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Usually in QFT one assumes that

@ UV phenomena are local

@ UV renormalization can be done via analytical continuation
from Euclidian to Minkowskian signature

@ QFT in curved space-time is full of surprises:
dS — in IR, AdS — in UV.
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UV renormalization in x—space

@ We consider a scalar field theory:
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@ The one loop contribution to the effective action of the theory:
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@ Here
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is the most singular part of the Feynman propagator in
position space when x% — 0.
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UV renormalization in x—space

o We may extract the leading divergent contribution by changing
the variables x* = X* + 27“ yH = XH — % @w=0,1,23 and
by diagonally expanding ¢? (X + z/2) ¢? (X — z/2)

@ In fact,
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The z—integral provides the standard logarithmic UV
divergence.

@ Note the importance of the proper /e prescription. If one
replaces the Feynman propagator with the Wightman function,

then:
/d4z ! 3 =0.
(20— ie)* = 22
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A simple example

@ We continue by considering the above theory in flat space-time
but in the presence of an ideal mirror placed at x3 = 0. The
ideal mirror reflects all the modes equally well, irrespectively of
their momenta. This is expressed by the boundary condition
¢l 5—0 = 0 at the mirror.

@ A real physical mirror is definitely transparent to very high
energy modes. On general physical grounds one can expect
that, if a is a characteristic interatomic distance of the
material of the mirror, a mode whose wavelength k is much
larger than 1/a will not see the mirror at all.

@ A real physical mirror can be modeled by a potential barrier
which reflects some of the modes and is transparent to the
other ones, e.g.:

O+ m?] ¢ = ad(x3)¢.
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A simple example

@ The most singular part of the Feynman propagator in presence
of an ideal mirror is the following distribution
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where s = (x — y)? and 5 = (x — y)? and ¥ is the mirror
image of the source point y.

@ In Euclidean signature, s vanishes only when x = y and 5 only
when x = y. But the point y does not belong to the portion
of space-time that we are considering, x3 > 0 and y3 > 0.
Hence, inside the loops in Euclidean signature y plays no role.

@ In Lorentzian signature, s and 5 vanish on the light—cones
whose tips are y and, respectively, y. Therefore, even though
y does not belong to the space-time manifold its light—cone
penetrates into it.
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A simple example

@ The first singularity in Fp;r(x, y) provides the same
contribution as in empty space. As regards the second term we
have to do the following diagonal expansion:

XM — i = gl x4 g =2 XM, = 0,1,2,3.

@ Then, the effective action contains the following term:

o — 3 /d4 / g, X+ 2/2) (X~ 2/2)
= 47T2 23> ||

(22 — ie)?

@ Even though z? may vanish the components of four-vector z
are generically not small and the diagonal expansion of
#*(X + z/2) $*(X — 2/2) cannot be performed.

@ Both the singularities of Fp,;(x,y) at s=0and 5= 0 do
contribute to the UV divergence of the integral on the right
hand side, while the mixed terms contribute finite expressions.

7/12



The geometry of AdS and Lobachevsky spaces

@ The 4—dimensional Euclidean AdS (Lobachevsky space) space
EAdSs := {X§ — X{ — X3 — X3 — X§ =1},

is one of the sheets (say Xo > 1) of the two—sheeted real
hyperboloid embedded into:

ds? = dX§ — dX? — dX3 — dX3 — dX?.

@ The 4—dimensional (Lorentzian) AdS space:

AdSy = {XZ — X2 — X2 - X2 + X2 =1}.
embedded into

ds? = dXZ — dX? — dX? — dX? + dXZ.
@ The EAdS and AdS are related to each other via the analytic
continuation Xz — i X3. We set the curvatures of the
hypeboloids to one: R = 1.
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The geometry of AdS and Lobachevsky spaces

@ The hyperbolic distance is defined via the invariant scalar
product:

& =nuX"Y" =coshd(X,Y),
where d(X, Y) is the geodesic distance.

@ In EAdS the hyperbolic distance is £ > 1, because d(X, Y) is
real, while in AdS ¢ can take any real value.

@ The Feynman propagator obeys

[O+m?] F(X,Y) = [(1-€%) 0 — 40 + m?] F(€) =

=4 75X, Y)+4mie T 5(X,—Y).
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The Feynman propagator in AdS and Lobachevsky spaces

@ The Feynman propagator can be represented both in EAdS, in
global AdS and in its covering AdS manifold as follows:

1 .
F(X,Y)=A;s 1F §_y7§+y;2;ﬁ +
2 2 2
3 3 1-&—e

o v=1/2+m?

@ When &2 — 1 there is the following leading singularities of the
AdS Feynman propagator:
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F(g) ~ _87T2
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The Feynman propagator in AdS and Lobachevsky spaces

@ The first singularity, at £ = 1, is the same as in flat empty
space. Note that:

(X = Y)? —ie=2(1— (¢ +ie))
o The second singularity, at { = —1, is when X sits on the light
cone with the apex at Y = —Y — point antipodal to Y.

@ In Lobachevsky space the second singularity is not seen,
because there £ > 1. But in AdS the second singularity is
present.
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Loop corrections in AdS and Lobachevsky spaces

@ In global AdS the relevant part of the correction is:

) o<)\2/d5X6 /d5Y5 —1) 2 (X) 2(Y) x

1 2
X .
{(X—Y) — e (X+ Y)2—ie}
@ The first pole leads to the same renormalization as in flat
spacetime. The second pole is different and leads to
divergences of a new type. The cross terms lead to less
singular contributions.
@ Thus, we have to introduce a new counter—term into the
Lagrangian:

—2miv

AL = T2 — (X)X (=X), (1)

with a complex coefficient depending on the mass parameter

and a new coupling constant ~. 1)



