
The standard model of cosmology is flat ΛCDM:
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Let us choose initial conditions at emission time te :

xe = 0, pe =
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• Special solutions: straight lines

s⊥e = 0 ⇒ x̃(t) =
pe

‖pe‖

∫ t

te

dτ
a(τ)

, p(t) =
ae

a(t)
pe , s(t) = s

pe

‖pe‖

These are the null geodesics (spin is “enslaved”).

• “Precessing” solutions:
Initial conditions s⊥e = ~ (Quantum Mechanics) and e.g.
λLyα = 8.72 · 10−34 am,1 z = 2.4 . Then with Λ = 3 · 0.685/am2 and
t0 = 0.951 as the time of emission is te = 0.188 as.

For a more modest λ = 1.2 · 10−2 am, Runge & Kutta readily tell us:
? R(S)(S) > 0.
? The longitudinal offset of the trajectory from its

companion null geodesic is

|x1(t) − x̃1(t)| = O(ε2) , ε := s⊥e /E .

1Astro-units such that: c = 1 am/as, ~ = 1 ag am2/as and H0 = 1/as.
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Figure: The trajectory of the photon, x(t), in comoving coordinates for
s⊥e = ~ is the helix. The dashed line is the null geodesic (s⊥e = 0). The
initial transverse spin s⊥e is indicated by the short arrow at the left.
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Figure: The three spin components s1(t), s2(t), and s3(t).



Perturbative solutions

We return to generic, flat RW spacetimes and linearize the
equations of motion w.r.t. the small dimensionless parameters

η :=
s
E

& ε :=
s⊥e
E
.

Put (x1, x2, x3) = (x̃1, εy2, εy3) + O(ε2) and linearize dx/dt :

dx1
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∼
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∼ −
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y2 1
η
.
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Birefringence

• Recall that (x1(t), 0, 0) is (up to second order terms) the null
geodesic; with the change of time coordinate

t 7→ θ(t) ∼
1
|η|

[
x1(t) +

1
a′(t)

−
1
a′e

]
the transverse trajectory is now governed by the equations

dy2

dθ
∼ sign(η) (y3 + 1 − a′ex1),

dy3

dθ
∼ −sign(η) y2.

•With the previous initial conditions and setting ε = |η|, we obtain:

y2(t) ∼ sign(η) sin θ(t) & y3(t) ∼ cos θ(t) − 1 + a′ex1(t).

The trajectory is therefore a Left/Right helix depending on the
helicity sign(η) = sign(s) of the photon, i.e. birefringence of light.
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Period, center and radius of the helix
• The instantaneous period of the helix in cosmic time is
Thelix(t) ∼ 2π dt/dθ,

Thelix(t) ∼
a(t)
ae

Te

1 + q(t)
.

• Its center at time t is located in comoving coordinates at

xcenter(t) ∼


x1(t)

0
−|η|

(
1 − a′ex1(t)

)
 .

• Its comoving radius is time-independent and equal to |η|. Its true
radius is

Rhelix(t) ∼
a(t)
ae

c Te

2π
=

z + 1
2π

λe ,

λe being the wavelength at emission.
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Conclusions and open questions
• The gravitational field of an expanding universe produces
birefringence of light.

• This birefringence carries information on the acceleration of the
universe.

• Can this birefringence of photons be measured?

• Does the gravitational field of a gravitational wave also produce
birefringence of light?

• If yes, what information is carried by this birefringence?

• If yes, can this birefringence of photons be measured?

to the memory of Pierre Binétruy


