The standard model of cosmology is flat ACDM:
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Our task: Integrate the velocity equation:
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Let us choose initial conditions at emission time t.:
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e Special solutions: straight lines
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These are the null geodesics (spin is “enslaved”).

' Astro-units such that: ¢ = 1am/as, i = 1 agam?/as and Hy = 1/as.
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These are the null geodesics (spin is “enslaved”).

e “Precessing” solutions:

Initial conditions sz = 7 (Quantum Mechanics) and e.g.

Ay, =8.72-107%*am," z=2.4. Then with A = 3 - 0.685/am? and
fo = 0.951 as the time of emission is { = 0.188 as.

For a more modest 1 = 1.2- 1072 am, Runge & Kutta readily tell us:
* R(S)(S) > 0.
*  The longitudinal offset of the trajectory from its
companion null geodesic is

IX'(t) - X'(t)l = O(€?), e:=s2/E.

' Astro-units such that: ¢ = 1am/as, i = 1 agam?/as and Hy = 1/as.



Figure: The trajectory of the photon, x(t), in comoving coordinates for
sy = his the helix. The dashed line is the null geodesic (s; = 0). The
initial transverse spin s; is indicated by the short arrow at the left.






Perturbative solutions

We return to generic, flat RW spacetimes and linearize the
equations of motion w.r.t. the small dimensionless parameters
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Perturbative solutions

We return to generic, flat RW spacetimes and linearize the
equations of motion w.r.t. the small dimensionless parameters
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Put (x', x2,x3) = (X', ey?, ey®) + O(€?) and linearize dx/at:
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Birefringence

e Recall that (x'(t),0,0) is (up to second order terms) the null
geodesic; with the change of time coordinate
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the transverse trajectory is now governed by the equations

dy? dy®
o~ sien(n) (P +1-apx). =5~ sign() y*



Birefringence

e Recall that (x'(t),0,0) is (up to second order terms) the null
geodesic; with the change of time coordinate
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the transverse trajectory is now governed by the equations

dy? dy®
o~ sien(n) (P +1-apx). =5~ sign() y*

o With the previous initial conditions and setting e = ||, we obtain:
y2(t) ~ sign(n)sind(t) &  y3(t) ~cosd(t) — 1+ aLx'(t).

The trajectory is therefore a Left/Right helix depending on the
helicity sign(n) = sign(s) of the photon, i.e. birefringence of light.



Period, center and radius of the helix

¢ The instantaneous period of the helix in cosmic time is
Thelix (1) ~ 27 dt/d6,
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Thelix(t) ~ a_e m



Period, center and radius of the helix
e The instantaneous period of the helix in cosmic time is
Thelix(t) ~ 21 dt/dg,
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e |ts center at time t is located in comoving coordinates at

x'(1)
xcenter(t) ~ 0
Il (1 - agx' (1))



Period, center and radius of the helix

¢ The instantaneous period of the helix in cosmic time is
Thelix (1) ~ 27 dt/d6,
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e |ts center at time t is located in comoving coordinates at

x'(1)
xcenter(t) ~ 0
Il (1 - agx' (1))

e |ts comoving radius is time-independent and equal to ||. Its true

radius is
a(t)cTe  z41
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Rhneiix (t) ~ Aes

Ae being the wavelength at emission.



Conclusions and open questions

e The gravitational field of an expanding universe produces
birefringence of light.

e This birefringence carries information on the acceleration of the
universe.

e Can this birefringence of photons be measured?

¢ Does the gravitational field of a gravitational wave also produce
birefringence of light?

e If yes, what information is carried by this birefringence?

o If yes, can this birefringence of photons be measured?

to the memory of Pierre Binétruy



