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Motivations for massive gravity

Cosmic acceleration ⇒ either Λ-term or modification of
gravity

Newton
1

r
→ Yukawa

1

r
e−mr

⇒ gravity is weaker at large distance = cosmic acceleration,
m ∼ 1/(Hubble radius) ∼ 10−33 eV.

Small m is more natural than small Λ.

GW150914 ⇒ m < 1.2× 10−22 eV



Massive gravity – two metrics gµν and fµν

S = M2
Pl

∫ √
−g
(

1

2
R −m2 U

)
d4x

where

U =
1

8

(
Hµ
νH

ν
µ − (Hα

α )2
)

+O(H3)

with
Hµ
ν = gµαfαν − δµν fµν = ηAB∂µΦA∂νΦB

Field equations
Gµν = m2Tµν

where

Tµν = 2
∂U
∂gµν

− gµν U , ∇µTµν = 0.

If gµν ≈ fµν ⇒ Fierz-Pauli with 5 DoF.
In general 2 + 6 = 5 + 1 DoF. Extra DoF = Boulware-Deser ghost.



dRGT theory

Explicitely

S = M2
Pl

∫ (
1

2
R −m2 U

)√
−gd4x

U = b0 + b1
∑
a

λa + b2
∑
a<b

λaλb + b3
∑

a<b<c

λaλbλc + b4λ0λ1λ2λ3

where bk are parameters and λa are eigenvalues of the matrix

γµν =
√

gµαfαν

Two constraints appear and reduce the number of DoF to 5.

/de Rham, Gabadadze, Tolley 2010/



dRGT cosmologies
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d’Amico, de Rham, Dubovsky, Gabadadze, Pirskhalava, 2011
Gumrukcuoglu, Lin, Mukhoyama, 2011
de Felice, Gumrukcuoglu, Mukhoyama, 2012
Grata, Hu, Wyman, 2012
M.S.V., 2012
Kobayashi, Siino, Yamaguchi, Yoshida, 2012
M.S.V., 2013
others ...



Compact formulation

Hubble parameter

H =
m2

3
(b0 + 2b1u∗ + b2u

2
∗), b1 + 2b2u∗ + b3u

2
∗ = 0.

g-metric is de Sitter, f-metric is flat

ds2g = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2 ,

1

H2
= −(x0)2 + (x1)2 + (x2)2 + (x3)2 + (x4)2,

ds2f = −(dT )2 + (dx1)2 + (dx2)2 + (dx3)2 ,

the Stuckelberg field T (x0, x4) fulfills /C.Mazuet, M.S.V ’15/

(∂0T )2 − (∂4T )2 = 1

All solutions have the same ds Sitter g-metric but different

Stuckelberg scalars. Solution with T = x0 is called Type I.
All other solutions are called Type II.



Type I solution in open slicing

Ht = sinh τ cosh ρ, Hr = cosh τ

gives, with a(τ) = cosh τ ,

ds2g =
1

H2
{−dτ2 + a2(τ)(dρ2 + sinh2 ρdΩ2)}

ds2f =
u2∗
H2
{−da2(τ) + a2(τ)(dρ2 + sinh2 ρdΩ2)}

Solution is manifestly FLRW – g and f metrics share the same
symmetries rotational and translational Killings.

/Gumrukcuoglu, Lin, Mukohyama ’11/



Type I solution in flat slicing

Ht = sinh τ +
ρ2

2
eτ , Hr = cosh τ − ρ2

2
eτ

gives spatially flat FLRW g-metric with a(τ) = eτ

ds2g =
1

H2
{−dτ2 + a2(τ)(dρ2 + ρ2dΩ2)}

but

ds2f =
u2∗
H2
{−dT 2(τ, ρ) + dR2 + R2dΩ2)}

with inhomogeneous

T (τ, ρ) = −1

2

∫
dτ

ȧ(τ)
+

1

2
(1 + ρ2)a(τ)

f-metric does not share the same symmetries with g-metric ⇒ no
spatially flat FLWR cosmologies /d’Amico, de Rham et al. ’11/



Type I solution in static slicing

Ht =
√

1− ρ2 sinh τ, Hr =
√

1− ρ2 cosh τ

gives, with a(τ) = cosh τ

ds2g =
1

H2
{−(1− ρ2)dτ2 +

dρ2

1− ρ2
+ ρ2dΩ2)}

ds2f =
u2∗
H2
{−dT 2(τ, ρ) + dρ2 + ρ2dΩ2)}

with
T (τ, ρ) =

√
1− ρ2 sinh τ

f-metric is not invariant under the action of ∂/∂τ .



Status of the dRGT cosmology

Type I solution expressed in open slicing is the best known
massive gravity cosmology. Has 6 common Killings,
considered to be the only genuinely FLRW solution.

Type II solutions are less known. The number of common
symmetries is less than 6 ⇒ perturbation spectrum is
expected to be inhomogeneous and/or anisotropic.

Problem: linear perturbations analysis around Type I reveals
only 2 propagating modes because the kinetic term for 3 other
modes vanishes in the linearized theory ⇒ strong coupling =
breakdown of classical description.

Moreover, Type I solution was claimed to show ghost
instability because it admits anisotropic deformations whose
perturbations show ghosts at the linear level.

The latter conclusion has produced overall pessimism



But

De Felice, Gumrukcuoglu, Mukohyama in “Massive gravity:
nonlinear instability of a homogeneous and isotropic universe”
/PRL 109, 171101 (2012)/ actually considered a different
massive gravity theory with fµν=de Sitter and not flat. In this
theory there is a FLRW solution with spatially flat sections.
This solution admits Bianchi I anisotropic deformations which
show ghost.

However, strictly speaking this tells nothing about stability of
the original solution in dRGT theory.

Resumé: following the dFGM, everybody telles the dRGT
cosmology is unstable, but nobody has actually checked this.



Anisotropic cosmologies in dRGT



Bianchi types

ds2g = −dt2 + ηab(t)ωa ⊗ ωb

with

ωa = ωa
k(xm) dxk , 〈ωa, eb〉 = δab, ea = eka (xm)

∂

∂xk

and
[ea, eb] = C c

abec

Bianchi classification of structure constants C c
ab reveals IX different

types. Flat FLRW is contained in Bianchi I,

ω1 = dx , ω2 = dy , ω3 = dz .

Open FLRW is contained in Bianchi V,

ω1 = dx , ω2 = ex dy , ω3 = ex dz .



Bianchi V

ds2g = −dt2 + A2(t) dx2 + e2x
[
B2(t) dy2 + C 2(t) dz2

]
,

ds2f = −(dF )2 + F 2
[
dX 2 + e2X (dy2 + dz2)

]
,

with the Stuckelberg fields

F = F (t), X = x + f (t).

One can choose
B = C



Equations for A,B ,F , f

− B̈

B
− Ḃ2

B2
− ȦḂ

AB
+

2

A2
= −P0 −

1

2
YP1 ,

− Ä

A
− 2ȦḂ

AB
+

2

A2
= −P0 +

[
u − 1

2
Y − F

AY

(
Ḟ +

F

A

)]
P1

+
1

2

(
Yu − u2 − F Ḟ

A

)
dP1

du
,

3

A2
− 2ȦḂ

AB
− Ḃ2

B2
= −P0 −

F

AY

(
Ḟ +

F

A

)
P1,

2
Ḃ

B
− 2

Ȧ

A
= −F 2ḟ

Y
P1

with

u =
F

B
ef , Pm(u) = bm + 2bm+1u + bm+2u

2



Type I isotropic solution

A = B = a, F = u∗a, f = 0, P1(u∗) = 0

ds2g =
1

H2

(
−dt2 + a2

(
dx2 + e2x

[
dy2 + dz2

]))
,

ds2f =
u2∗
H2

{
−(da)2 + a2

(
dx2 + e2x [dy2 + dz2]

)}
.

with
a = sinh[H(t − t0)]

The spatial parts of the two metrics are proportional to

dl2 = dx2 + e2x(dy2 + dz2)

= dρ2 + sinh2(ρ)[dϑ2 + sin2 ϑdϕ2]

This is precisely Type I solution.



Type II isotropic solutions

F =
u∗
H

√
2q2 ȧ− 1− q4, f = χ+ ln

u∗a

F
.

with a = sinh[H(t − t0)] while

ds2g = −dt2 + a2dx2 + e2x
[
a2e2χ

[
dy2 + dz2

]]
,

ds2f = −dF 2 + F 2
(
dX 2 + e2X [dy2 + dz2]

)
, X = x + f (t).

A family labeled by three continuous parameters q, χ, t0

g-metric is de Sitter

f-metric is flat

3 common isometries of the y , z plane.



Generalisation to an infinite family of new Type II

ds2g = dUdV + (x1)2 + (x2)2 + (x4)2 ,

1

u2∗
ds2f = dUd(V + D) + (x1)2 + (x2)2 + (x4)2 ,

where

UV + (x1)2 + (x2)2 + (x4)2 =
1

H2
, D =

(Hx4 − q2)2

H2U
.

In view of the Gordon relation

fµν = ω2
[
gµν + (1− ζ2)VµVν

]
, gµνVµVν = −1,

it will remain a solution if D = D(U, x4) such that

∂UD +
1

4
(∂4D)2 = 0.



Small deviations form type I – linear

A = a (1 + α), B = a (1 + β),

F

A
= u∗ + φ, f = ψ,

Expanding up to the first order

β̈ +
ȧ

a

(
5β̇ + α̇

)
+

4α

a
=

u∗
2
P ′1(u∗)(ȧ− 1)σ,

α̈ +
ȧ

a

(
2β̇ + 4α̇

)
+

4α

a
=

u∗
2
P ′1(u∗)(ȧ− 1)φ,

2
ȧ

a

(
α̇ + 2β̇

)
+

6α

a2
= 0,

2(α̇− β̇) = 0,

r.h.s. vanish → strong coupling. The only solution is

σ = φ = 0, α = β = const.× ȧ/a ⇒ time translations



Small deviations form type I – quadratic

Expanding up to the second order

β̈ +
ȧ

a

(
5β̇ + α̇

)
+

4α

a
=

u∗
2
P ′1(u∗)(ȧ− 1)σ,

α̈ +
ȧ

a

(
2β̇ + 4α̇

)
+

4α

a
=

u∗
2
P ′1(u∗)(ȧ− 1)φ.

2
ȧ

a

(
α̇ + 2β̇

)
+

6α

a2
= P ′1(u∗)σ (φ+

1

2
σ),

2(α̇− β̇) = P ′1(u∗)
a2

ȧ + 1
σ [σ̇ − φ̇+ u∗(β̇ − α̇)]

Setting

σ =
W + Z

3
, φ =

W − 2Z

3



Small deviations form type I – solutions

(
(W + Z )Ż

).
+ 4H(W + Z )Ż + 3u∗H

2Z = 0,

WẆ − ZŻ + 3H(W 2 − Z 2) = 3u∗H
2 aW .

Assuming that W ,Z , Ẇ , Ż tend to zero simultaneously, the only
solution is

Z = −u∗H
2

2
(t − t∗)

2, W =
u∗H

2

2a
(t − t∗)

3

where t∗ is an integration constant. Perturbations can be small
only for t ≈ t∗ and diverge for t →∞ hence they cannot approach
zero asymptotically. Therefore when perturbed Type I solution
cannot relax back to itself in the long run.

Solution is unstable. What does it decay to ?



Small deviations form type II – linear

A = a (1 + α), B = a (1 + β),

F = u∗a
√
w (1 + φ), u = u∗ + σ,

σ → Cσ
a4
(
1 +O

(
a−1
))

α → α∞

(
1 +

1

2H2a2
+ . . .

)
− Cσ

(
u∗q

2P ′1
9H(q2 + 1) a3

+ . . .

)
,

β → β∞ + α∞

(
1

2H2a2
+ . . .

)
+ Cσ

(
u∗q

2P ′1
18H(q2 + 1) a3

+ . . .

)
φ → φ∞ (1 + . . .) + α∞

(
q2

2Ha
+ . . .

)
+ Cσ

(
u∗q

2P ′1
36(q2 + 1)H a3

+ . . .

)
α∞, β∞, φ∞ are related to the background moduli parameters.
Perturbed Type II relaxes to itself – late time attractor



Hypothesis

It is plausible that perturbed Type I relaxes to Type II

Numerical analysis shows that

Weakly perturbed Type I relaxes to Type II indeed.

Strongly perturbed Type either I collapses or decays into flat
space.



Cauchy problem and constraints



Primary constraint

Four field equations contain Ä, B̈, Ḟ , ḟ .
The first two can be resolved with respect to Ä and B̈.
Trying to resolve the second two with respect to Ḟ and ḟ gives

Ḟ = a1(A,B, Ȧ, Ḃ,F , f ) ḟ + a2(A,B, Ȧ, Ḃ,F , f )

and a constraint which algebraically determines F ,

C = A2

(
3

A2
− 2ȦḂ

AB
− Ḃ2

B2
+ P0

)2

−4

(
Ḃ

B
− Ȧ

A

)2

−(P1)2F 2 = 0.

The constraint should be stable, hence

Ċ =
∂C
∂A

Ȧ +
∂C
∂Ȧ

Ä +
∂C
∂B

Ḃ +
∂C
∂Ḃ

B̈ +
∂C
∂F

Ḟ +
∂C
∂u

u̇ = 0,

which leads to the secondary constraint S(A,B, Ȧ, Ḃ, u) = 0



Secondary constraint

S ≡
(
P0 A

2B2 − A2Ḃ2 − 2ABȦḂ − 2ABḂ + 2B2Ȧ + 3B2
)
×

×

[
P0 A

3B2Ḃ − A3Ḃ3 − 2A2BȦḂ2 + AB2Ḃ + 2B3Ȧ

A4B5
P ′1

+
u(AḂ + B)

A2B3
P1P

′
1 −

2AḂ + BȦ− B

A2B3
P2
1

]
+ u (u P ′1 − 2P1)P2

1 = 0

algebraically determines u. The stability condition is

Ṡ = W (A,B, Ȧ, Ḃ, u) ḟ + V (A,B, Ȧ, Ḃ, u)

which gives the missing equation for ḟ ,

ḟ = F(A,B, Ȧ, Ḃ, u).

The pair of constraints eliminates the BD ghost



Equations

Ä = DA (A,B, Ȧ, Ḃ, u,F )

B̈ = DB (A,B, Ȧ, Ḃ, u,F ) (1)

with

Ḟ = DF (A,B, Ȧ, Ḃ, u,F )

u̇ = Du (A,B, Ȧ, Ḃ, u,F ) (2)

and the constraints

C(A,B, Ȧ, Ḃ, u,F ) = 0

S(A,B, Ȧ, Ḃ, u,F ) = 0

One can impose the constraints only at the initial time moment
and then solve (1)+(2). Or one can resolve the constraints at
every time moment to find u,F and then solve only (1).



Numerical results



Generic initial values

Choose the parameter values

b0 = 1, b1 = 1, b2 = 2, b3 = −5

and the initial values for the metric

A0 = B0 = 2, Ȧ0 = 0, Ḃ0 = 1

The equation S(u0) = 0 then yields

u0 = 1.4817

while the equation C(F0) = 0 gives

F0 = 4.3649

Integrating the equations with these initial values gives



Generic solutions
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Figure: Generic behaviour of solutions



Weakly perturbed type I

b0 = 1, b1 = 1, b2 = 2, b3 = −5

P1(u∗) = 0 has a root u∗ = −0.2. Let us set

A0 = B0 = a, Ȧ0 =
√

1 + H2(u∗)a2, Ḃ0 = Ȧ + δ

which is exactly Type I for δ = 0. One chooses a = 10, δ = 0.1,
the S = 0 constraints yields

u
(1)
0 = −0.231122, u

(2)
0 = −0.233943

u
(3)
0 = −0.152569, u

(4)
0 = −0.645204.

One has u
(1)
0 ≈ u

(2)
0 ≈ u∗ = −0.2, hence this should give a weakly

perturbed Type I solution. It approaches Type II (the other two
lead to singularity)



Initial values close to type I
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The g-metric relaxes to de Sitter. Stuckelbergs move to Type II.



Initial values close to type I
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F Ḟ
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Slightly perturbed Type I evolves to Type II



Strongly perturbed type I

b0 = −19, b1 = 14, b2 = −10, b3 = 7,

P1(u∗) = 0 gives u∗ = 1.63. One sets again

A0 = B0 = a, Ȧ0 =
√

1 + H2(u∗)a2, Ḃ0 = Ȧ + δ

with a = 10, δ = 0.1. The S constraint yields

u
(1)
0 = 1.1222, u

(2)
0 = 1.5909, u

(3)
0 = 1.6362, u

(4)
0 = 1.6680.

Here u
(3)
0 is the closest to u∗ and leads to slightly perturbed Type I

relaxing towards Type II. u
(2)
0 and u

(4)
0 give singular solutions. The

root u
(1)
0 is the farthest from u∗ and describes a strong

perturbation leading to something new – decay into flat space.



Decay into flat space
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Figure: Strongly perturbed Type I may decay into flat space.



Conclusions

Anisotropic deformations of the FLRW Type I cosmology in
dRGT massive gravity have been studied for the first time.

When perturbed, Type I cannot relax to itself, hence it is
unstable.

Generic strong perturbations lead to a collapse.

If perturbed only slightly, the physical geometry relaxes back
to de Sitter, hence it is stable.

However, the Stuckelberg scalars change considerably and the
f-metric approaches Type II.

For some parameter values strong perturbations lead to a
decay into flat space.

A possible presence of ghost has not been studied yet.


