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Introduction

Introduction

@ In the context of Einstein’s general relativity, the construction of the waveform produced by a plunging particle
is of fundamental importance because :

i The “plunge regime” is the last phase of the evolution of a stellar mass object orbiting near a supermassive BH.

ii The waveform generated during this regime encodes the final BH fingerprint.

@ With in mind the possibility to test massive gravity in the context of BH physics :

i We consider the radiation produced by a particle plunging from slightly below the innermost stable circular orbit (ISCO) into
a Schwarzschild BH.

ii In order to circumvent the difficulties associated with BH perturbation theory in massive gravity, we use, at first, a toy model
where we replace the graviton field by a massive scalar field and consider a linear coupling between the particle and this
field.

iii We compute the waveform generated by the plunging particle and study its spectral content. We highlight some important
effects which are not present for massless fields.

iv. We compute the waveform generated by the plunging particle for the odd-parity £ = 1 mode in massive gravity.

@ Throughout this presentation :
i We display our numerical results by using the dimensionless coupling constant
2M

2
Mp

a=

(here M, u and mp denote respectively the mass of BH, the rest mass of the field and the Planck mass).

ii We adopt natural units (h=c=G=1).




Our model
[

Our model

@ We consider the exterior of the Schwarzschild BH of mass M (.#,g,p) defined by the metric
2M\ ¢ 1 .
ds? = gy W)datda¥ = — (1 - —)dtl + ———dr? +r2do3, @
R

where da% =d6? +sin2 Gd(pz denotes the metric on the unit 2 - sphere 2.

@ The particle is coupled to a scalar field ¢ with mass p and the dynamics of the system field-particle is defined
by the action :

S =Sfeld +Sparticle +Sinteraction (3

with
Steld == [ dhxy/=g@ x [¢P V@IV 0 + 12 0%w) @

ﬁeld*z‘ﬂx 8(x) x |87 (X)Va Px)V gDlx) + x)|,
dz®(1) dzP(M)

Sparticle = *ﬂmfydr: *rnofy \/fga/s(zm)) A di (5)

and
Sinteraction = f,,ﬂ d4x\/ —g(x) p(x) D(x) (6)

with
p(x):qf d1754(x,z(1)) charge density. @)

Y

here, m( mass of the particle, g its scalar charge and z% = 2%(1) describe its world line y(1).
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Waveforms emitted by the particle. ..

Waveform associated with the (¢/,m) mode

@ Due to both the staticity and the spherical symmetry of the Schwarzschild background, the wave equation
reduces to the Regge-Wheeler equation with source

d? oM
=0 V()| Poem = (1 - —) Pwtm- ®)

2
drs

with the effective potential V,(r) given by

2M\[ o C(l+1) 2M
() =[1-== .
V() ( . ) [,u + o) + 3 9
and the tortoise coordinate r«(r) is given by
r«(r)=r+2MIn[r/2M -1]. (10)

> For r — 2M (black hole horizon), r4(r) — —

> For r — +oo (spatial infinity), 7+ (r) — +oo

@ In order to solve the Regge-Wheeler equation, we use the machinery of Green’s function. We can show that
the solution of Eq 8 is given by

+oo+lc

wt
w,n(t,r)f—\F [ W(w) ()f dr' B VP m 7). an

@ Here, and ([) are linearly independent solutions of the homogenous Regge-Wheeler equation with the

usual appropnate {)oundary conditions at the horizon and spatial infinity and W,(w) denotes their Wronskian.




forms emitted by the particle. ..

Source due to the particle on a plunge trajectory

> We consider a particle plunging into the BH from rigcg =
6M (Innermost Stable Circular Orbit).

> The plunge trajectory lies in the equatorial plane (0 = 7/2)

is given by
tp(r) 2V2(r - 24M) -1 1/2
= T _22V2tan" }|(6M/r-1)
2M 2M (6M/r - 1)1/2 [
+2tanh™[(3M/r - 1/2)1/2] +o 12)
and
2V3r
(r)=————7%+ (13)
(T VTR

which can be rewritten

6M

A FEE T

(14) 255° 70 285°

FIGURE 1 — The plunge trajectory. Here, we assume that the
particle starts at 7 = rygo (1 —€) with rpgc = 6M and

e=2x10"2,
> We have for the source of the plunging particle

3qF iwtp () —mep )]
var  (6M-r)32

Potm(r)= Y5 (550)- (15)
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Quadrupolar waveforms produced by the plunging particle
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FIGURE 2 — Quadrupolar waveforms produced by the plunging particle.The results are obtained for massless scalar field (& = 0 ) and for massive scalar field
(@ =0.25,0.35). The observer is located at (a) = 10M, (b) r = 20M et (c) r = 50M.

@ For the massless scalar field (@ = 0), the waveforms
can be decomposed in 3 phases :

> Such a decomposition remains roughly valid for
> Adiabatic phase low masses P gy

@ For the massive scalar field(a #0) :

> A ringdown phase
> A late-time tail

@ For a given distance r, the waveform amplitude de-
creases as the mass increases.




The adiabatic phase and the circular motion of the particle on the ISCO

@ Particle in circular orbit on the ISCO :
> The trajectory is given by

#pt)=Qsc0¢t ol QISCO=W::O.1361.

> The source is given by

Vg
6M

> and the waveform in (¢,m) mode is given by

Pwem (M=

up i
Gt Dy 6M) .
wA([)(w)

Dpmtr)=— )

—iwt

x8r—6M)S(w-mOIsCO)Y gy ( 5:0):

w=mQIsco
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FIGURE 3 — Comparaison of the quadrupolar waveform produced
by the plunging particle (blue line) and by a particle orbiting the
BH on the ISCO (red dashed line). The results are obtained for a
massive scalar field (@& = 0.25).

@ The adiabatic phase is described very accurately by the waveform emitted by a particle living on the ISCO.

@ The study of the particle orbiting the BH on the ISCO, permits us to define two regimes :

> The dispersive regime.
> The evanescent regime.

@ These two regimes are separated by the threshold value @, corresponding to the mass parameter

fe=2Q1500 ~0.2722.

where Qjgco denotes the angular velocity of the particle moving on the ISCO.




The adiabatic phase and the excitation of QBSs
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FIGURE 4 — Spectral content of the adiabatic phase of the quadrupolar waveform produced by the plunging particle. The results are obtained for a massive
scalar field (@ = 0.25 et 0.35) and the observer is located at (a) 7 = 20M et (b) r = 50M.

@ We observe the signature of the quasi-circular motion of the plunging particle.

@ In the evanescent regime :
> We can observe the signature of the quasi-circular motion.

> Itisimportant to remark the presence of another peak at the frequency equals to the real part of the complex
frequency of the first QBS. In other term we can observe the excitation of the first QBS in adiabatic.




The ringdown phase and the excitation of QNMs
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FIGURE 5 — Comparaison of the quadrupolar waveform produced by the plunging particle (blue line) and the quadrupolar quasinormal waveform (red dashed
line). The results are obtained for an observer at (left) 10M and (right) 50M.

@ When @ and the distance r are not too large, the quasinormal waveform describes accurately the ringdown

phase.
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@ However, if @ or the distance r increase, the agreement is not so good.
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FIGURE 6 — Spectral content of the late-time phase of the quadrupolar waveform produced by the plunging particle. The results are obtained for a massive
scalar field (@ = 0.25 and 0.35) and the observer is located at (a) 7 = 20M and (b) 7 = 50M.

@ We observe the signature of the long-lived QBS.

@ We note that, as the reduced mass parameter @ increases, the spectrum of the frequencies of the QBSs spreads
more and more and it is the possible to separate the different excitation frequencies.




veforms in ma

Waveforms in massive gravity

@ Our study will be limited to the Fierz-Pauli theory in the Schwarzschild spacetime which can be obtained by
linearization of the “ghost-free bimetric” theory. The gravitational wave equation (The linearized Fierz-Pauli
equation) is given by

1 1
Oryy +2Rpupvoh?’ —yZhI-W =-16x (‘[#V - ggva o 3 =3 V”VVT (16)
16.
Vihyy =-Vy [3 ”r”p) an
2
16
h=- 3—” T. as)
12
@ The field hyy(t,r,0,¢) describing the gravitational It It
waves propagating in the Schwarzschild spacetime can 0 0 hMX™ R XS
be searched 4 _ *iomgf sym 0 hmegm hmeg,m
(® © uv = sym  sym plmxlm plmxtlm
huy(@,r,0,0) = hyyy(t,r,0,0) + hyy(t,r,0,9) (=1m=-¢ 00 0p
sym sym sym h/ngq',L
Convention : /™ =0 for £ =1.
@ The general form of the stress-energy tensor source of It It
the gravitational perturbations of the Schwarzschild 0 0 Limxm LmX,™
black hole is given by o) _ Eom?d sym 0 Lf’”Xgm Lme(f)m
Tuv = sym sym Lfmxtlm Limxtlm
Ty (67, 0,0) = TENET,0,0) + T (E,7,6,0) (=0m==t 00 0
wv ¢ 4 @ (¢ @ sym  sym sym L[ij)rq’)l

Conventions : Lfm =LIm =0 for ¢ =0 and L™ =0 for
¢=0,1.
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Waveforms in ma

L]
Waveform in massive gravity (odd-parity)

@ The system of coupled equations governing the odd-

® With ¢yrm and wyrm
parity modes
‘m
2 9 @ (-100+2) (. 2M\(. 3M @ Pwem = (1— *]h
Sgre V0| tye T(l'T)(l'T)wwm:'sﬁim
* plm
a2 5w 4 ( oM o Yotm=——
l@ﬂo -V, ‘I/mim-*er(l—T)(pw;m =S yom
@ The effectives potentials are given by @ The source terms are given by
@)y _ 2M 0+D)+4 _ 16M oM 2
Ve ( )(” Rl 3 ) SO 16”(1_ T) f+°0dtlee+iwt
r
V)= (1 2 (2 L) 20 SREN
‘ o 167(1-21) oo
S(u/) _ r f dthmeﬂ'u)t
‘m
w V2nr -0

@ In the case of the odd-parity ¢ =1 mode : the system of equation reduces to a single differential equation
Regge-Wheeler type

2
L+ =V0) | $uim =Sty
drg

wlm
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Waveforms in massive gravity

Excitation of the odd-parity ¢ = 1 mode by the plunging particle

@ the source of the plunging particle (odd-parity) is given by

@) 16v61 Mmy
wlm ™ ¢(0+1) 72

(l— % ) B(,m) ei[wtp (r)-myp(r)]
-

with

(l+m)
o+l (o751 e—my T(C52+1)

B(¢,m)= N 4 (L+m)! 1"(([7';71)4-1]

sin [ g(/er)]

@ We can show that the partial response in the odd-parity ¢ = 1 mode is given by

1 +oo+ic
Pem(Er)= 7\/? f—oo+ic @ (‘i’ (w )) (r)f ar! (/) (r )Si()p/)m(r/).

icle plunging into a black hole in m: . SW-XI
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(20)
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Excitation of the odd-parity ¢ = 1 mode by the plunging particle

Waveforms for the odd-parity ¢ = 1 mode

0.10
Fierz-Pauli field (odd-parity sector) 0.10)

= =1, m=0 ° £
£ o= £ 3 QBS QBS
= 0.05 @- 0andr=50M = .05 %

= = s
= n = E

M M

£ o v £, A
S S

) 5} Fierz—Pauli field (odd—parity sector)
X 005 o =1, m=0

@=0.15and r = 50M
0 100 200 300 400 500 600 0 200 400 600 800
#(2M) t(2M)
S

° 0.06 w_: P 0.010
§ 0.04 i QBS E
= ¥ T 0005
= 002 2 =)

£ o E
s ° S 0000f— - -
2 on Fierz-Pauli field (odd—parity scctor) o Fierz-Pauli field (odd-parity sector)

=1, m=0 o (=1, m=0
~0.04 @=0.25andr =50M -0.005 @=0.89and r = 50M
) 200 400 600 800 0 200 400 600 800
/(2M) t/(2M)

FIGURE 7 — Waveforms (¢ = 1,m = 0) produced by the plunging particle. The results are obtained for massless scalar field (& — 0) and for massive scalar field
(@=0.15,0.25 and 0.89). The observer is located at = 10M.

@ We can observe for any nonvanishing value of the reduce masse parameter @, the QBSs of the Schwarzschild
BH are excited, their influence is negligible for @ — 0 but increases with a.




Conclusion ...
[ Jelele)

Conclusion

@ In our opinion, the study of the scalar radiation generated by the plunging particle has permitted us to high-
light and interpret some important effects occuring in the plunge regime which are not present for massless
fields such as :

i The decreasing and vanishing, as the mass parameter increases, of the signal amplitude generated when
the particle moves on quasicircular orbits near the ISCO.
ii In addition to the excitation of the QNMs, the excitation of the QBSs of the BH.

@ Ifthe graviton has a mass, the study of the gravitational radiation generated by a particle plunging into a BH
and, in particular, the observation of the effects previously discussed, could help us :
i To test the various massive gravity theories.
ii To impose strong constraints on the graviton mass and to support, in a new way, Einstein’s general
relativity.
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Conclusion ..
[e]e] le)

IN-Mode and UP-Mode

° (p;‘un/ and gbZI; are linearly independent solutions of the Regge-Wheeler equation

d2¢w[ 2
e [w —V[(r)l Gor =0. (22)
> When Im(w) > 0, ¢Z‘g is uniquely defined by its ingoing behavior at the event horizon r = 2M (i.e., for
s — —00) . .
in - —lwrx
gbw[(r)r*__ooe (23a)

and, at spatial infinity » — +oo (i.e., for r« — +00), it has an asymptotic behavior of the form

. 1/2 . 2 . 2
n @ (=) ( o~ ilP(@)rs +IM = p(@)]In(r/M)] (+) () HR@Irs +IMp= [p(@)]In(r/M)]
¢L[(r)r*:+w m] X(A[ (w)e ilp(w)rs ueip! 7l +A/ (e ilp(w)rs wiplw 7
(23b)
> Similarly, 4)2‘2 is uniquely defined by its outgoing behavior at spatial infinity
2. 9
(pup "~ w e+le(Ll))7‘* +[Mp?/ip(w)]In(r/M)] (24a)
Wl ry—+o0 | p(w)
and, at the horizon, it has an asymptotic behavior of the form

Gup® .~ B @k + Byt (24b)

(2,22 « " while AC) +) -)
In Egs. (23) and (24), p(w) = (0° —u denotes the “wave number" while A, (), A (), B, (w) and

B(;)(w) are complex amplitudes.

@ By evaluating the Wronskian W(w) at r« — —oo and r+ — +o0, we obtain

W) = 2i0A}) () = 2i0B}" (@). 25)
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Quasinormal frequencies

@ If the Wronskian W, (w) vanishes, the functions glf and (,bouf; are linearly dependent and propagate inward at
the horizon and outward at spatial infinity, a behavior which defines the QNMs lying in the lower part of the
first Riemann sheet associated with the function p(w) = (w2 - /12)1/2,

- T - - - - -
s A'M(m);qnu\m[ﬁ]ln(wﬂ 15l BOeior :
o A((,)(w)e-i[mmlm[ff zjlnqﬁ)l
o M N )
S 10 ; > 10 j
o ! - o "
é ‘ _{:72:1 % B’(+)e+i wr :
! in : u
05 : Por — a=0 05 ' bur™® — a=0
0.9 : 0.9 .
-100 -50 0 50 100 150 200 250 -100 -50 0 50 100 150 200 250
1 /2M) r/2M)

@ Quasinormal waveforms : We deform the contour of integration in Eq.

over the quasinormal frequencies. It is given by

QNM
(P[m

t,r=

11 in order to extract a residue séries

+o0

Y WM

4
= mn

(26)
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