & Dark sectors

Provided we accept the inclusion of, only 
indirectly inferred, Dark sources which totally 
dominate the energy budget 

 And don’t think too seriously about the 
cosmological constant problem(s) (CCP(s)) 

Resolution of the CCP(s) seem to require new 
understanding of GR, QFT or both 

QFT very robust framework so modification 
of gravity away from GR appears to be more 
promising 

But also GR is a quite robust theory/model so 
modifications must make sense theoretically

GR & the SM are quite adequate to 
explain observations thus far V



Motivation II: Field theory

Lower spin fields well understood and many do 
exist in nature. For the bosonic sector

Spin-0: Massive (Higgs) & massless (?)

Spin-1: Massive (Gauge bosons) & massless (photon)

Spin-2: Massless (Graviton ?) and massive (?)

(r2 �m2)� = 0

�
r2 �m2 � ⇤

�
Aµ = 0 , rµAµ = 0

✓
r2 �m2 +

2⇤

3

◆
hµ⌫ = 0 , rµhµ⌫ = 0 , h = 0



Motivation II: Field theory

Any spin-2 theory beg for non-linear completion, 
just as massless spin-2 theory beg for GR 
completion

We must therefore consider a non-linear 
completion and the corresponding spin-2 particles 
either exist in nature or they do not



Linear FP

Constraints in linear FP theory: The FP equations 

Trace:

Divergence:

Double divergence:
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µ⌫ h⇢� � ⇤
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The linear combination

constitutes a scalar constraint. Together with 
divergence constraints the theory can be written

Linear FP

2rµr⌫�Eµ⌫ +m2gµ⌫�Eµ⌫ =
m2

2

�
2⇤� 3m2

�
h ⇡ 0

✓
r2 �m2 +
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3

◆
hµ⌫ = 0 , rµhµ⌫ = 0 , h = 0



The linear combination

constitutes a scalar constraint. Together with 
divergence constraints the theory can be written

Linear FP

2rµr⌫�Eµ⌫ +m2gµ⌫�Eµ⌫ =
m2

2

�
2⇤� 3m2

�
h ⇡ 0

✓
r2 �m2 +

2⇤

3

◆
hµ⌫ = 0 , rµhµ⌫ = 0 , h = 0

Unitarity implies Higuchi bound 
(cf Breitenlohner-Freedman bound in AdS)

3m2 � 2⇤



The linear combination

constitutes a scalar constraint. Together with 
divergence constraints the theory can be written

What about when           ?

Linear FP
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The linear combination

constitutes a scalar constraint. Together with 
divergence constraints the theory can be written

What about when           ?

Linear FP

2rµr⌫�Eµ⌫ +m2gµ⌫�Eµ⌫ =
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2
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2⇤� 3m2
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Implies the linear gauge symmetry

Linear FP

�hµ⌫ =


rµr⌫ +

m

2

2
gµ⌫

�
⇠(x)

Action is trivially invariant since it can be written

S[h] ⇠
Z

d4x
p
g h

µ⌫
�Eµ⌫

From group theory: coincides with existence of 
``short” UIRs in de Sitter



We now have an example of a theory where

Further motivation

⇤ ⇠ m2

is protected by a symmetry. Similarly

may be thought of as ``technically natural” due to 
enhancement of diffeomorphism symmetry. 
Furthermore dS favoured by unitarity

m2 ⇠ 0



We now have an example of a theory where

Further motivation

⇤ ⇠ m2

is protected by a symmetry. Similarly

may be thought of as ``technically natural” due to 
enhancement of diffeomorphism symmetry. 
Furthermore dS favoured by unitarity

m2 ⇠ 0

Small positive    may be regarded as technically natural! 

But spin-2 theories require nonlinear completion!

⇤



Most obvious approach: Keep dS background fixed 
but add higher order PM interactions and constrain 
possible gauge symmetry

Early attempts I: Adding PM vertices

Unique structure of cubic vertices 
constructed 

Only works for D=4 unless higher 
derivative terms are considered 

Apparent obstruction for quartic vertices

Zinoviev



Conformal gravity action

Early attempts II: Conformal gravity
Deser, Joung, Waldron

S ⇠
Z
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d4x
p
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ensor
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Conformal gravity action

Early attempts II: Conformal gravity
Deser, Joung, Waldron
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Under conformal transformation

�Pµ⌫ = �rµ@⌫��gµ⌫ = 2�gµ⌫

transforms exactly as a PM field!

Pµ⌫ �
m2

4
gµ⌫ �! Pµ⌫ �

m2

4
gµ⌫�

✓
rµr⌫ +

m2

2
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Early attempts II: Conformal gravity

 Correct structure linearly; PM field + 
massless spin-2 

 Relative ghost between PM and massless 
field 

 Not consistent PM theory nonlinearly 

 Conjectured that PM can only propagate on 
Einstein backgrounds

Deser, Joung, Waldron

Maldacena
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Basic details

S[g, f ] = m

2
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in terms of the square-root matrix

along with the “elementary symmetric polynomials”
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1
2(Tr(S)
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Basic details

This lead to the equations of motion

with e.g.

Vµ⌫ = gµ⇢


�0�

⇢
⌫ � �1 (S

⇢
⌫ � e1�

⇢
⌫) + �2
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along with Bianchi constraints
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p
|f | fµ⇢r̃⇢Ṽµ⌫ = 0
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and the identities

Eµ⌫ ⌘ Gµ⌫(g) +m2Vµ⌫(g, f) = 0

Ẽµ⌫ ⌘ Gµ⌫(f) +m2Ṽµ⌫(g, f) = 0



Basic details

The massive gravity limit (g massive) can be defined by

This gives the limiting equations

Gµ⌫ +m2Vµ⌫ = 0 , G̃µ⌫ + ⇤ffµ⌫ = 0

Works for solutions of the form

Also perturbations behave like massive gravity if we take

↵ =
mf

mg
! 1 ⇤f = �4m2

↵2
mg mand all fixed, ,

fµ⌫ = fE
µ⌫ +O(↵�2)gµ⌫ = gµ⌫ +O(↵�2)

gµ⌫ ! gµ⌫ +
�gµ⌫

mg
fE
µ⌫ ! fE

µ⌫ +
�fE

µ⌫

↵mg



Basic details

The massive gravity limit (g massive) can be defined by

This gives the limiting equations
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Recall talk
s by 

Shinji Mukohyama 

&  

Angnis Sc
hmidt-May



Proportional solutions & Mass spectrum

A conformal ansatz                reduce the equations tofµ⌫ = c2gµ⌫

Rµ⌫ �
1

2
gµ⌫R+

✓
⇤g

⇤f

◆
gµ⌫ = 0

Consistency requires            :⇤g = ⇤f

↵2�3c
4 + (3↵2�2 � �4)c

3 + 3(↵2�1 � �3)c
2 +

�
↵2�0 � 3�2

�
c� �1 = 0

Generically determines                .c = c(↵,�n)



Proportional solutions & Mass spectrum

A conformal ansatz                reduce the equations tofµ⌫ = c2gµ⌫
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Generically determines                . Decoupled perturbationsc = c(↵,�n)

Ẽ ⇢�
µ⌫ �Mµ⌫ + ⇤�Mµ⌫ +

m̃2
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Ẽ ⇢�
µ⌫ �Gµ⌫ + ⇤�Gµ⌫ = 0

�Gµ⌫ = �gµ⌫ + ↵2�fµ⌫ , �Mµ⌫ =
1

2c

�
�fµ⌫ � c2�gµ⌫

�
with

massless

massive



Proportional solutions & Mass spectrum

The constant c is left undetermined by the PM values

c �! c+ a , gµ⌫ �! 1 + (↵c)2

1 + ↵2(c+ a)2
gµ⌫

�1 = �3 = 0 , ↵4�0 = 3↵2�2 = �4

Higuchi bound saturated and nonlinear scaling symmetry realised



Proportional solutions & Mass spectrum

The constant c is left undetermined by the PM values

c �! c+ a , gµ⌫ �! 1 + (↵c)2

1 + ↵2(c+ a)2
gµ⌫

�1 = �3 = 0 , ↵4�0 = 3↵2�2 = �4

Higuchi bound saturated and nonlinear scaling symmetry realised

Covers all GR solutions 

Diagonalisable into mass eigenstates 

For PM values there is a dS preserving nonlinear scaling 
symmetry



Cosmological solutions

Bidiagonal solutions

gµ⌫dx
µdx⌫ = �dt2 + a

2(dr2 + r

2d⌦2)

fµ⌫dx
µdx⌫ = �X

2dt2 + Y

2(dr2 + r

2d⌦2)

Characterised by a modified Friedmann equation

and the polynomial equation

Leaves          undetermined for the exact same 
parameters! Related by time-dependent PM trafo
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Cosmological solutions

Bidiagonal solutions
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Direct approach towards nonlinear PM

Most direct approach to check for nonlinear PM: Mimic 
the linear FP analysis but for arbitrary backgrounds

More on this approach later …

Requires linearised equations and constraints for 
arbitrary backgrounds 

Doable due to recent results but quite messy in 
practice



Perturbative approach & Conformal gravity

Equations are of the form

Gµ⌫(g) + Vµ⌫(g, f) = 0

Gµ⌫(f) + Ṽµ⌫(g, f) = 0

Perturbative ansätze, eg

Result in single higher derivative equation (infinite expansion)

⇤ gµ⌫ + aRµ⌫ + b gµ⌫R+O �
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�
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Perturbative approach & Conformal gravity

Single higher derivative equation (infinite expansion)

⇤ gµ⌫ + aRµ⌫ + b gµ⌫R+O �
R2

�
= 0



Perturbative approach & Conformal gravity

Single higher derivative equation (infinite expansion)

Bµ⌫ = 0

For the PM parameter values we get Weyl invariance to lowest order

gµ⌫ �! �gµ⌫ +O(R)

⇤ gµ⌫ + aRµ⌫ + b gµ⌫R+O �
R2

�
= 0



Perturbative approach & Conformal gravity

Single higher derivative equation (infinite expansion)

For the PM parameter values we get Weyl invariance to lowest order

gµ⌫ �! �gµ⌫ +O(R)

Bootstrapping within this formulation reveals symmetry up to 6th 
order

�gµ⌫ = �gµ⌫ +
a

2
(Pµ⌫�+rµ@⌫�) +O(R2, R3)

�fµ⌫ = �fµ⌫ +
a

2

⇣
P̃µ⌫�+ r̃µ@⌫�

⌘
+O(R̃2, R̃3)

Bµ⌫ = 0

⇤ gµ⌫ + aRµ⌫ + b gµ⌫R+O �
R2

�
= 0



Perturbative approach & Conformal gravity

Connection to conformal gravity at lowest 
order in derivatives 

Propagates 6 modes instead of 7 on 
Einstein spacetimes 

Perturbative gauge invariance up to at least 
6th order in derivatives
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The most direct approach

Perturbed equations for general backgrounds

�Eµ⌫ = �Gµ⌫ +m2�Vµ⌫ = 0

�Ẽµ⌫ = �G̃µ⌫ +
m2

↵2
�Ṽµ⌫ = 0

Construct generalised traces

And generalised divergences

 g
k ⌘[Sk]⌫⇢r⇢rµ�Eµ⌫

 f
k ⌘[Sk]⌫⇢r̃⇢r̃µ�Ẽµ⌫

 g
k ⌘ [Sk]⌫⇢f

⇢µ�Ẽµ⌫

�g
k ⌘ [Sk]⌫⇢g

⇢µ�Eµ⌫



Now build the most general linear combination

C ⌘
3X

k=0

⇣
ugk�

g
k + vgk 

g
k + ufk�

f
k + vfk 

f
k

⌘

and find scalar coefficients              such that{ug,f , vg,f}

C ⇠ 0

The most direct approach

Equal mod 
lower order 
derivatives



Now build the most general linear combination

C ⌘
3X

k=0

⇣
ugk�

g
k + vgk 

g
k + ufk�

f
k + vfk 

f
k

⌘

and find scalar coefficients              such that{ug,f , vg,f}

C ⇠ 0

C = 0

If this is possible the scalar constraint is given by

The most direct approach

If this vanishes identically we have a gauge symmetry



The most direct approach

Constraint only recently found 

Quite cumbersome expression to work with 

Not manifestly covariant in general

Why not checked earlier?



Less ambitious approach: Restricted 
background and MG limit

Focus on MG limit. Only one equation 

Consider simple model with        
Constraint is manifestly covariant 

Restricted class of backgrounds but more 
general then Einstein spacetimes

�3 = 0

To make headway:



Less ambitious approach: Restricted 
background and MG limit

The field equations we consider are

Rµ⌫ �
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2
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Less ambitious approach: Restricted 
background and MG limit

The field equations we consider are

Rµ⌫ �
1
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Covariant constraint
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Less ambitious approach: Restricted 
background and MG limit

Generally difficult due to derivative terms

C = m2�2
h⇣

A�� + Ã��
⌘
�g�� +B��

⇢ r⇢�g��
i



Less ambitious approach: Restricted 
background and MG limit

Generally difficult due to derivative terms

C = m2�2
h⇣

A�� + Ã��
⌘
�g�� +B��

⇢ r⇢�g��
i

But solvable for backgrounds with             r⇢Sµ⌫ = 0



Less ambitious approach: Restricted 
background and MG limit

Generally difficult due to derivative terms

C = m2�2
h⇣

A�� + Ã��
⌘
�g�� +B��

⇢ r⇢�g��
i

A�� = m2
h
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⇣
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�� � 2[S2]��
⌘
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⇣
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m�2Rµ
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�0 +

1

2
e1�1

◆
�µ⌫ + (�1 + �2e1)S

µ
⌫ � �2(S

2)µ⌫

Only need to solve two algebraic equations

Together with the condition           r⇢Sµ⌫ = 0



Ricci symmetric spacetimes

Spacetimes with a CCT are very restricted 

Here it also implies Ricci symmetric         

Restricted class of backgrounds but more 
general then Einstein spacetimes 

Heavily studied by differential geometers

r⇢Rµ⌫ = 0



Ricci symmetric spacetimes

Petrov classification of spacetimes 
due to properties of Weyl tensor 
and their possible degeneration. 
Type I is most general, all others 
algebraically special and type O has 
vanishing Weyl tensor

Only three possible spacetimes, with known metrics

Petrov type D: A 2x2 decomposable spacetime 

Petrov type N: Restricted PP wave 

Petrov type O: Includes Einstein static

Wµ⌫⇢� 6= 0 , Bµ⌫ 6= 0

Wµ⌫⇢� 6= 0 , Bµ⌫ = 0

Wµ⌫⇢� = 0 , Bµ⌫ = 0

Ricci symmetric spacetimes
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Linear PM symmetry for these 
backgrounds in massive gravity 
model 

Does not work for general 
backgrounds in massive gravity 

Also works for equations more 
general than massive gravity …
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Ricci symmetric spacetimes

Reverse engineering; constructive approach

Eµ⌫ ⌘ Gµ⌫ + ⇤gµ⌫ + Fµ⌫(g,R) = 0

(R2)µ⌫ = r1Rµ⌫ + r2gµ⌫

�Eµ⌫ = �Gµ⌫ + a1hµ⌫ + a2gµ⌫h+ b1
�
R ⇢

µ h⇢⌫ +R ⇢
⌫ h⇢µ

�

+b2gµ⌫R
⇢�h⇢� + b3Rµ⌫h+ b4Rµ⌫R

⇢�h⇢� + b5R
⇢
µ R �

⌫ h⇢�

Consider general equations of the form

For the Ricci symmetric spacetimes we have that

Result in linearised equations of the form



Ricci symmetric spacetimes

Reverse engineering; constructive approach

C ⌘ rµr⌫�Eµ⌫ + c1R
⌫
⇢r⇢rµ�Eµ⌫ + c2g

µ⌫�Eµ⌫ + c3R
µ⌫�Eµ⌫

�hµ⌫ =
�
rµr⌫ + c1R⇢(µr⇢r⌫) + c2gµ⌫ + c3Rµ⌫

�
⇠(x)

Write down most general linear constraint

Demand that

Linear gauge symmetry given by

C = 0

ci = ci(ai, bi)



Ricci symmetric spacetimes

Linear PM symmetry exist for Ricci symmetric 
spacetimes in massive gravity, not only Einstein 

But also for more general equations, which still 
propagate at most 5 dof 

In general many solutions within each class of 
Ricci symmetric spacetimes 

Unique solution which works for all of these classes



Outline of Talk

Introduction & Motivation 

Bimetric attempts 

Covariant constraint approach 

Summary & Outlook



Summary & Outlook

Bimetric theory is an extended theory of gravity 
motivated from first principles 

Interesting connections between different gravity 
theories 

Realises linear PM symmetry on Einstein 
backgrounds but also on Ricci symmetric 
backgrounds 

PM theory may provide framework for naturally 
small CC, protected by symmetries 

Promising indications of nonlinear realisation of 
PM, but also technical obstacles



Summary & Outlook

Is there a fully nonlinear PM theory? 

If so, is it the proposed bimetric model? 

Or possibly an extension of this model, 
including e.g. higher spin fields? 

What about consistent matter couplings of 
such a PM field?
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