The ultraviolet behavior of quantum gravity with fakeons

Marco Piva

Dipartimento di Fisica "Enrico Fermi" Università di Pisa

> SW12: Hot Topics in Modern Cosmology Cargèse May 18th, 2018

Outline

- 1 Introduction
- 2 Lee-Wick quantum field theory
- 3 Superrenormalizable quantum gravity
- 4 Fakeons and higher-derivative quantum gravity
- 6 Conclusions

•00

The problem of renormalizability in QG

Marco Piva Università di Pisa

Einstein-Hilbert action: unitary but nonrenormalizable theory

$$S_{\text{EH}} = -\frac{1}{2\kappa^2} \int d^4x \sqrt{-g} R, \quad \kappa^2 = 8\pi G.$$

$$\Gamma_{\rm EH}^{\rm (ct)} = -\frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{-g} \big[R + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R^{\mu\nu}_{\rho\sigma} R^{\rho\sigma}_{\alpha\beta} R^{\alpha\beta}_{\mu\nu} + \underbrace{\cdots}_{\infty} \big]. \label{eq:epsilon}$$

Introduction •00 Einstein-Hilbert action: unitary but nonrenormalizable theory

$$S_{\rm EH} = -\frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{-g} R, \quad \kappa^2 = 8\pi G.$$

$$\Gamma_{\rm EH}^{(\rm ct)} = -\frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{-g} \left[R + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R^{\mu\nu}_{\rho\sigma} R^{\rho\sigma}_{\alpha\beta} R^{\alpha\beta}_{\mu\nu} + \dots \right].$$

Stelle action: renormalizable but not unitary theory

$$S_{\rm HD} = -\frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{-g} \left[\gamma R + \alpha R_{\mu\nu} R^{\mu\nu} + \beta R^2 + 2\Lambda_{\rm C} \right].$$

$$\Gamma_{\rm HD}^{(\rm ct)} = -\frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{-g} \left[a_\gamma R + a_\alpha R_{\mu\nu} R^{\mu\nu} + a_\beta R^2 + 2a_{\rm C} \right].$$

Introduction •00 Introduction

$$S^{\dagger}S = 1$$
.

$$-i(T - T^{\dagger}) = T^{\dagger}T, \qquad S = 1 + iT.$$

Cutting equations (Cutkosky, 't Hooft and Veltman)

$$\mathrm{Disc}\mathcal{M} = 2i\mathrm{Im}\mathcal{M} = -\sum_{j} \mathcal{C}_{j},$$

 $C_j = \text{cut diagrams}.$

$$T_{fi} = (2\pi)^4 \delta^{(4)}(p_i - p_f) \mathcal{M}(i \to f).$$

U.G. Aglietti and D. Anselmi, Inconsistency of Minkowski higher-derivative theories, Eur. Phys. J. C 77 (2017) 84 and arXiv:1612.06510 [hep-th].

Inconsistencies: nonlocal and non-Hermitian divergences.

Marco Piva Università di Pisa

Introduction

U.G. Aglietti and D. Anselmi, Inconsistency of Minkowski higher-derivative theories, Eur. Phys. J. C 77 (2017) 84 and arXiv:1612.06510 [hep-th].

Inconsistencies: nonlocal and non-Hermitian divergences.

$$S_{\rm HD} = -\frac{1}{2\kappa^2} \int {\rm d}^4 x \sqrt{-g} \left[R - \frac{1}{M^4} (D_\rho R_{\mu\nu}) (D^\rho R^{\mu\nu}) + \frac{1}{2M^4} (D_\rho R) (D^\rho R) \right]. \label{eq:Shd}$$

Propagator in De Donder gauge (expansion $g_{\mu\nu} = \eta_{\mu\nu} + 2\kappa h_{\mu\nu}$)

$$\langle h_{\mu\nu}(p) h_{\rho\sigma}(-p) \rangle_0 = \frac{iM^4}{2(p^2 + i\epsilon)} \frac{\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}}{(p^2)^2 + M^4}.$$

Introduction 000

U.G. Aglietti and D. Anselmi, Inconsistency of Minkowski higher-derivative theories, Eur. Phys. J. C 77 (2017) 84 and arXiv:1612.06510 [hep-th].

Inconsistencies: nonlocal and non-Hermitian divergences.

$$S_{\rm HD} = -\frac{1}{2\kappa^2} \int {\rm d}^4 x \sqrt{-g} \left[R - \frac{1}{M^4} (D_\rho R_{\mu\nu}) (D^\rho R^{\mu\nu}) + \frac{1}{2M^4} (D_\rho R) (D^\rho R) \right]. \label{eq:Shd}$$

Propagator in De Donder gauge (expansion $g_{\mu\nu}=\eta_{\mu\nu}+2\kappa h_{\mu\nu})$

$$\langle h_{\mu\nu}(p)\;h_{\rho\sigma}(-p)\rangle_0 = \frac{iM^4}{2(p^2+i\epsilon)} \frac{\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}}{(p^2)^2 + M^4}$$

$$\begin{split} \langle h_{\mu\nu}(p) \, h_{\rho\sigma}(-p) \rangle_1^{\text{n1d}} &= \\ \frac{\kappa^2 M^8}{240\pi^2 (p^2)^2} \left[(68r+i)(\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\nu\rho}\eta_{\mu\sigma}) + (373r-4i)\eta_{\mu\nu}\eta_{\rho\sigma} \right. \\ &- \frac{1}{8p^2} (125ir^2 + 544r + 8i) \left(p_\mu p_\rho \eta_{\nu\sigma} + p_\mu p_\sigma \eta_{\nu\rho} + p_\nu p_\rho \eta_{\mu\sigma} + p_\nu p_\sigma \eta_{\mu\rho} \right) \\ &+ \frac{1}{4p^2} (255ir^2 - 1522r + 36i) \left(p_\mu p_\nu \eta_{\rho\sigma} + p_\rho p_\sigma \eta_{\mu\nu} \right) \\ &- \frac{1}{2(p^2)^2} (185r^3 + 75ir^2 - 1048r + 24i) p_\mu p_\nu p_\rho p_\sigma \right] \ln \left(\frac{\Lambda_{UV}^2}{M^2} \right), \quad r \equiv p^2/M^2. \end{split}$$

Introduction

A different formulation has been proposed by Lee and Wick.

T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl. Phys. B 9 (1969) 209.

T.D. Lee and G.C. Wick, Finite theory of quantum electrodynamics, Phys. Rev. D 2 (1970) 1033.

R.E. Cutkosky, P.V Landshoff, D.I. Olive, J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys. B12 (1969) 281-300.

B. Grinstein, D. O'Connell and M.B. Wise, Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model, Phys. Rev. D 79 (2009) 105019 and arXiv:0805.2156 [hep-th].

Marco Piva

A different formulation has been proposed by Lee and Wick.

- T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl. Phys. B 9 (1969) 209.
- T.D. Lee and G.C. Wick, Finite theory of quantum electrodynamics, Phys. Rev. D 2 (1970) 1033.
- R.E. Cutkosky, P.V Landshoff, D.I. Olive, J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys. B12 (1969) 281-300.
- B. Grinstein, D. O'Connell and M.B. Wise, Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model, Phys. Rev. D 79 (2009) 105019 and arXiv:0805.2156 [hep-th].

We reformulate the models as

nonanalytically Wick rotated Euclidean theories.

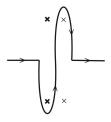
The new formulation solves the previous problems and makes the models both renormalizable and unitary.

- D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP 1706 (2017) 066 and arXiv:1703.04584 [hep-th].
- D. Anselmi and M. Piva, Perturbative unitarity of Lee-Wick quantum field theory, Phys. Rev. D 96 (2017) 045009 and arXiv:1703.05563 [hep-th].

Marco Piva

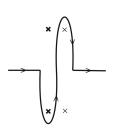
Average continuation

Pinching

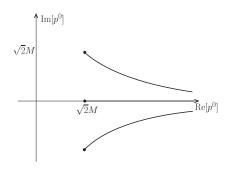


Average continuation

Pinching

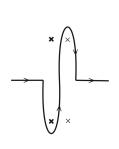


Branch cuts

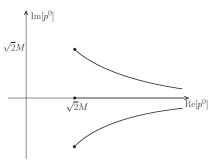


Average continuation

Pinching



Branch cuts



$$\mathcal{J}_{\mathrm{AV}}(p) = \frac{1}{2} \left[\mathcal{J}_{+}(p) + \mathcal{J}_{-}(p) \right].$$

D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP 1706 (2017) 066, and arXiv:1703.04584 [hep-th].

D. Anselmi, Fakeons and Lee-Wick models, JHEP 02 (2018) 141, and arXiv:1801.00915 [hep-th].

$$\mathcal{L}_{QG} = -\frac{\sqrt{-g}}{2\kappa^2} \left[2\Lambda_C M^2 + \zeta R - \frac{\gamma}{M^2} R_{\mu\nu} R^{\mu\nu} + \frac{1}{2M^2} (\gamma - \eta) R^2 - \frac{1}{M^4} (D_{\rho} R_{\mu\nu}) (D^{\rho} R^{\mu\nu}) + \frac{1}{2M^4} (1 - \xi) (D_{\rho} R) (D^{\rho} R) + \frac{1}{M^4} \left(\alpha_1 R_{\mu\nu} R^{\mu\rho} R^{\nu}_{\rho} + \alpha_2 R R_{\mu\nu} R^{\mu\nu} + \alpha_3 R^3 + \alpha_4 R R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + \alpha_5 R_{\mu\nu\rho\sigma} R^{\mu\rho} R^{\nu\sigma} + \alpha_6 R_{\mu\nu\rho\sigma} R^{\rho\sigma\alpha\beta} R^{\mu\nu}_{\alpha\beta} \right) \right].$$

$$\mathcal{L}_{QG} = -\frac{\sqrt{-g}}{2\kappa^2} \left[2\Lambda_C M^2 + \zeta R - \frac{\gamma}{M^2} R_{\mu\nu} R^{\mu\nu} + \frac{1}{2M^2} (\gamma - \eta) R^2 \right. \\ \left. - \frac{1}{M^4} (D_{\rho} R_{\mu\nu}) (D^{\rho} R^{\mu\nu}) + \frac{1}{2M^4} (1 - \xi) (D_{\rho} R) (D^{\rho} R) \right. \\ \left. + \frac{1}{M^4} \left(\alpha_1 R_{\mu\nu} R^{\mu\rho} R^{\nu}_{\rho} + \alpha_2 R R_{\mu\nu} R^{\mu\nu} + \alpha_3 R^3 + \alpha_4 R R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} \right. \\ \left. + \alpha_5 R_{\mu\nu\rho\sigma} R^{\mu\rho} R^{\nu\sigma} + \alpha_6 R_{\mu\nu\rho\sigma} R^{\rho\sigma\alpha\beta} R^{\mu\nu}_{\alpha\beta} \right) \right].$$

Expansion $g_{\mu\nu} = \eta_{\mu\nu} + 2\kappa h_{\mu\nu}$,

$$\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1).$$

Propagator in De Donder gauge

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{\eta=\xi=0}^{\text{free}} = \frac{iM^4}{2} \frac{\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}}{P(1,\gamma,\zeta,2\Lambda_{\text{C}})},$$

 $P(a,b,c,d) = a(p^2)^3 + bM^2(p^2)^2 + cM^4p^2 + dM^6.$

$$\mathcal{L}_{QG} = -\frac{\sqrt{-g}}{2\kappa^2} \left[2\Lambda_C M^2 + \zeta R - \frac{\gamma}{M^2} R_{\mu\nu} R^{\mu\nu} + \frac{1}{2M^2} (\gamma - \eta) R^2 \right. \\ \left. - \frac{1}{M^4} (D_{\rho} R_{\mu\nu}) (D^{\rho} R^{\mu\nu}) + \frac{1}{2M^4} (1 - \xi) (D_{\rho} R) (D^{\rho} R) \right. \\ \left. + \frac{1}{M^4} \left(\alpha_1 R_{\mu\nu} R^{\mu\rho} R^{\nu}_{\rho} + \alpha_2 R R_{\mu\nu} R^{\mu\nu} + \alpha_3 R^3 + \alpha_4 R R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} \right. \\ \left. + \alpha_5 R_{\mu\nu\rho\sigma} R^{\mu\rho} R^{\nu\sigma} + \alpha_6 R_{\mu\nu\rho\sigma} R^{\rho\sigma\alpha\beta} R^{\mu\nu}_{\alpha\beta} \right) \right].$$

Counterterms (up to three loops)

$$\mathcal{L}_{\text{count}} = \frac{\sqrt{-g}}{(4\pi)^2 \varepsilon} \left[2a_C M^4 + a_\zeta M^2 R - a_\gamma R_{\mu\nu} R^{\mu\nu} + \frac{1}{2} (a_\gamma - a_\eta) R^2 \right].$$

Unitarity cannot be proved at non vanishing $\Lambda_{\mathbb{C}}$. Can be set to zero by solving a chain of RG conditions.

D. Anselmi, On the quantum field theory of gravitational interactions, JHEP 1706 (2017) 086 and arXiv:1704.07728 [hep-th].

Superrenormalizable QG

 $\mathcal{L}_{\mathrm{OG}}$ is the simplest representative of a general class

Marco Piva Università di Pisa

The problem of uniqueness

 $\mathcal{L}_{\mathrm{OG}}$ is the simplest representative of a general class

$$\begin{split} \mathcal{L}_{\mathrm{QG}}' &= -\frac{\sqrt{-g}}{2\kappa^2} \Big[2\Lambda_C M^2 + \zeta R - \frac{1}{M^2} R_{\mu\nu} P_n(\Box_c/M^2) R^{\mu\nu} \\ &\quad + \frac{1}{2M^2} R Q_n(\Box_c/M^2) R + \mathcal{V}(R,M,\alpha_i) \Big]. \end{split}$$

 P_n and Q_n polynomials of degree n, $\Box_c \equiv \nabla_{\mu} \nabla^{\mu}$.

The problem of uniqueness

 $\mathcal{L}_{\mathrm{QG}}$ is the simplest representative of a general class

$$\mathcal{L}'_{QG} = -\frac{\sqrt{-g}}{2\kappa^2} \left[2\Lambda_C M^2 + \zeta R - \frac{1}{M^2} R_{\mu\nu} P_n(\Box_c / M^2) R^{\mu\nu} + \frac{1}{2M^2} R Q_n(\Box_c / M^2) R + \mathcal{V}(R, M, \alpha_i) \right].$$

 P_n and Q_n polynomials of degree n, $\Box_c \equiv \nabla_{\mu} \nabla^{\mu}$.

All these theories are superrenormalizable and of the Lee-Wick type (for suitable choices of the polynomials).

- n = 1 counterterms up to three loops.
- n = 2 counterterms up to two loops.
- $n \geq 3$ counterterms up to one loop.

 \mathcal{L}_{OG} is the simplest representative of a general class

$$\mathcal{L}'_{QG} = -\frac{\sqrt{-g}}{2\kappa^2} \Big[2\Lambda_C M^2 + \zeta R - \frac{1}{M^2} R_{\mu\nu} P_n(\Box_c / M^2) R^{\mu\nu} + \frac{1}{2M^2} R Q_n(\Box_c / M^2) R + \mathcal{V}(R, M, \alpha_i) \Big].$$

Superrenormalizable QG

 P_n and Q_n polynomials of degree n, $\square_c \equiv \nabla_\mu \nabla^\mu$.

All these theories are superrenormalizable and of the Lee-Wick type (for suitable choices of the polynomials).

- counterterms up to three loops.
- n = 2 counterterms up to two loops.
- counterterms up to one loop.

Problem of uniquness

Superrenormalizable models of quantum gravity are infinitely many.

New quantization prescription and fakeons

D. Anselmi, On the quantum field theory of gravitational interactions, JHEP 1706 (2017) 086, and arXiv:1704.07728 [hep-th].

Marco Piva Università di Pisa

New quantization prescription and fakeons

D. Anselmi, On the quantum field theory of gravitational interactions, JHEP 1706 (2017) 086, and arXiv:1704.07728 [hep-th].

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{\lambda}{4!} \varphi^{4}.$$

Modified Euclidean propagator

$$\frac{p_E^2}{(p_E^2)^2 + \mathcal{E}^4}, \quad \mathcal{E} = \text{ ficticious LW scale}.$$

After the Wick rotation

$$\lim_{\mathcal{E}\to 0} \frac{p^2}{[(p^2)^2+\mathcal{E}^4]_{\rm AV}}.$$

New quantization prescription and fakeons

D. Anselmi, On the quantum field theory of gravitational interactions, JHEP 1706 (2017) 086, and arXiv:1704.07728 [hep-th].

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{\lambda}{4!} \varphi^{4}.$$

Modified Euclidean propagator

$$\frac{p_E^2}{(p_E^2)^2 + \mathcal{E}^4}$$
, $\mathcal{E} = \text{ficticious LW scale.}$

After the Wick rotation

$$\lim_{\mathcal{E} \to 0} \frac{p^2}{[(p^2)^2 + \mathcal{E}^4]_{\mathrm{AV}}}.$$

One-loop bubble diagram (after renormalizing the UV divergence).

Feynman prescription

New presciption

$$-\frac{i}{2(4\pi)^2} \ln \frac{-p^2 - i\epsilon}{u^2}.$$

$$-\frac{i}{4(4\pi)^2} \ln \frac{(p^2)^2}{\mu^4}$$
.

We can turn ghosts into "fake degrees of freedom".

Quantum gravity with fakeons

$$S_{\rm HD} = -\frac{1}{2\kappa^2} \int \sqrt{-g} \left[2\Lambda_C + \zeta R + \alpha \left(R_{\mu\nu} R^{\mu\nu} - \frac{1}{3} R^2 \right) - \frac{\xi}{6} R^2 \right].$$

The Lagrangian coincides with Stelle theory but we quantize it in a different way.

Marco Piva Università di Pisa

$$S_{\rm HD} = -\frac{1}{2\kappa^2} \int \sqrt{-g} \left[2\Lambda_C + \zeta R + \alpha \left(R_{\mu\nu} R^{\mu\nu} - \frac{1}{3} R^2 \right) - \frac{\xi}{6} R^2 \right]. \label{eq:Shd}$$

The Lagrangian coincides with Stelle theory but we quantize it in a different way. The propagator in De Donder gauge ($\Lambda_{\rm C}=0,\ \alpha=\xi$) is

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0} = \frac{i}{2p^{2}(\zeta - \alpha p^{2})}\mathcal{I}_{\mu\nu\rho\sigma} = \left\{\frac{1}{p^{2}} + \frac{\alpha}{\zeta - \alpha p^{2}}\right\}\frac{i}{2\zeta}\mathcal{I}_{\mu\nu\rho\sigma},$$

$$\mathcal{I}_{\mu\nu\rho\sigma} \equiv (\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

$$S_{\rm HD} = -\frac{1}{2\kappa^2} \int \sqrt{-g} \left[2\Lambda_C + \zeta R + \alpha \left(R_{\mu\nu} R^{\mu\nu} - \frac{1}{3} R^2 \right) - \frac{\xi}{6} R^2 \right]. \label{eq:Shd}$$

The Lagrangian coincides with Stelle theory but we quantize it in a different way. The propagator in De Donder gauge ($\Lambda_{\rm C}=0,\ \alpha=\xi$) is

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0} = \frac{i}{2p^{2}(\zeta - \alpha p^{2})}\mathcal{I}_{\mu\nu\rho\sigma} = \left\{\frac{1}{p^{2}} + \frac{\alpha}{\zeta - \alpha p^{2}}\right\}\frac{i}{2\zeta}\mathcal{I}_{\mu\nu\rho\sigma},$$

$$\mathcal{I}_{\mu\nu\rho\sigma} \equiv (\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

With the new prescription it turns into

$$\left\{\frac{1}{p^2+i\epsilon} + \frac{\alpha(\zeta-\alpha p^2)}{\left[(\zeta-\alpha(p^2+i\epsilon))^2+\mathcal{E}^4\right]_{\text{AV}}}\right\}\frac{i}{2\zeta}(\eta_{\mu\rho}\eta_{\nu\sigma}+\eta_{\mu\sigma}\eta_{\nu\rho}-\eta_{\mu\nu}\eta_{\rho\sigma}).$$

Quantum gravity with fakeons

$$S_{\rm HD} = -\frac{1}{2\kappa^2} \int \sqrt{-g} \left[2\Lambda_C + \zeta R + \alpha \left(R_{\mu\nu} R^{\mu\nu} - \frac{1}{3} R^2 \right) - \frac{\xi}{6} R^2 \right]. \label{eq:Shd}$$

The Lagrangian coincides with Stelle theory but we quantize it in a different way. The propagator in De Donder gauge ($\Lambda_{\rm C}=0,\ \alpha=\xi$) is

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0} = \frac{i}{2p^{2}(\zeta - \alpha p^{2})}\mathcal{I}_{\mu\nu\rho\sigma} = \left\{\frac{1}{p^{2}} + \frac{\alpha}{\zeta - \alpha p^{2}}\right\}\frac{i}{2\zeta}\mathcal{I}_{\mu\nu\rho\sigma},$$

$$\mathcal{I}_{\mu\nu\rho\sigma} \equiv (\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

With the new prescription it turns into

$$\left\{\frac{1}{p^2+i\epsilon} + \left[\frac{\alpha(\zeta-\alpha p^2)}{\left[(\zeta-\alpha(p^2+i\epsilon))^2+\mathcal{E}^4\right]_{\text{AV}}}\right]\right\}\frac{i}{2\zeta}(\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

a) Replace p^2 with $p^2 + i\epsilon$ everywhere in the denominators of the propagators;

Marco Piva Universitâ di Pisa

- a) Replace p^2 with $p^2 + i\epsilon$ everywhere in the denominators of the propagators;
- b) turn the massive poles into fakeons by means of the replacement

$$\frac{1}{\zeta - u(p^2 + i\epsilon)} \to \frac{\zeta - up^2}{(\zeta - u(p^2 + i\epsilon))^2 + \mathcal{E}^4}, \qquad u = \alpha, \ \xi,$$

- a) Replace p^2 with $p^2 + i\epsilon$ everywhere in the denominators of the propagators;
- b) turn the massive poles into fakeons by means of the replacement

$$\frac{1}{\zeta-u(p^2+i\epsilon)} \to \frac{\zeta-up^2}{(\zeta-u(p^2+i\epsilon))^2+\mathcal{E}^4}, \qquad u=\alpha, \ \xi,$$

c) calculate the diagrams in the Euclidean, nonanalytically Wick rotate them, send $\epsilon \to 0$ first, $\mathcal{E} \to 0$ last.

- a) Replace p^2 with $p^2 + i\epsilon$ everywhere in the denominators of the propagators;
- b) turn the massive poles into fakeons by means of the replacement

$$\frac{1}{\zeta-u(p^2+i\epsilon)} \to \frac{\zeta-up^2}{(\zeta-u(p^2+i\epsilon))^2+\mathcal{E}^4}, \qquad u=\alpha, \ \xi,$$

c) calculate the diagrams in the Euclidean, nonanalytically Wick rotate them, send $\epsilon \to 0$ first, $\mathcal{E} \to 0$ last.

- a) Replace p^2 with $p^2 + i\epsilon$ everywhere in the denominators of the propagators;
- b) turn the massive poles into fakeons by means of the replacement

$$\frac{1}{\zeta-u(p^2+i\epsilon)} \to \frac{\zeta-up^2}{(\zeta-u(p^2+i\epsilon))^2+\mathcal{E}^4}, \qquad u=\alpha, \ \xi,$$

c) calculate the diagrams in the Euclidean, nonanalytically Wick rotate them, send $\epsilon \to 0$ first, $\mathcal{E} \to 0$ last.

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_0 = \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\text{grav}} + \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\text{fake}}.$$

Absorptive part of graviton self energy at $\Lambda_C = 0$

D. Anselmi and M. Piva, The ultraviolet behavior of quantum gravity, JHEP 05 (2018) 027, arXiv:1803.07777 [hep-th].

$$\mathcal{M}_{abs} = \text{Im}\mathcal{M}$$

$$\mathcal{D}_{\mathrm{abs}} = -\mathrm{Re}\mathcal{D}$$

$$\mathcal{M}_{\mathrm{abs}} = \mathrm{Im} \mathcal{M} \qquad \mathcal{D}_{\mathrm{abs}} = -\mathrm{Re} \mathcal{D}, \qquad \mathcal{M} = \mathrm{amplitude}, \quad \mathcal{D} = \mathrm{diagram}.$$

$$\mathcal{P}=\mathrm{diagram}$$

Absorptive part of graviton self energy at $\Lambda_C = 0$

D. Anselmi and M. Piva, The ultraviolet behavior of quantum gravity, JHEP 05 (2018) 027, arXiv:1803.07777 [hep-th].

$$\mathcal{M}_{\mathrm{abs}} = \mathrm{Im} \mathcal{M} \qquad \mathcal{D}_{\mathrm{abs}} = -\mathrm{Re} \mathcal{D}, \qquad \mathcal{M} = \mathrm{amplitude}, \quad \mathcal{D} = \mathrm{diagram}.$$

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_0 = \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\text{grav}} + \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\text{fake}}.$$

Possible cases in the diagram

Absorptive part of graviton self energy at $\Lambda_C = 0$

D. Anselmi and M. Piva, The ultraviolet behavior of quantum gravity, JHEP 05 (2018) 027, arXiv:1803.07777 [hep-th].

$$\mathcal{M}_{\mathrm{abs}} = \mathrm{Im} \mathcal{M} \qquad \mathcal{D}_{\mathrm{abs}} = -\mathrm{Re} \mathcal{D}, \qquad \mathcal{M} = \mathrm{amplitude}, \quad \mathcal{D} = \mathrm{diagram}.$$

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_0 = \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\text{grav}} + \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\text{fake}}.$$

Possible cases in the diagram

Absorptive part of graviton self energy at $\Lambda_C = 0$

D. Anselmi and M. Piva, The ultraviolet behavior of quantum gravity, JHEP 05 (2018) 027, arXiv:1803.07777 [hep-th].

$$\mathcal{M}_{\mathrm{abs}} = \mathrm{Im} \mathcal{M} \qquad \mathcal{D}_{\mathrm{abs}} = -\mathrm{Re} \mathcal{D}, \qquad \mathcal{M} = \mathrm{amplitude}, \quad \mathcal{D} = \mathrm{diagram}.$$

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_0 = \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\rm grav} + \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\rm fake} \,.$$

Possible cases in the diagram

- iii) Grav-Fake: no threshold on the real axis, analytical Wick rotation \longrightarrow purely imaginary;

000000

Absorptive part of graviton self energy at $\Lambda_C = 0$

D. Anselmi and M. Piva, The ultraviolet behavior of quantum gravity, JHEP 05 (2018) 027, arXiv:1803.07777 [hep-th].

$$\mathcal{M}_{\mathrm{abs}} = \mathrm{Im} \mathcal{M} \qquad \mathcal{D}_{\mathrm{abs}} = -\mathrm{Re} \mathcal{D}, \qquad \mathcal{M} = \mathrm{amplitude}, \quad \mathcal{D} = \mathrm{diagram}.$$

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_0 = \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\rm grav} + \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\rm fake} \,.$$

Possible cases in the diagram

- i) Fake-Fake below the pinching threshold: $i \times \text{real integral}$ → purely imaginary;
- ii) Fake-Fake above the pinching threshold: average continuation → purely imaginary;
- iii) Grav-Fake: no threshold on the real axis, analytical Wick rotation → purely imaginary;
- iv) Grav-Grav: nontrivial real part

000000

Absorptive part of graviton self energy at $\Lambda_C = 0$

D. Anselmi and M. Piva, The ultraviolet behavior of quantum gravity, JHEP 05 (2018) 027, arXiv:1803.07777 [hep-th].

$$\mathcal{M}_{\mathrm{abs}} = \mathrm{Im} \mathcal{M} \qquad \mathcal{D}_{\mathrm{abs}} = -\mathrm{Re} \mathcal{D}, \qquad \mathcal{M} = \mathrm{amplitude}, \quad \mathcal{D} = \mathrm{diagram}.$$

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_0 = \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\rm grav} + \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\rm fake} \,.$$

Possible cases in the diagram

- i) Fake-Fake below the pinching threshold: $i \times \text{real integral}$ → purely imaginary;
- ii) Fake-Fake above the pinching threshold: average continuation → purely imaginary;
- iii) Grav-Fake: no threshold on the real axis, analytical Wick rotation → purely imaginary;
- iv) Grav-Grav: nontrivial real part

Absorptive part of graviton self energy at $\Lambda_C = 0$

D. Anselmi and M. Piva, The ultraviolet behavior of quantum gravity, JHEP 05 (2018) 027, arXiv:1803.07777 [hep-th].

$$\mathcal{M}_{\mathrm{abs}} = \mathrm{Im} \mathcal{M}$$
 $\mathcal{D}_{\mathrm{abs}} = -\mathrm{Re} \mathcal{D}$, $\mathcal{M} = \mathrm{amplitude}$, $\mathcal{D} = \mathrm{diagram}$.

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_0 = \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\rm grav} + \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\rm fake}.$$

Possible cases in the diagram

- iv) Grav-Grav: nontrivial real part

The contributions of type iv) can be evaluated by using

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_0 = \langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle_{0\text{grav}}.$$

000000

$$\frac{1}{\varepsilon} \to \frac{1}{2} \ln \Lambda^2 \to \frac{1}{2} \ln \frac{\Lambda^2}{-p^2} \to -\frac{1}{2} \ln (-p^2) \stackrel{\mathrm{prescr}}{\longrightarrow} -\frac{1}{2} \ln (-p^2-i\epsilon) \stackrel{\mathrm{abs}}{\longrightarrow} i \frac{\pi}{2} \theta(p^2).$$

The divergent part and the absorptive part can be unambiguously related to each other

$$\begin{split} \frac{1}{\varepsilon} &\to \frac{1}{2} \ln \Lambda^2 \to \frac{1}{2} \ln \frac{\Lambda^2}{-p^2} \to -\frac{1}{2} \ln (-p^2) \stackrel{\text{prescr}}{\longrightarrow} -\frac{1}{2} \ln (-p^2 - i\epsilon) \stackrel{\text{abs}}{\longrightarrow} i \frac{\pi}{2} \theta(p^2). \\ \\ \frac{1}{\varepsilon} &\to \frac{1}{2} \ln \Lambda^2 \to \frac{1}{2} \ln \frac{\Lambda^2}{-p^2} \to -\frac{1}{2} \ln (-p^2) \stackrel{\text{prescr}}{\longrightarrow} -\frac{1}{4} \ln (-p^2)^2 \stackrel{\text{abs}}{\longrightarrow} 0. \end{split}$$

The divergent part and the absorptive part can be unambiguously related to each other

$$\frac{1}{\varepsilon} \to \frac{1}{2} \ln \Lambda^2 \to \frac{1}{2} \ln \frac{\Lambda^2}{-p^2} \to -\frac{1}{2} \ln (-p^2) \overset{\text{prescr}}{\longrightarrow} -\frac{1}{2} \ln (-p^2-i\epsilon) \overset{\text{abs}}{\longrightarrow} i \frac{\pi}{2} \theta(p^2).$$

$$\frac{1}{\varepsilon} \to \frac{1}{2} \ln \Lambda^2 \to \frac{1}{2} \ln \frac{\Lambda^2}{-p^2} \to -\frac{1}{2} \ln (-p^2) \overset{\text{prescr}}{\longrightarrow} -\frac{1}{4} \ln (-p^2)^2 \overset{\text{abs}}{\longrightarrow} 0.$$

We expand $S_{\rm HD}$ around the Hilbert term in powers of α and ξ .

$$\frac{1}{p^{2}(\zeta - up^{2})} = \frac{1}{\zeta p^{2}} + \frac{u}{\zeta^{2}} + \frac{u^{2}p^{2}}{\zeta^{3}} + \dots, \qquad u = \alpha, \zeta.$$

The divergent part and the absorptive part can be unambiguously related to each other

$$\frac{1}{\varepsilon} \to \frac{1}{2} \ln \Lambda^2 \to \frac{1}{2} \ln \frac{\Lambda^2}{-p^2} \to -\frac{1}{2} \ln (-p^2) \stackrel{\text{prescr}}{\longrightarrow} -\frac{1}{2} \ln (-p^2-i\epsilon) \stackrel{\text{abs}}{\longrightarrow} i \frac{\pi}{2} \theta(p^2).$$

$$\frac{1}{\varepsilon} \to \frac{1}{2} \ln \Lambda^2 \to \frac{1}{2} \ln \frac{\Lambda^2}{-p^2} \to -\frac{1}{2} \ln (-p^2) \overset{\text{prescr}}{\longrightarrow} -\frac{1}{4} \ln (-p^2)^2 \overset{\text{abs}}{\longrightarrow} 0.$$

We expand S_{HD} around the Hilbert term in powers of α and ξ .

$$\frac{1}{p^2(\zeta - up^2)} = \frac{1}{\zeta p^2} + \frac{u}{\zeta^2} + \frac{u^2 p^2}{\zeta^3} + \dots, \qquad u = \alpha, \zeta.$$

In the bubble diagram, powers higher than the second give massless tadpoles, which are set to zero by the dimensional regularization.

The result is exact in α and ξ .

In the case of pure gravity the absorptive part can be written as

$$\Gamma_{\rm abs} = -\int \frac{\delta S_{\rm HD}}{\delta g_{\mu\nu}} \Delta g_{\mu\nu}, \quad \Delta g_{\mu\nu} \ {\rm piecewise\ local\ function\ of}\ h_{\mu\nu}.$$

Marco Piva Università di Pisa

In the case of pure gravity the absorptive part can be written as

$$\Gamma_{\rm abs} = -\int \frac{\delta S_{\rm HD}}{\delta g_{\mu\nu}} \Delta g_{\mu\nu}, \quad \Delta g_{\mu\nu} \ {\rm piecewise\ local\ function\ of}\ h_{\mu\nu}.$$

Adding (massless) matter fields of all types the absorptive part is

$$\begin{split} \Gamma_{\rm abs} & = & \frac{i\mu^{-\varepsilon}}{16\pi} \int \sqrt{-g} \left[c \left(R_{\mu\nu} \theta(-\Box_c) R^{\mu\nu} - \frac{1}{3} R \theta(-\Box_c) R \right) + \frac{N_s \eta^2}{36} R \theta(-\Box_c) R \right] \\ & - \int \frac{\delta S_{\rm HD}}{\delta g_{\mu\nu}} \Delta g_{\mu\nu}, \end{split}$$

$$c = \frac{1}{120}(N_s + 6N_f + 12N_v), \quad \eta \text{ nonminimal coupling for scalar fields.}$$

$$N_s = \text{number of scalars};$$

$$N_v = \text{number of vectors};$$

 N_f = number of Dirac fermions plus 1/2 the number of Weyl fermions.

In the end we have a unique, renormalizable and unitary theory of QG in 4 dim.

Marco Piva Università di Pisa

In the end we have a unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if $\Lambda_C = 0$ but realistic models have $\Lambda_C \neq 0$.

It is not known how to construct a scattering theory in the presence of $\Lambda_{\rm C} \neq 0$.

 $\label{eq:complex} It \ could \ be \ due \ to \ our \ lack \ of \ knowledge, \ or \\ the \ cosmological \ constant \ might \ be \ an \ anomaly \ of \ unitarity.$

Marco Piva

In the end we have a unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if $\Lambda_C = 0$ but realistic models have $\Lambda_C \neq 0$.

It is not known how to construct a scattering theory in the presence of $\Lambda_{\rm C} \neq 0$.

 $\label{eq:complex} It \ could \ be \ due \ to \ our \ lack \ of \ knowledge, \ or \\ the \ cosmological \ constant \ might \ be \ an \ anomaly \ of \ unitarity.$

Higher-derivative theories must be defined from the Euclidean space and then Wick rotate.

In the end we have a unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if $\Lambda_C = 0$ but realistic models have $\Lambda_C \neq 0$.

It is not known how to construct a scattering theory in the presence of $\Lambda_{\rm C} \neq 0$.

It could be due to our lack of knowledge, or the cosmological constant might be an anomaly of unitarity.

- Higher-derivative theories must be defined from the Euclidean space and then Wick rotate.
- ▶ The Wick rotation is not analytic. Nevertheless, a new formulation gives well defined amplitudes, physically different from the previous formulations and consistent with unitarity.

In the end we have a unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if $\Lambda_C = 0$ but realistic models have $\Lambda_C \neq 0$.

It is not known how to construct a scattering theory in the presence of $\Lambda_{\rm C} \neq 0$.

It could be due to our lack of knowledge, or the cosmological constant might be an anomaly of unitarity.

- Higher-derivative theories must be defined from the Euclidean space and then Wick rotate.
- The Wick rotation is not analytic. Nevertheless, a new formulation gives well defined amplitudes, physically different from the previous formulations and consistent with unitarity.
- Reconcile renormalizability and unitarity in quantum gravity.

In the end we have a unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if $\Lambda_C = 0$ but realistic models have $\Lambda_C \neq 0$.

It is not known how to construct a scattering theory in the presence of $\Lambda_{\rm C} \neq 0$.

It could be due to our lack of knowledge, or the cosmological constant might be an anomaly of unitarity.

- Higher-derivative theories must be defined from the Euclidean space and then Wick rotate.
- The Wick rotation is not analytic. Nevertheless, a new formulation gives well defined amplitudes, physically different from the previous formulations and consistent with unitarity.
- Reconcile renormalizability and unitarity in quantum gravity.
- It is possible to compute physical quantities in order to discriminate our model from others.

▶ Absorptive part in the presence of massive fields (coming soon).

Marco Piva Università di Pisa

- ▶ Absorptive part in the presence of massive fields (coming soon).
- ▶ Include the scalar degree of freedom in the spectrum (coming soon).

Marco Piva Università di Pisa

- ▶ Absorptive part in the presence of massive fields (coming soon).
- ▶ Include the scalar degree of freedom in the spectrum (coming soon).
- ▶ Handling the presence of the cosmological constant.

Marco Piva

- ▶ Absorptive part in the presence of massive fields (coming soon).
- ▶ Include the scalar degree of freedom in the spectrum (coming soon).
- ▶ Handling the presence of the cosmological constant.
- ▶ Investigate the new possible phenomenology of fundamental interactions due to the new quantization prescription.

- ▶ Absorptive part in the presence of massive fields (coming soon).
- Include the scalar degree of freedom in the spectrum (coming soon).
- ▶ Handling the presence of the cosmological constant.
- Investigate the new possible phenomenology of fundamental interactions due to the new quantization prescription.
- ► A lot of other things...