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Quantum field theory in curved spacetime

The construction of the quantum theory of gravitation and the achievement of its unification with
the other fundamental interactions are not an easy task, principally, because of the following
conceptual and technical reasons:

while the other quantum fields propagate on spacetime, gravitation is spacetime geometry itself;

quantum theory of gravitation treated perturbatively with the methods of QFT is not renormalizable.

However, the low energy consequences of quantum gravity can be studied by considering its
semiclassical approximation defined in the following sense:

we treat classically the spacetime metric gµν,

we consider from a quantum point of view all the other fields including the graviton field to at least one-
loop order for reasons of consistency.

Such an approach is called QFT in curved spacetime. It allows physicists to discover, e.g.,

particle creation in expanding universes [Parker (1969)],

the black hole radiance [Hawking (1975)].
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Semiclassical Einstein equations and stress-energy-tensor operator T̂µν

In QFT in curved spacetime, it is conjectured that the backreaction of a quantum field in a nor-
malized quantum state |ψ〉 on the spacetime geometry is governed by the semiclassical Einstein
equations

Gµν = 8πG
c4 〈ψ|T̂µν|ψ〉.

Gµν is the Einstein tensor Rµν− 1
2 Rgµν+Λgµν or its some higher-order generalization,

〈ψ|T̂µν|ψ〉 denotes the expectation value of the SET operator T̂µν constructed from the quantum fields.

Here, it is important to discuss the quantity 〈ψ|T̂µν|ψ〉:
From the mathematical point of view, T̂µν is an operator-valued distribution.

〈ψ|T̂µν|ψ〉 is ill-defined and formally infinite due to the “pathological” short-distance behavior of the Green
functions associated with quantum fields.

It is necessary to extract from 〈ψ|T̂µν|ψ〉 a finite and physically acceptable contribution.

This can be done by regularizing it and then renormalizing all the coupling constants of the theory.

The corresponding quantity 〈ψ|T̂µν|ψ〉ren which denotes the renormalized expectation value is of funda-
mental importance because

it acts as the source in the semiclassical Einstein equations,

it permits us to analyze the quantum state |ψ〉 without any reference to its particle content.

*T̂µν is an operator quadratic in the quantum fields.
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Semiclassical Einstein equations and stress-energy-tensor operator T̂µν

In QFT in curved spacetime, it is conjectured that the backreaction of a quantum field in a nor-
malized quantum state |ψ〉 on the spacetime geometry is governed by the semiclassical Einstein
equations

Gµν = 8πG
c4 〈ψ|T̂µν|ψ〉.

Gµν is the Einstein tensor Rµν− 1
2 Rgµν+Λgµν or its some higher-order generalization,

〈ψ|T̂µν|ψ〉 denotes the expectation value of the SET operator T̂µν constructed from the quantum fields.

The semiclassical Einstein equations have been used

by Starobinsky (1980) to show that, after the Planck era, quantum effects lead to an inflationary
universe, i.e., a universe with an exponentially expanding de Sitter phase,

by several authors to analyze the dynamics of evaporating black holes due to Hawking radiation
[see, e.g., Bardeen (1981), Hiscock (1981), etc.],

to explain the acceleration of the expansion of the universe [see, e.g., Parker and Vanzella (2004),
Wang, Zhu and Unruh (2017)].
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Remarks relative to regularization and renormalization

Regularization and renormalization in curved spacetime are necessarily based on representa-
tions of Green functions in coordinate space.

Indeed, in an arbitrary gravitational background, the lack of symmetries as well as spacetime curvature
prevent us from working within the framework of the Fourier transform.

Currently, there exits various techniques of regularization and renormalization developed in the
context of QFT in curved spacetime, e.g.,

adiabatic regularization,

dimensional regularization,

ζ-function approach,

DeWitt-Schwinger approximation,

point-splitting method and its extension to the so-called Hadamard renormalization.

In the context of this presentation, we use Hadamard renormalization.
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Remarks relative to regularization and renormalization

In the context of Hadamard renormalization, we need

the concepts of biscalars, bivectors and, more generally, bitensors,

their covariant Taylor series expansions, e.g.,

∆1/2 = 1+ 1
12

Rabσ
;aσ;b − 1

24
Rab;cσ

;aσ;bσ;c +
[

1
80

Rab;cd + 1
360

Rp
aqbRq

cpd + 1
288

RabRcd

]
σ;aσ;bσ;cσ;d

−
[

1
360

Rab;cde +
1

360
Rp

aqbRq
cpd;e +

1
288

RabRcd;e

]
σ;aσ;bσ;cσ;dσ;e +O

(
σ3)

.

We also recall some definitions which are important in the context of this renormalization:

The geodetic interval σ(x,x′)= 1
2 s2(x,x′), where s(x,x′) is the geodesic distance between x and x′, satisfies

2σ=σ;µσ
;µ.

The Van Vleck-Morette determinant ∆(x,x′) =−√−g(x)det
[−σ;µν′ (x,x′)

]√
−g(x′), which can be interpreted

as a measure of the tidal focussing and defocussing of geodesic flows in spacetime, satisfies

�xσ= 4−2∆−1/2∆1/2
;µσ

;µ with the boundary condition lim
x′→x

∆(x,x′)= 1.

The bivector of parallel transport gµν′ (x,x′), e.g., of a bitensor along the geodesic s from x to x′, is defined
by

gµν′ ;ρσ
;ρ = 0 with the boundary condition lim

x′→x
gµν′ (x,x′)= gµν(x).

*We have σ(x,x′)< 0 if x and x′ are timelike related, σ(x,x′)= 0 if x and x′ are null related and σ(x,x′)> 0 if x and x′ are spacelike
related.
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Massive electromagnetism

The EM interaction is generally assumed to be mediated by a massless photon, which is mainly
justified by

the theoretical and practical successes of the classical Maxwell’s theory of EM and its extension in the
framework of QFT,

the upper limits on the photon mass m≤ 10−18 eV≈ 2×10−54 kg which is currently one of the most reliable
results evaluated by the various terrestrial and extraterrestrial experiments.

However, it is interesting to consider the possibility of a massive but ultralight photon.

The small value of the upper limit on m does not necessarily imply that the photon mass is exactly zero.

In order to test the masslessness of the photon, i.e., to impose experimental constraints on its mass, it is
necessary to have a good understanding of the various massive non-Maxwellian theories.

Massive EM can be rather easily included in the Standard Model of particle physics.

In the following, we discuss de Broglie-Proca massive EM and Stueckelberg massive EM.

*In general, it is the de Broglie-Proca theory that is used to impose experimental constraints on the photon mass.
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De Broglie-Proca massive electromagnetism

De Broglie-Proca massive EM is the simplest generalization of Maxwell’s EM.

This theory is described by a vector field Aµ of mass m.

Its action is given by

S
[
Aµ,gµν

]= ∫
M

d4x
p−g

[
− 1

4
FµνFµν− 1

2
m2AµAµ

]
.

Aµ satisfies the Proca equation

∇νFµν+m2Aµ = 0.

It is worth pointing out that, due to the mass term,

contrary to Maxwell’s theory which is invariant under the gauge transformation

Aµ →A′
µ =Aµ+∇µΛ

for an arbitrary scalar field Λ, this gauge invariance is broken for the de Broglie-Proca theory;

there are some important consequences when we compare, in the limit m2 → 0, the results obtained via
the de Broglie-Proca theory with those derived from Maxwell’s theory (e.g., discontinuities of the Green
functions, ...).
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Stueckelberg massive electromagnetism

Stueckelberg massive EM preserves the local U(1) gauge invariance of Maxwell’s EM.

This theory is constructed in such a way that a massive vector field Aµ is coupled appropriately with an
auxiliary scalar field Φ.

At the classical level, its action is given by

Scl
[
Aµ,Φ,gµν

]= ∫
M

d4x
p−g

[
− 1

4
FµνFµν− 1

2
m2

(
Aµ+ 1

m
∇µΦ

)(
Aµ+ 1

m
∇µΦ

)]
.

This action is invariant under the gauge transformation

Aµ →A′
µ =Aµ+∇µΛ,

Φ→Φ′ =Φ−mΛ

for an arbitrary scalar field Λ.

Aµ and Φ satisfy two coupled wave equations

∇νFµν+m2Aµ+m∇µΦ= 0,

�Φ+m∇µAµ = 0.

The Stueckelberg action can be constructed from the de Broglie-Proca action by using the sub-
stitution

Aµ →Aµ+ 1
m

∇µΦ.
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Some remarks relative to both theories

It is worth noting that

the de Broglie-Proca EM can be obtained from Stueckelberg EM by taking

Φ= 0;

therefore, the de Broglie-Proca theory is nothing other than the Stueckelberg gauge theory in this particular
gauge;

however, this is a “bad” choice of gauge leading to some complications;

indeed, in this gauge, we obtain

∇µAµ = 0.

Due to this constraint, at the quantum level, the Feynman propagator does not admit a Hadamard repre-
sentation and, as a consequence, in the de Broglie-Proca theory, we cannot deal directly with Hadamard
quantum states (i.e., of states mimicking in the UV regime the behavior of the Poincaré vacuum in
Minkowski spacetime).

In order to treat these theories at the quantum level,

the action S of the de Broglie-Proca theory is directly relevant,

while it is necessary to add to the action SCl of the Stueckelberg theory a gauge-breaking term SGB and
the compensating ghost contribution SGh.
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Stueckelberg massive electromagnetism

The quantum action S of Stueckelberg massive EM is given by

S
[
Aµ,Φ,C,C∗,gµν

]=SA
[
Aµ,gµν

]+SΦ
[
Φ,gµν

]+SGh
[
C,C∗,gµν

]
with

SA
[
Aµ,gµν

]= ∫
M

d4x
p−g

[
− 1

4
FµνFµν− 1

2
m2AµAµ− 1

2
(∇µAµ

)2]
,

SΦ
[
Φ,gµν

]= ∫
M

d4x
p−g

[
− 1

2
∇µΦ∇µΦ− 1

2
m2Φ2

]
,

SGh
[
C,C∗,gµν

]= ∫
M

d4x
p−g

[
∇µC∗∇µC+m2 C∗C

]
.

The wave equations are given by

1p−g
δS
δAµ

=
[
gµν�−m2gµν−Rµν

]
Aν = 0 for the massive vector field Aµ,

1p−g
δS
δΦ

=
[
�−m2

]
Φ= 0 for the auxiliary scalar field Φ,

1p−g
δLS
δC∗ =−

[
�−m2

]
C= 0 and 1p−g

δRS
δC

=−
[
�−m2

]
C∗ = 0 for the ghost fields C and C∗.

Stueckelberg EM in dS and AdS spacetimes: Two-point functions and renormalized SETs SW11 May 2017 15 / 36



Introduction Massive electromagnetism Stueckelberg electromagnetism Renormalized stress-energy tensor Applications: dS and AdS Conclusion

Hadamard Green functions G(1) and Ward identities

From now on, we shall assume that the Stueckelberg field theory has been quantized and is in a
normalized quantum state |ψ〉.

In the context of the regularization of the expectation value 〈ψ|T̂µν|ψ〉, we use the Hadamard
Green functions G(1) defined by

G(1)A
µν′ (x,x′)= 〈ψ|{Aµ(x),Aν′ (x′)

}|ψ〉 that is a solution of the wave equation[
g ν
µ �x −R ν

µ −m2g ν
µ

]
G(1)A
νρ′ (x,x′)= 0,

G(1)Φ(x,x′)= 〈ψ|{Φ(x),Φ(x′)
}|ψ〉 that is a solution of the wave equation[

�x −m2
]

G(1)Φ(x,x′)= 0,

G(1)Gh(x,x′)= 〈ψ|[C∗(x),C(x′)
]|ψ〉 that is a solution of the wave equation[

�x −m2
]

G(1)Gh(x,x′)= 0.

These three two-point functions are related by two Ward identities given by

∇µG(1)A
µν′ (x,x′)+∇ν′G(1)Gh(x,x′)= 0

and

G(1)Φ(x,x′)−G(1)Gh(x,x′)= 0 ⇒ G(1)(x,x′)≡G(1)Φ(x,x′)=G(1)Gh(x,x′).
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Hadamard representation of the Green function G(1) associated with the scalar field or the ghost fields

We now assume that the quantum state |ψ〉 is of Hadamard type.

The Hadamard form of G(1) for the scalar field Φ or the ghost fields:

G(1)(x,x′)= 1
4π2

(
∆1/2(x,x′)
σ(x,x′) +V(x,x′) ln |σ(x,x′)|+W(x,x′)

)
.

V(x,x′) is a symmetric and regular biscalar defined

by the series expansions V(x,x′)=
+∞∑
n=0

Vn(x,x′)σn(x,x′),

by the recursion relations satisfied by the geometrical Hadamard coefficients Vn(x,x′)
(all these coefficients can be determined uniquely by the recursion relations).

W(x,x′) is a symmetric and regular biscalar defined

by the series expansions W(x,x′)=
+∞∑
n=0

Wn(x,x′)σn(x,x′),

by the recursion relations satisfied by the state-dependent Hadamard coefficients Wn(x,x′)
(the first coefficient W0(x,x′) is unrestrained by the recursion relations and, therefore, can be used to
encode the quantum state).
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Hadamard representation of the Green function G(1) associated with the scalar field or the ghost fields

We now assume that the quantum state |ψ〉 is of Hadamard type.

The Hadamard form of G(1) for the scalar field Φ or the ghost fields:

G(1)(x,x′)= 1
4π2

(
∆1/2(x,x′)
σ(x,x′) +V(x,x′) ln |σ(x,x′)|+W(x,x′)

)
.

The Hadamard representation of G(1) permits us to straightforwardly identify their singular and regular
parts when the coincidence limit x′ → x is considered.

A purely geometrical singular part takes the form

G(1)
sing(x,x′)= 1

4π2

(
∆1/2(x,x′)
σ(x,x′) +V(x,x′) ln |σ(x,x′)|

)
.

A regular state-dependent part is given by

G(1)
reg(x,x′)=G(1)(x,x′)−G(1)

sing(x,x′)= 1
4π2 W(x,x′).
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Hadamard representation of the Green function G(1) associated with the vector field

We now assume that the quantum state |ψ〉 is of Hadamard type.

The Hadamard form of G(1) for the vector field Aµ:

G(1)A
µν′ (x,x′)= 1

4π2

(
∆1/2(x,x′)
σ(x,x′) gµν′ (x,x′)+Vµν′ (x,x′) ln |σ(x,x′)|+Wµν′ (x,x′)

)
.

Vµν′ (x,x′) is a symmetric and regular bivector defined

by the series expansions Vµν′ (x,x′)=
+∞∑
n=0

Vnµν′ (x,x′)σn(x,x′),

by the recursion relations satisfied by the geometrical Hadamard coefficients Vnµν′ (x,x′)

(all these coefficients can be determined uniquely by the recursion relations).

Wµν′ (x,x′) is a symmetric and regular bivector defined

by the series expansions Wµν′ (x,x′)=
+∞∑
n=0

Wnµν′ (x,x′)σn(x,x′),

by the recursion relations satisfied by the state-dependent Hadamard coefficients Wnµν′ (x,x′)

(the first coefficient W0µν′ (x,x′) is unrestrained by the recursion relations and, therefore, can be used
to encode the quantum state).
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Hadamard representation of the Green function G(1) associated with the vector field

We now assume that the quantum state |ψ〉 is of Hadamard type.

The Hadamard form of G(1) for the vector field Aµ:

G(1)A
µν′ (x,x′)= 1

4π2

(
∆1/2(x,x′)
σ(x,x′) gµν′ (x,x′)+Vµν′ (x,x′) ln |σ(x,x′)|+Wµν′ (x,x′)

)
.

The Hadamard representation of G(1) permits us to straightforwardly identify their singular and regular
parts when the coincidence limit x′ → x is considered.

A purely geometrical singular part takes the form

G(1)A
singµν′ (x,x′)= 1

4π2

(
∆1/2(x,x′)
σ(x,x′) gµν′ (x,x′)+Vµν′ (x,x′) ln |σ(x,x′)|

)
.

A regular state-dependent part is given by

G(1)A
reg µν′ (x,x′)=G(1)A

µν′ (x,x′)−G(1)A
singµν′ (x,x′)= 1

4π2 Wµν′ (x,x′).
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Geometrical Hadamard coefficients and their covariant Taylor series expansions

The geometrical Hadamard coefficients Vn(x,x′) and Vnµν′ (x,x′) can be determined explicitly from
the associated recursion relations up to necessary order by taking their covariant Taylor series
expansions.

The expansions of the symmetric biscalar coefficients V0(x,x′) and V1(x,x′) are given by

V0 = v0 −
{
(1/2)v0;a

}
σ;a + 1

2!
v0abσ

;aσ;b +O
(
σ3/2)

and

V1 = v1 +O
(
σ1/2)

.

The expansions of the symmetric bivector coefficients V0µν′ (x,x′) and V1µν′ (x,x′) are given by

V0µν = g ν′
ν V0µν′ = v0(µν) −

{
(1/2)v0(µν);a +v0[µν]a

}
σ;a + 1

2!

{
v0(µν)ab +v0[µν]a ;b

}
σ;aσ;b +O

(
σ3/2)

and

V1µν = g ν′
ν V1µν′ = v1(µν) +O

(
σ1/2)

.

The Taylor coefficients vn ... appearing in these series expansions are expressed in term of the Riemann
tensor and its covariant derivatives, e.g., we have

v1(µν) = (1/4)m2 Rµν− (1/24)�Rµν− (1/24)RRµν+ (1/8)Rµp R p
ν − (1/48)Rµpqr R pqr

ν

+gµν
{
(1/8)m4 − (1/24)m2 R+ (1/120)�R+ (1/288)R2 − (1/720)Rpq Rpq + (1/720)Rpqrs Rpqrs

}
.
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State-dependent Hadamard coefficients and their covariant Taylor series expansions

Unlike the geometrical Hadamard coefficients, the state-dependent Hadamard coefficients Wn(x,x′)
and Wnµν′ (x,x′) are neither uniquely defined nor purely geometrical.

Instead of working with the state-dependent Hadamard coefficients, we shall use the covariant
Taylor series expansions of the sums W(x,x′) and Wµν′ (x,x′) up to order σ3/2.

The expansions of the symmetric biscalar W(x,x′) and the symmetric bivector Wµν′ (x,x′) are given by

W =w−{
(1/2)w;a

}
σ;a + 1

2!
wabσ

;aσ;b − 1
3!

{
(3/2)wab ;c − (1/4)w;abc

}
σ;aσ;bσ;c +O

(
σ2)

,

Wµν = g ν′
ν Wµν′ = sµν−

{
(1/2)sµν ;a +aµνa

}
σ;a + 1

2!

{
sµνab +aµνa ;b

}
σ;aσ;b

− 1
3!

{
(3/2)sµνab ;c − (1/4)sµν ;abc +aµνabc

}
σ;aσ;bσ;c +O

(
σ2)

.

With practical applications in mind, it is interesting to express some of the Taylor coefficients in term of
the bitensors W(x,x′) and Wµν′ (x,x′) by inverting the associated Taylor expansions.

w(x)= lim
x′→x

W(x,x′),

wab(x)= lim
x′→x

W;(a′b′)(x,x′)
and

sµν(x)= lim
x′→x

Wµν′ (x,x′),

aµνa(x)= 1
2

lim
x′→x

[
Wµν′ ;a′ (x,x′)−Wµν′ ;a(x,x′)

]
,

sµνab(x)= 1
2

lim
x′→x

[
Wµν′ ;(a′b′)(x,x′)+Wµν′ ;(ab)(x,x′)

]
.

*We adopt the following notations for sµνa1 ···ap ≡w(µν)a1 ···ap and aµνa1 ···ap ≡w[µν]a1 ···ap .
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Stress-energy tensor

The SET associated with the quantum action S of the Stueckelberg theory is defined by

Tµν = 2p−g
δ

δgµν
S

[
Aµ,Φ,C,C∗,gµν

]
.

Its explicit expression is given by

Tµν =Tµν

A +Tµν
Φ

+Tµν

Gh,

where three field contributions take the forms

Tµν

A =FµρFνρ +m2AµAν−2A(µ∇ν)∇ρAρ − (1/4)gµν
{
FρτFρτ+2m2AρAρ −4Aρ∇ρ∇τAτ−2

(∇ρAρ
)2}

,

Tµν
Φ

=∇µΦ∇νΦ− (1/2)gµν
{
∇ρΦ∇ρΦ+m2Φ2

}
,

Tµν

Gh =−2∇(µ|C∗∇|ν)C+gµν
{
∇ρC∗∇ρC+m2C∗C

}
.

By construction, the SET is conserved, i.e., ∇νTµν = 0.
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Expectation value of the stress-energy-tensor operator

It is necessary to recall that, at the quantum level,

all fields as well as the associated SET are operators: we denote by T̂µν the SET operator,

its expectation value with respect to the Hadamard quantum state |ψ〉 is denoted by 〈ψ|T̂µν|ψ〉.

The expectation value 〈ψ|T̂µν|ψ〉 can be constructed by using point-splitting method.

〈ψ|T̂µν|ψ〉 corresponding to the expression Tµν becomes

〈ψ|T̂µν|ψ〉 = 〈ψ|T̂A
µν|ψ〉+〈ψ|T̂Φµν|ψ〉+〈ψ|T̂Gh

µν |ψ〉,
where the three contributions are given by

〈ψ|T̂A
µν(x)|ψ〉 = 1

2
lim

x′→x
T A
µν

ρσ′ (x,x′)
[
G(1)A
ρσ′ (x,x′)

]
,

〈ψ|T̂Φµν(x)|ψ〉 = 1
2

lim
x′→x

T Φ
µν(x,x′)

[
G(1)Φ(x,x′)

]
,

〈ψ|T̂Gh
µν (x)|ψ〉 = 1

2
lim

x′→x
T Gh
µν (x,x′)

[
G(1)Gh(x,x′)

]
.

Here, T A
µν

ρσ′ , T Φ
µν and T Gh

µν are the differential operators constructed by point splitting from the formal
expressions Tµν

A , Tµν
φ

and Tµν

Gh.

〈ψ|T̂µν|ψ〉 is divergent due to the singular short-distance behavior of the Green functions.
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Renormalized expectation value of the stress-energy-tensor operator

The renormalized expectation value 〈ψ|T̂µν|ψ〉ren can be constructed by using Hadamard renor-
malization, which consists of using the prescription proposed by Wald, i.e.,

to discard the singular contributions, i.e., to make the replacements G(1) →G(1)
reg = 1

4π2 W,

to add to the result a state-independent tensor Θ̃µν which
only depends on the mass parameter and on the local geometry,

ensures the conservation of the final expression.

〈ψ|T̂µν|ψ〉ren takes the form:

〈ψ|T̂µν|ψ〉ren = 1
8π2 lim

x′→x
T A
µν

ρσ′ (x,x′)
[
WA
ρσ′ (x,x′)

]
+ 1

8π2 lim
x′→x

T Φ
µν(x,x′)

[
WΦ(x,x′)

]
+ 1

8π2 lim
x′→x

T Gh
µν (x,x′)

[
WGh(x,x′)

]
+ Θ̃µν.

Its explicit expression

is obtained by expanding the Hadamard coefficients in covariant Taylor series,

is simplified by using some relations between the Taylor coefficients involved.
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Final expression of the renormalized stress-energy tensor

The main expression which only involves state-dependent and geometrical quantities associated
with the massive vector field Aµ is given by

〈ψ|T̂µν|ψ〉ren = 1
8π2

{
(1/2)s ρ

ρ ;µν+ (1/2)�sµν−s ρ

ρ(µ;ν) + (1/2)Rρ

(µsν)ρ − (1/2)a ρ

µ (ν;ρ) − (1/2)a ρ

ν (µ;ρ)

−a ρ

µ [ν;ρ] −a ρ

ν [µ;ρ] −s ρ
ρ µν+s ρ

ρ(µν) − (1/2)gµν
[
(1/2)�s ρ

ρ − (1/2)s ;ρτ
ρτ −a ρ;τ

ρτ

]
+v1µν−gµνv1

ρ
ρ

}
+Θµν.

Here, by using the Ward identities, any reference to the auxiliary scalar field Φ has be removed.

This result does not reduce, in the limit m2 → 0, to the result obtained from Maxwell’s theory because it
involves implicitly the contribution of the auxiliary scalar field Φ.

It should be recalled that we have

w(x)= lim
x′→x

W(x,x′),

wab(x)= lim
x′→x

W;(a′b′)(x,x′)
and

sµν(x)= lim
x′→x

Wµν′ (x,x′),

aµνa(x)= 1
2

lim
x′→x

[
Wµν′ ;a′ (x,x′)−Wµν′ ;a(x,x′)

]
,

sµνab(x)= 1
2

lim
x′→x

[
Wµν′ ;(a′b′)(x,x′)+Wµν′ ;(ab)(x,x′)

]
.

*In some sense, the auxiliary scalar field Φ plays the role of a kind of ghost field.
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Final expression of the renormalized stress-energy tensor

The main expression which only involves state-dependent and geometrical quantities associated
with the massive vector field Aµ is given by

〈ψ|T̂µν|ψ〉ren = 1
8π2

{
(1/2)s ρ

ρ ;µν+ (1/2)�sµν−s ρ

ρ(µ;ν) + (1/2)Rρ

(µsν)ρ − (1/2)a ρ

µ (ν;ρ) − (1/2)a ρ

ν (µ;ρ)

−a ρ

µ [ν;ρ] −a ρ

ν [µ;ρ] −s ρ
ρ µν+s ρ

ρ(µν) − (1/2)gµν
[
(1/2)�s ρ

ρ − (1/2)s ;ρτ
ρτ −a ρ;τ

ρτ

]
+v1µν−gµνv1

ρ
ρ

}
+Θµν.

Here, by using the Ward identities, any reference to the auxiliary scalar field Φ has be removed.

This result does not reduce, in the limit m2 → 0, to the result obtained from Maxwell’s theory because it
involves implicitly the contribution of the auxiliary scalar field Φ.

In this result, Θµν is a local conserved tensor which can be expressed in the form

Θµν = 1
8π2

{
αm4gµν+βm2 [

Rµν− (1/2)Rgµν
]+γ1

(1)Hµν+γ2
(2)Hµν

}
,

where the constants α, β, γ1 and γ2 can be fixed by imposing additional physical conditions on
〈ψ|T̂µν|ψ〉ren.

Θµν represent the general form of the ambiguities in 〈ψ|T̂µν|ψ〉ren.

It includes a term Θµν(M) associated with the renormalization mass M which is introduced in order to
make dimensionless the argument of the logarithm in the Hadamard representation of the Green functions,
i.e., ln

∣∣M2σ(x,x′)
∣∣.

*In some sense, the auxiliary scalar field Φ plays the role of a kind of ghost field.
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Final expression of the renormalized stress-energy tensor

It is possible to split 〈ψ|T̂µν|ψ〉ren in the form

〈ψ|T̂µν|ψ〉ren = 〈ψ|T̂A
µν|ψ〉ren +〈ψ|T̂Φµν|ψ〉ren,

where two conserved contributions associated with the vector and scalar fields are given by

〈ψ|T̂A
µν|ψ〉ren = 1

8π2

{
(1/2)s ρ

ρ ;µν+ (1/2)�sµν−s ρ

ρ(µ;ν) −a ρ

µ [ν;ρ] −a ρ

ν [µ;ρ] −s ρ
ρ µν+2s ρ

ρ(µν)

− (1/2)gµν
[
(1/2)�s ρ

ρ −2a ρ;τ
ρτ

]
+2vA

1 µν−gµνvA
1

ρ
ρ

}
+ΘA

µν,

〈ψ|T̂Φµν|ψ〉ren = 1
8π2

{
(1/2)w;µν−wµν− (1/4)gµν�w−gµνv1

}
+ΘΦµν.

Here, in the limit m2 → 0 and by assuming that m2w → 0, the term 〈ψ|T̂A
µν|ψ〉ren reduces to the result

obtained from Maxwell’s theory and, therefore, we recover the associated trace anomaly given by

〈ψ|T̂A ρ
ρ |ψ〉ren = 1

8π2

{
2v1

ρ
ρ −4v1

}
= 1

8π2

{
−(1/20)�R− (5/72)R2 + (11/45)Rpq Rpq − (13/360)Rpqrs Rpqrs

}
.

However, this is an artificial way to split the contributions of the vector and scalar fields.
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General considerations

Here, we shall provide the exact analytical expression for 〈0|T̂µν|0〉ren associated with the massive
vector field propagating in

the four-dimensional de Sitter spacetime (dS4),

the four-dimensional anti-de Sitter spacetime (AdS4).

Such results do not exist in the literature due to the fact that the two-point functions are in
general constructed in the framework of the de Broglie-Proca theory.

These results could have interesting implications in cosmology of the very early Universe or in
the context of the AdS/CFT correspondence.

dS4 and AdS4:

These spacetimes are locally characterized by the relations

Rµνρτ = (R/12)
(
gµρgντ−gµτgνρ

)
, Rµν = (R/4)gµν and R=

{
+12H2 for dS4,
−12K2 for AdS4,

where H and K are two positive constants of dimension (length)−1,

They can be realized as the four-dimensional hyperboloids

ηabXaXb = 12/R

embedded in the flat five-dimensional space R5 equipped with the metric ηab = diag(−1,+1,+1,+1,+1) for
dS4 and ηab = diag(−1,−1,+1,+1,+1) for AdS4.
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General considerations

dS4 and AdS4:

Instead of working with the geodetic interval σ(x,x′), it is advan-
tageous to consider

z(x,x′)= 1
2

[
1+ (R/12)ηabXa(x)Xb(x′)

]
= cos2

√
(R/24)σ(x,x′).

With respect to the antipodal transformation P which sends the
point x with coordinates Xa(x) on the hyperboloid to its antipo-
dal point Px with coordinates Xa(Px)=−Xa(x), we have

z(x,Px′)= 1−z(x,x′).

In order to construct the two-point functions of Stueckelberg EM,

we assuming that the vacuum |0〉 is a maximally symmetric
quantum state;

we solve the wave equations by taking into account, as con-
straints, two Ward identities;

we then fix the remaining integration constants by imposing:

(i) Hadamard-type singularities at short distance,

(ii) in dS4, the regularity of the solutions at Px,

(iii) in AdS4, that the solutions fall off as fast as possible at spa-
tial infinity.

ℐ+

ℐ-

x PxPx

(z=∞)

(z=∞)

z>1

z>1

z<0

z<0

z<0

z<0

z=0

z=0

z=0

z=0

z=1

z=1

z=1

z=1

0<z<10<z<1

Figure: Carter-Penrose diagram of dS4
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x

Px

Px

(z=∞)(z=∞)
z>1z>1

z<0

z<0

z<0

z<0

z=0

z=0

z=0

z=0

z=1

z=1

z=1

z=1

0<z<1

0<z<1

Figure: Carter-Penrose diagram of AdS4
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Renormalized stress-energy tensor in dS

The Hadamard Green function associated with the massive vector field propagating in dS4 is given in term of
the real part of the hypergeometric function F(a,b;c;z) on the branch cut denoted by (ReF)(a,b;c;z):

G(1)A
µν′ (x,x′)= R

192π

[
9/4−λ2

cos(πλ)
z(1−z) (ReF)′(5/2+λ,5/2−λ;3;z)+ 3

2
(9/4−λ2)
cos(πλ)

(1−2z) (ReF)(5/2+λ,5/2−λ;3;z)

− 1
2

(1/4−κ2)
cos(πκ)

(ReF)(5/2+κ,5/2−κ;3;z)
]

g
µν′

+ 1
16π

[
9/4−λ2

cos(πλ)
(ReF)′(5/2+λ,5/2−λ;3;z)+3

(9/4−λ2)
cos(πλ)

(1/z) (ReF)(5/2+λ,5/2−λ;3;z)

− 1/4−κ2

cos(πκ)
(ReF)′(5/2+κ,5/2−κ;3;z)− 1/4−κ2

cos(πκ)
(1/z) (ReF)(5/2+κ,5/2−κ;3;z)

]
z;µz;ν′

with λ=
√

1/4−12m2/R and κ=
√

9/4−12m2/R.

The renormalized SET with respect to a vacuum |0〉 of Hadamard type is given by

〈0|T̂µν|0〉ren dS4 = 1
32π2

{
(β+17/24)m2R+ (19/1440)R2

−[
(3/2)m4 + (1/4)m2R

][
ln(R/(12m2))+Ψ(5/2+λ)+Ψ(5/2−λ)

]}
gµν.

In this expression, we have introduced the Digamma function Ψ(z)= (d/dz) lnΓ(z).

This result is not free of ambiguities due to the arbitrary coefficient β remaining in the expression. How-
ever, we can cancel the corresponding term by a finite renormalization of the Einstein-Hilbert action of the
gravitational field.
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Renormalized stress-energy tensor in AdS

The Hadamard Green function associated with the massive vector field propagating in AdS4 is given in
term of the real and imaginary parts of the hypergeometric function F(a,b;c;z) on the branch cut denoted
by (ReF)(a,b;c;z) and (ImF)(a,b;c;z):

G(1)A
µν′ (x,x′)= R

192π

{
9/4−λ2

cos(πλ)
z(1−z)

[
(ReF)′(5/2+λ,5/2−λ;3;z)+sin(πλ)(ReF)′(5/2+λ,5/2−λ;3;1−z)

−cos(πλ)(ImF)′(5/2+λ,5/2−λ;3;1−z)
]
+ 3

2
(9/4−λ2)
cos(πλ)

(1−2z)
[

. . .
]
− 1

2
(1/4−κ2)
cos(πκ)

[
. . .

]}
g
µν′

+ 1
16π

{
9/4−λ2

cos(πλ)

[
(ReF)′(5/2+λ,5/2−λ;3;z)+sin(πλ)(ReF)′(5/2+λ,5/2−λ;3;1−z)

−cos(πλ)(ImF)′(5/2+λ,5/2−λ;3;1−z)
]
+3

(9/4−λ2)
cos(πλ)

(1/z)
[

. . .
]
− 1/4−κ2

cos(πκ)

[
. . .

]
− 1/4−κ2

cos(πκ)
(1/z)

[
. . .

]}
z;µz;ν′

with λ=
√

1/4−12m2/R and κ=
√

9/4−12m2/R.

The renormalized SET with respect to a vacuum |0〉 of Hadamard type is given by

〈0|T̂µν|0〉ren AdS4 = 1
32π2

{
(β+5/24)m2R− (11/1440)R2

−[
(3/2)m4 + (1/4)m2R

][
ln(−R/(12m2))+2Ψ(1/2+λ)

]}
gµν.

In this expression, we have introduced the Digamma function Ψ(z)= (d/dz) lnΓ(z).

This result is not free of ambiguities due to the arbitrary coefficient β remaining in the expression. How-
ever, we can cancel the corresponding term by a finite renormalization of the Einstein-Hilbert action of the
gravitational field.
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Conclusion

We have presented Stueckelberg massive EM on an arbitrary curved spacetime*.

We have given two alternative but equivalent expressions for the renormalized expectation value
of the SET operator constructed using Hadamard renormalization.

We have also presented the results concerning the renormalized SET of the massive vector field
propagating in dS and AdS spacetimes*.

It is necessary to point out that

(i) de Broglie-Proca and Stueckelberg approaches of massive EM are two faces of the same theory,

(ii) however, we can note that, with regularization and renormalization in mind, it is much more
interesting to work in the framework of the Stueckelberg formulation of massive EM which
permits us to use the Hadamard formalism.

One of our perspectives is the application of the general formalism developed to cosmological
problems and, in particular, the study of Stueckelberg massive EM in FLRW spacetimes.
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