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Symmetry Group: G  

           Yang-Mills theories

Generators ta ( a=1, …, n; n=dim G) satisfy a Lie algebra: 

Covariant derivative Matter fields Ψf 
Gauge fields Aa

µ 

Field strength/ 
Gauge “curvature” 

Action  

Yang-Mills field eqs. 

Dµ = ∂µ + igA
a
µta
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Bianchi ids. 
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Dirac eqs. (iγ µDµ −mf )Ψ f = 0

Aa
µta = Aµ Aµ → A'µ =U(x)AµU(x)

−1 + iU(x)−1∂µU(x)



Relevant Gauge Groups:  
Electrodynamics G=U(1) 
Electroweak theory G=SU(2) X U(1) 
Cromodynamics G=SU(3)* 
Standard Model G=SU(3) x S(2) x U(1) 
Grand Unified Theories G=SU(5), SO(10), E6, … 

Heterotic String Theory G=E8 x E8 

           Yang-Mills theories

Allow for a successful  
quantization and lead to  
renormalizable theories!   

* Asymptotic freedom & confinement 

Fermions and gauge bosons 



           Brout-Englert–Higgs–Guralnik–Hagen–Kibble Mechanism
                          First Scalar Field Avatar: the Higgs Boson

Spontaneous symmetry  
breaking mechanism 

ê 
SH + SHΨ = d 4x[DµH

+DµH −m2H +H +
λ
2
(H +H )2 ]∫ + d 4x gf HΨ fΨ f

f
∑∫

ê 

H ≠ 0 è Non-vanishing vacuum energy 

ê 
Cosmological constant problem 

mV = gV H ,mf = gf H

H 

V(H,T) 

Higgs field Universal history 

ç h(x) = H (x)− H

Min. V(H,T) 

V ( H , 0) =O( H 4 ) ≅O(246GeV )4 >> ρC ≅ (10
−3eV )4



Invariance under diffs. 
    Matter/Energy Space-time curvature 

           General Relativity

Covariant derivative/ 
Minimal coupling 

Torsionless 
connection 

Riemann tensor/ 
Space-time curvature 

Action (Λ≠0) 

Einstein’s field equations 
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•  CPT	  symmetry	  

	  	  	  
•  Equivalence	  Principle	  
	  

	  Weak	  Equivalence	  Principle	  (WEP)	  	  

	  

	  	  	  Local	  Lorentz	  Invariance	  (LLI)	  	  	  

	  

	  	  	  Local	  Posi=on	  Invariance	  (LPI)	  

	  	  

	  	  	  Strong	  Equivalence	  Principle	  (SEP)	  

	  	  	  	  	  

•  Varia=on	  of	  the	  fundamental	  couplings	  (LPI)	  	  

	  

Fundamental	  Symmetries	  	  
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	  	  	  	  	  	  	  	  New!	  
MICROSCOPE!	  

η ≤10−5

γ1 −γ2 <10
−28 	  	  Polarized	  GRB	  +	  DM	  

	  [O.B.	  &	  Landim	  2018]	  



	  Tales of Mystery and Imagination ���
 ���

(Budapest 2012)

•  Higgs	  boson	  (found!)	  

•  Cosmological	  constant	  problem	  (work	  in	  progress	  for	  the	  last	  40	  years	  …)	  

•  Viola=ons	  of	  Lorentz	  symmetry	  and	  Equivalence	  Principle	  (No	  evidence!)	  

•  Dark	  maZer	  (Observa=onally	  consensual	  &	  plenty	  of	  candidates	  …	  Detec=on)	  

•  Dark	  energy	  (Observa=onal	  tracers)	  	  

•  Dark	  energy	  -‐	  dark	  maZer	  unifica=on	  and	  interac=on	  (Observa=onal	  signatures)	  	  

•  Varia=on	  of	  fundamental	  constants?	  (No	  evidence!)	  

•  Gravita=onal	  Waves	  (Detected!)	  

•  Black	  holes	  (Singulari=es,	  Nature,	  Prolifera=on	  …	  Detected!)	  	  

•  Pioneer	  (NO	  more!)	  and	  Flyby	  anomalies	  (Evidence	  has	  shrank	  considerably)	  	  

•  …	  



Forces	  of	  Nature,	  Unite!	  



Superstring/M-‐theory	  
Second	  Scalar	  Field	  Avatar:	  the	  dilaton	  

•  Unifica=on	  of	  the	  exis=ng	  string	  theories	  in	  the	  context	  of	  M-‐theory	  
–  Spectrum	  of	  closed	  string	  theory	  contains	  as	  zero	  mass	  eigenstates:	  

•  Graviton	  gMN	  	  
•  Dilaton	  Φ	  
•  An=symmetric	  second-‐order	  tensor	  BMN	  

•  Physics	  of	  our	  4-‐dimensional	  world	  
–  Require	  a	  natural	  mechanism	  to	  fix	  the	  value	  of	  the	  dilaton	  field	  
–  Drop	  BMN	  and	  introduce	  fermions	  ψ,	  Yang-‐Mills	  fields	  Aµ	  with	  field	  strength	  	  Fµν
–  Space-‐=me	  described	  by	  the	  metric	  gµν	  
–  Effec=ve	  low-‐energy	  four-‐dimensional	  ac=on	  

•  where	  	  
•  αʹ′	  is	  the	  inverse	  of	  the	  string	  tension	  and	  k	  is	  a	  gauge	  group	  constant	  
•  Constants	  c0,	  c1,	  ...,	  etc.,	  are,	  in	  principle,	  computable	  

^  ^ ^  
 ^ 

[Damour, Polyakov 1994] 
 



•  4q	  =	  16πG	  =	  α’	  /	  4	  	  and	  a	  conformal	  transforma=on	  →	  coupling	  constants	  and	  masses	  
become	  dilaton-‐dependent	  

–  g−2	  =	  k	  B(φ)	  and	  mA	  =	  mA(B(φ))	  

•  Minimal	  coupling	  principle:	  dilaton	  is	  driven	  towards	  a	  local	  minimum	  of	  all	  masses	  
–  Local	  maximum	  of	  B(φ)	  
–  Mass	  dependence	  on	  the	  dilaton	  →	  par=cles	  fall	  differently	  →	  viola=on	  of	  the	  WEP	  

•  In	  the	  solar	  system,	  effect	  is	  of	  order	  Δa/a	  ≃	  10−16	  

•  Almost	  within	  reach	  of	  the	  MICROSCPE	  mission	  …	  	  

•  Within	  reach	  of	  STEP	  (Satellite	  Test	  of	  the	  Equivalence	  Principle)	  mission	  …	  



String Landscape Problem 

10500  vacua 

“Infinite”	  number	  of	  low-‐energy	  models 



Third	  Scalar	  Field	  Avatar:	  	  
Scalar-‐tensor	  theories	  of	  gravity	  

•  Gravita=onal	  coupling	  strength	  depends	  on	  a	  scalar	  field,	  ϕ
–  General	  ac=on	  

–  f(ϕ),	  g(ϕ),	  V	  (ϕ)	  are	  generic	  func=ons,	  qi(ϕ)	  are	  coupling	  func=ons	  

–   Li	  is	  the	  Lagrangian	  density	  of	  the	  maZer	  fields	  
–  Graviton-‐dilaton	  system	  of	  string/M-‐theory	  can	  be	  viewed	  as	  a	  scalar-‐tensor	  theory	  	  

•  	  Brans-‐Dicke	  theory	  

–  Defined	  by	  f(ϕ)	  =	  ϕ,	  g(ϕ)	  =	  ω	  /	  ϕ	  ,	  a	  vanishing	  poten=al	  V(ϕ)	  and	  qi(ϕ)=1	  
–  Non-‐canonical	  kine=c	  term;	  ϕ	  has	  a	  dimension	  of	  energy	  squared	  
–  ω	  marks	  observa=onal	  devia=ons	  from	  GR,	  which	  is	  recovered	  in	  the	  limit	  ω	  →	  ∞	  
–  Sa=fies	  Mach’s	  Principle	  	  
–  G	  ∝	  ϕ−1	  depends	  on	  the	  maZer	  energy-‐momentum	  tensor	  through	  the	  field	  equa=ons	  	  
–  Observa=onal	  bounds:	  |ω|	  >	  40000	  

   [Brans, Dicke 1961] 

[ Will, gr-qc/0504086] 



•  Induced	  gravity	  models:	  

–  f(ϕ)	  =	  ϕ2	  and	  g(ϕ)	  =	  1/2	  

–  Poten=al	  V	  (ϕ)	  allows	  for	  a	  spontaneous	  symmetry	  breaking	  

–  Field	  ϕ	  acquires	  a	  non-‐vanishing	  vacuum	  expecta=on	  value,	  

	  

	  

–  The	  cosmological	  constant	  Λ	  is	  given	  by	  interplay	  of	  V(<0|ϕ|0>)	  and	  all	  other	  contribu=ons	  to	  
the	  vacuum	  energy	  

 [Fujii 1979] 
[Zee 1979] 

 [Adler 1982] 

•  Horndeski	  gravity	  (1974)	  …	  	   	  Can	  be	  scru=nized	  with	  GWs	  
	  	  	  	  	  	  [Arai,	  Nishizawa	  2017]	  
	  	  	  	  	  	  	  	  	  [Kopp	  et	  al.	  2018]	  



Fourth	  Scalar	  Field	  Avatar:	  	  
the	  inflaton	  

Infla=on,	  an	  accelerated	  expansion	  of	  the	  Universe	  which	  took	  place	  about	  10-‐35	  secs.	  awer	  
the	  Big	  Bang,	  which	  accounts	  for	  the	  main	  observa=onal	  features	  of	  the	  Universe:	  	  
isotropy,	  homogeneity,	  horizon,	  flatness,	  absence	  of	  magne=c	  monopoles	  and	  rota=on,	  
and	  the	  origin	  of	  energy	  density	  fluctua=ons	  that	  generated	  the	  first	  galaxies	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   [Guth 1981, Linde 1982, Albrecht & Steinhardt 1982, …] 
 

Model: L = 1
2
∂µϕ ∂µϕ −V (ϕ )

Quantum fluctuations of the inflaton è Energy density fluctuations + gravitational waves! 

V(φ) - your favorite …      

ê 
Observed through the Cosmic Microwave Background Radiation (CMBR) 



Infla=on	  for	  voyeurs	  
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GUTs with Higgs field (troublesome) 

Supergravity-like (fine) 

Chiral superfields 



Infla@on	  and	  the	  CMBR	  

•  Simple inflation:                  (               )   

 
 

•  Slow-roll predictions:  
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ä

a
= � 1

3M2
pl

⇥
⇤̇2 � V (⇤)

⇤
, (5)

and
⇤̈ + 3H⇤̇ + V �(⇤) = 0 . (6)
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the inflaton dominates over its kinetic energy, V ⌃ ⇤̇2. This condition is sustained if |⇤̈| ⇧ |V �|.
These two conditions for prolonged inflation are summarized by restrictions of the form of the
inflaton potential V (⇤) and its derivatives. Quantitatively, inflation requires smallness of the slow-
roll parameters

� ⇥ � Ḣ
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Once these constraints are satisfied, the inflationary process (and its termination) happens gener-
ically for a wide class of models. The slow evolution of the inflaton then produces an exponential
increase in the geometric size of the universe,

a(t) ⌅ a(0)eHt , H ⌅ const . (8)

For inflation to successfully address the Big Bang problems, one must simply ensure that the in-
flationary process produces a su⇤cient number of these ‘e-folds’ of accelerated expansion Ne ⇥
ln(a(tfinal)/a(tinitial)). A typical lower bound on the required number of e-folds is Ne � ln 1026 ⇤ 55
[26, 27, 28].10 Our discussion has so far addressed only the classical and homogeneous evolution of
the inflating system. Small spatial perturbations in the inflaton ⇤ and the metric gµ⇥ are inevitable
due to quantum mechanics; inflation stretches these fluctuations to astronomical scales, eventually
producing large-scale structures including galaxies such as the one we inhabit. Thus inflation is
responsible not just for the universe that we observe, but also for the fact we are here to observe it.

After a su⇤cient number of e-folds have been achieved, the process must terminate. The inflaton
descends towards the minimum of the potential and ‘reheats’ the universe, with ⇤-particles decaying
into radiation, and so initiating the hot Big Bang.

This basic inflation model can be generalized in a variety of ways: several fields collectively
producing the inflaton, non-standard kinetic terms, scalars replaced by axion-like fields, etc. Each of
these models still produces an inflationary period, with the details determining various observables
such as cosmological perturbations, as will be described in further detail below.

There also remain questions of initial conditions and of whether inflation continues eternally.
This latter point may seem paradoxical; if the inflaton completes its evolution as we have just
assumed, how could inflation continue? The answer lies in the fact that inflation produces other

10This estimate of the required number of e-folds assumes GUT scale reheating. For lower reheating
temperatures, fewer e-folds can be su⇤cient.
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increase in the geometric size of the universe,

a(t) ⌅ a(0)eHt , H ⌅ const . (8)

For inflation to successfully address the Big Bang problems, one must simply ensure that the in-
flationary process produces a su⇤cient number of these ‘e-folds’ of accelerated expansion Ne ⇥
ln(a(tfinal)/a(tinitial)). A typical lower bound on the required number of e-folds is Ne � ln 1026 ⇤ 55
[26, 27, 28].10 Our discussion has so far addressed only the classical and homogeneous evolution of
the inflating system. Small spatial perturbations in the inflaton ⇤ and the metric gµ⇥ are inevitable
due to quantum mechanics; inflation stretches these fluctuations to astronomical scales, eventually
producing large-scale structures including galaxies such as the one we inhabit. Thus inflation is
responsible not just for the universe that we observe, but also for the fact we are here to observe it.

After a su⇤cient number of e-folds have been achieved, the process must terminate. The inflaton
descends towards the minimum of the potential and ‘reheats’ the universe, with ⇤-particles decaying
into radiation, and so initiating the hot Big Bang.

This basic inflation model can be generalized in a variety of ways: several fields collectively
producing the inflaton, non-standard kinetic terms, scalars replaced by axion-like fields, etc. Each of
these models still produces an inflationary period, with the details determining various observables
such as cosmological perturbations, as will be described in further detail below.

There also remain questions of initial conditions and of whether inflation continues eternally.
This latter point may seem paradoxical; if the inflaton completes its evolution as we have just
assumed, how could inflation continue? The answer lies in the fact that inflation produces other

10This estimate of the required number of e-folds assumes GUT scale reheating. For lower reheating
temperatures, fewer e-folds can be su⇤cient.
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ä

a
= � 1

3M2
pl

⇥
⇤̇2 � V (⇤)

⇤
, (5)

and
⇤̈ + 3H⇤̇ + V �(⇤) = 0 . (6)

The spacetime experiences accelerated expansion, ä > 0, if and only if the potential energy of
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3.4 Quantum Fluctuations as the Origin of Structure

In Section 3.2 we discussed the classical evolution of the inflaton field. Something remarkable
happens when one considers quantum fluctuations of the inflaton: inflation combined with quantum
mechanics provides an elegant mechanism for generating the initial seeds of all structure in the
universe. In other words, quantum fluctuations during inflation are the source of the primordial
power spectra Ps(k) and Pt(k). In this section we sketch the mechanism by which inflation relates
microscopic physics to macroscopic observables.

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 2: Creation and evolution of perturbations in the inflationary universe. Fluctuations are
created quantum mechanically on sub-horizon scales. While comoving scales, k�1, re-
main constant the comoving Hubble radius during inflation, (aH)�1, shrinks and the
perturbations exit the horizon. Causal physics cannot act on superhorizon perturbations
and they freeze until horizon re-entry at late times.

Quantum fluctuations in quasi-de Sitter
In spatially-flat gauge, perturbations in ⇥ are related to perturbations in the inflaton field value15

�⇧, cf. Eqn. (15) with � = 0

⇥ = �H
�⌅

⌅̇
⇤ �H

�⇧

⇧̇
⇥ �H�t , (26)

where in the second equality we have assumed slow-roll. The power spectrum of ⇥ and the power
spectrum of inflaton fluctuations �⇧ are therefore related as follows

⇧⇥k⇥k0⌃ =
�

H

⇧̇

⇥2

⇧�⇧k �⇧k0⌃ . (27)

Finally, in the case of slow-roll inflation, quantum fluctuations of a light scalar field (m� ⌅ H) in
quasi-de Sitter space (H ⇤ const.) scale with the Hubble parameter H [42]

⇧�⇧k �⇧k0⌃ = (2⇤)3 �(k + k⇥)
2⇤2

k3

�
H

2⇤

⇥2

. (28)

15Intuitively, the curvature perturbation ⇥ is related to a spatially varying time-delay �t(x) for the end of
inflation [41]. This time-delay is induced by the inflaton fluctuation �⇧.
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Finally, it is important to note that the perturbations ⇥⌃ and ⇥gµ⇤ are gauge-dependent, i.e. they
change under coordinate/gauge transformations. Physical questions therefore have to be studied in
a fixed gauge or in terms of gauge-invariant quantities. An important gauge-invariant quantity is
the curvature perturbation on uniform-density hypersurfaces [11]

� ⇤ ⇥ � +
H

⇧̇
⇥⇧ , (15)

where ⇧ is the total energy density of the universe.

3.3.2 Scalar (Density) Perturbations

In a gauge where the energy density associated with the inflaton field is unperturbed (i.e. ⇥⇧⌅ = 0)
all scalar degrees of freedom can be expressed by a metric perturbation ⇤(t,x)12

gij = a2(t)[1 + 2⇤]⇥ij . (16)

Geometrically, ⇤ measures the spatial curvature of constant-density hypersurfaces,R(3) = �4⌃2⇤/a2.
An important property of ⇤ is that it remains constant outside the horizon.13 In a gauge defined
by spatially flat hypersurfaces, ⇤ is the dimensionless density perturbation 1

3⇥⇧/(⇧ + p). Taking
into account appropriate transfer functions to describe the sub-horizon evolution of the fluctuations,
CMB and large-scale structure (LSS) observations can therefore be related to the primordial value
of ⇤. A crucial statistical measure of the primordial scalar fluctuations is the power spectrum of ⇤14

⌅⇤k⇤k0⇧ = (2⌅)3 ⇥(k + k⇥)
2⌅2

k3
Ps(k) . (17)

The scale-dependence of the power spectrum is defined by the scalar spectral index (or tilt)

ns � 1 ⇥ d lnPs

d ln k
. (18)

Here, scale-invariance corresponds to the value ns = 1. We may also define the running of the
spectral index by

�s ⇥
dns

d ln k
. (19)

The power spectrum is often approximated by a power law form

Ps(k) = As(k⌃)
�

k

k⌃

⇥ns(k�)�1+ 1
2�s(k�) ln(k/k�)

, (20)

where k⌃ is the pivot scale.
If ⇤ is Gaussian then the power spectrum contains all the statistical information. Primordial non-

Gaussianity is encoded in higher-order correlation functions of ⇤ (see §5.3). In single-field slow-roll
inflation the non-Gaussianity is predicted to be small [39, 40], but non-Gaussianity can be significant
in multi-field models or in single-field models with non-trivial kinetic terms and/or violation of the
slow-roll conditions.

12In addition to the perturbation to the spatial part of the metric there are fluctuations in gµ0. These are
related to ⇤ by Einstein’s equations.

13This statement is only true for adiabatic perturbations. Non-adiabatic fluctuations can arise in multi-field
models of inflation (see §5 and Appendix A). In that case, ⇤ evolves on super-horizon scales.

14The normalization of the dimensionless power spectrum Ps(k) is chosen such that the variance of ⇤ is
⌅⇤⇤⇧ =

⇤�
0 Ps(k) d ln k.
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3.3.3 Vector (Vorticity) Perturbations

The vector perturbations Si and Fi in equations (13) and (14) are distinguished from the scalar
perturbations B, � and E as they are divergence-free, i.e. ⇧iSi = ⇧iFi = 0. One may show
that vector perturbations on large scales are redshifted away by Hubble expansion (unless they are
driven by anisotropic stress). In particular, vector perturbations are subdominant at the time of
recombination. Since CMB polarization is generated at last scattering the polarization signal is
dominated by scalar and tensor perturbations (§3.5). Most of this section therefore focuses on scalar
and tensor perturbations. However, vector perturbations can be sourced by cosmic strings which
are discussed in §6.1.

3.3.4 Tensor (Gravitational Wave) Perturbations

Tensor perturbations are uniquely described by a gauge-invariant metric perturbation hij

gij = a2(t)[�ij + hij ] , ⇧jhij = hi
i = 0 . (21)

Physically, hij corresponds to gravitational wave fluctuations. The power spectrum for the two
polarization modes of hij ⇥ h+e+

ij + h�e�ij , h ⇥ h+, h�, is defined as

⇤hkhk0⌅ = (2⇥)3 �(k + k⇥)
2⇥2

k3
Pt(k) (22)

and its scale-dependence is defined analogously to (18) but for historical reasons without the �1,

nt ⇥
d lnPt

d ln k
, (23)

i.e.

Pt(k) = At(k�)
�

k

k�

⇥nt(k�)

. (24)

CMB polarization measurements are sensitive to the ratio of tensor power to scalar power

r ⇥ Pt

Ps
. (25)

The parameter r will be of fundamental importance for the discussion presented in this paper. As
we argue in Section 4, its value encodes crucial information about the physics of the inflationary era.

20

3.3.3 Vector (Vorticity) Perturbations

The vector perturbations Si and Fi in equations (13) and (14) are distinguished from the scalar
perturbations B, � and E as they are divergence-free, i.e. ⇧iSi = ⇧iFi = 0. One may show
that vector perturbations on large scales are redshifted away by Hubble expansion (unless they are
driven by anisotropic stress). In particular, vector perturbations are subdominant at the time of
recombination. Since CMB polarization is generated at last scattering the polarization signal is
dominated by scalar and tensor perturbations (§3.5). Most of this section therefore focuses on scalar
and tensor perturbations. However, vector perturbations can be sourced by cosmic strings which
are discussed in §6.1.

3.3.4 Tensor (Gravitational Wave) Perturbations

Tensor perturbations are uniquely described by a gauge-invariant metric perturbation hij

gij = a2(t)[�ij + hij ] , ⇧jhij = hi
i = 0 . (21)

Physically, hij corresponds to gravitational wave fluctuations. The power spectrum for the two
polarization modes of hij ⇥ h+e+

ij + h�e�ij , h ⇥ h+, h�, is defined as

⇤hkhk0⌅ = (2⇥)3 �(k + k⇥)
2⇥2

k3
Pt(k) (22)

and its scale-dependence is defined analogously to (18) but for historical reasons without the �1,

nt ⇥
d lnPt

d ln k
, (23)

i.e.

Pt(k) = At(k�)
�

k

k�

⇥nt(k�)

. (24)

CMB polarization measurements are sensitive to the ratio of tensor power to scalar power

r ⇥ Pt

Ps
. (25)

The parameter r will be of fundamental importance for the discussion presented in this paper. As
we argue in Section 4, its value encodes crucial information about the physics of the inflationary era.

20

The r.h.s. of (27) is to be evaluated at horizon exit of a given perturbation k = aH (see Figure 2).
Inflationary quantum fluctuations therefore produce the following power spectrum for ⇤

Ps(k) =
⌅

H

⌃̇

⇧2 ⌅
H

2⇧

⇧2
�����
k=aH

. (29)

In addition, quantum fluctuations during inflation excite tensor metric perturbations hij [6]. Their
power spectrum (in general models of inflation) is simply that of a massless field in de Sitter space

Pt(k) =
8

M2
pl

⌅
H

2⇧

⇧2
�����
k=aH

. (30)

Slow-roll predictions
Models of single-field slow-roll inflation makes definite predictions for the primordial scalar and

tensor fluctuation spectra. Under the slow-roll approximation one may relate the predictions for
Ps(k) and Pt(k) to the shape of the inflaton potential V (⌃).16 To compute the spectral indices one
uses d ln k ⇤ d ln a (H ⇤ const.). To first order in the slow-roll parameters ⇥ and ⌅ one finds [43]

Ps(k) =
1

24⇧2M4
pl

V

⇥

�����
k=aH

, ns � 1 = 2⌅ � 6⇥ , (31)

Pt(k) =
2

3⇧2

V

M4
pl

�����
k=aH

, nt = �2⇥ , r = 16⇥ . (32)

We note that the value of the tensor-to-scalar ratio depends on the time-evolution of the inflaton
field

r = 16⇥ =
8

M2
pl

⇥ ⌃̇

H

⇤2
. (33)

We also point out the existence of a slow-roll consistency relation between the tensor-to-scalar ratio
and the tensor tilt which, at lowest order, has the form

r = �8nt . (34)

Measuring the amplitudes of Pt (⌅ V ) and Ps (⌅ V �) and the scale-dependence of the scalar
spectrum ns (⌅ V ��) and �s (⌅ V ���) allows a reconstruction of the inflaton potential as a Taylor
expansion around ⌃⇥ (corresponding to the time when fluctuations on CMB scales exited the horizon)

V (⌃) = V |⇥ + V ���
⇥
(⌃� ⌃⇥) +

1
2

V ����
⇥
(⌃� ⌃⇥)2 +

1
3!

V �����
⇥
(⌃� ⌃⇥)3 + · · · , (35)

where (. . . )|⇥ = (. . . )|�=��
. Furthermore, if one assumes that the primordial perturbations are

produced by an inflationary model with a single slowly rolling scalar field, one can fit directly to the
slow-roll parameters, bypassing the spectral indices entirely, and then reconstruct the form of the
underlying potential [44, 45, 46, 47, 48, 49, 50, 51].

16In Appendix A we present the results for general single-field models. In this case, the primordial power
spectra receive contributions from a non-trivial speed of sound cs ⇧= 1 and its time evolution. The slow-roll
results arise as the limit cs ⌅ 1, ċs ⌅ 0.

22

The r.h.s. of (27) is to be evaluated at horizon exit of a given perturbation k = aH (see Figure 2).
Inflationary quantum fluctuations therefore produce the following power spectrum for ⇤

Ps(k) =
⌅

H

⌃̇

⇧2 ⌅
H

2⇧

⇧2
�����
k=aH

. (29)

In addition, quantum fluctuations during inflation excite tensor metric perturbations hij [6]. Their
power spectrum (in general models of inflation) is simply that of a massless field in de Sitter space

Pt(k) =
8

M2
pl

⌅
H

2⇧

⇧2
�����
k=aH

. (30)

Slow-roll predictions
Models of single-field slow-roll inflation makes definite predictions for the primordial scalar and

tensor fluctuation spectra. Under the slow-roll approximation one may relate the predictions for
Ps(k) and Pt(k) to the shape of the inflaton potential V (⌃).16 To compute the spectral indices one
uses d ln k ⇤ d ln a (H ⇤ const.). To first order in the slow-roll parameters ⇥ and ⌅ one finds [43]

Ps(k) =
1

24⇧2M4
pl

V

⇥

�����
k=aH

, ns � 1 = 2⌅ � 6⇥ , (31)

Pt(k) =
2

3⇧2

V

M4
pl

�����
k=aH

, nt = �2⇥ , r = 16⇥ . (32)

We note that the value of the tensor-to-scalar ratio depends on the time-evolution of the inflaton
field

r = 16⇥ =
8

M2
pl

⇥ ⌃̇

H

⇤2
. (33)

We also point out the existence of a slow-roll consistency relation between the tensor-to-scalar ratio
and the tensor tilt which, at lowest order, has the form

r = �8nt . (34)

Measuring the amplitudes of Pt (⌅ V ) and Ps (⌅ V �) and the scale-dependence of the scalar
spectrum ns (⌅ V ��) and �s (⌅ V ���) allows a reconstruction of the inflaton potential as a Taylor
expansion around ⌃⇥ (corresponding to the time when fluctuations on CMB scales exited the horizon)

V (⌃) = V |⇥ + V ���
⇥
(⌃� ⌃⇥) +

1
2

V ����
⇥
(⌃� ⌃⇥)2 +

1
3!

V �����
⇥
(⌃� ⌃⇥)3 + · · · , (35)

where (. . . )|⇥ = (. . . )|�=��
. Furthermore, if one assumes that the primordial perturbations are

produced by an inflationary model with a single slowly rolling scalar field, one can fit directly to the
slow-roll parameters, bypassing the spectral indices entirely, and then reconstruct the form of the
underlying potential [44, 45, 46, 47, 48, 49, 50, 51].

16In Appendix A we present the results for general single-field models. In this case, the primordial power
spectra receive contributions from a non-trivial speed of sound cs ⇧= 1 and its time evolution. The slow-roll
results arise as the limit cs ⌅ 1, ċs ⌅ 0.
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Finally, it is important to note that the perturbations ⇥⌃ and ⇥gµ⇤ are gauge-dependent, i.e. they
change under coordinate/gauge transformations. Physical questions therefore have to be studied in
a fixed gauge or in terms of gauge-invariant quantities. An important gauge-invariant quantity is
the curvature perturbation on uniform-density hypersurfaces [11]

� ⇤ ⇥ � +
H

⇧̇
⇥⇧ , (15)

where ⇧ is the total energy density of the universe.

3.3.2 Scalar (Density) Perturbations

In a gauge where the energy density associated with the inflaton field is unperturbed (i.e. ⇥⇧⌅ = 0)
all scalar degrees of freedom can be expressed by a metric perturbation ⇤(t,x)12

gij = a2(t)[1 + 2⇤]⇥ij . (16)

Geometrically, ⇤ measures the spatial curvature of constant-density hypersurfaces,R(3) = �4⌃2⇤/a2.
An important property of ⇤ is that it remains constant outside the horizon.13 In a gauge defined
by spatially flat hypersurfaces, ⇤ is the dimensionless density perturbation 1

3⇥⇧/(⇧ + p). Taking
into account appropriate transfer functions to describe the sub-horizon evolution of the fluctuations,
CMB and large-scale structure (LSS) observations can therefore be related to the primordial value
of ⇤. A crucial statistical measure of the primordial scalar fluctuations is the power spectrum of ⇤14

⌅⇤k⇤k0⇧ = (2⌅)3 ⇥(k + k⇥)
2⌅2

k3
Ps(k) . (17)

The scale-dependence of the power spectrum is defined by the scalar spectral index (or tilt)

ns � 1 ⇥ d lnPs

d ln k
. (18)

Here, scale-invariance corresponds to the value ns = 1. We may also define the running of the
spectral index by

�s ⇥
dns

d ln k
. (19)

The power spectrum is often approximated by a power law form

Ps(k) = As(k⌃)
�

k

k⌃

⇥ns(k�)�1+ 1
2�s(k�) ln(k/k�)

, (20)

where k⌃ is the pivot scale.
If ⇤ is Gaussian then the power spectrum contains all the statistical information. Primordial non-

Gaussianity is encoded in higher-order correlation functions of ⇤ (see §5.3). In single-field slow-roll
inflation the non-Gaussianity is predicted to be small [39, 40], but non-Gaussianity can be significant
in multi-field models or in single-field models with non-trivial kinetic terms and/or violation of the
slow-roll conditions.

12In addition to the perturbation to the spatial part of the metric there are fluctuations in gµ0. These are
related to ⇤ by Einstein’s equations.

13This statement is only true for adiabatic perturbations. Non-adiabatic fluctuations can arise in multi-field
models of inflation (see §5 and Appendix A). In that case, ⇤ evolves on super-horizon scales.

14The normalization of the dimensionless power spectrum Ps(k) is chosen such that the variance of ⇤ is
⌅⇤⇤⇧ =

⇤�
0 Ps(k) d ln k.
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The parameter r will be of fundamental importance for the discussion presented in this paper. As
we argue in Section 4, its value encodes crucial information about the physics of the inflationary era.
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(Last	  surface	  of	  maZer-‐radia=on	  scaZering,	  circa	  376	  Kys	  awer	  BB)	  	  
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   WMAP 
9 year data 

2 Cosmological Observables: An Overview

2.1 The Concordance Cosmology

It is now conventional to speak of a “concordance cosmology”, the minimal set of parameters whose
measured values characterize the observed universe. These variables are summarized in Table 1,
along with their possible physical origin and current best-fit values [14]. Our ability to construct
and quantify this concordance cosmology marks a profound milestone in humankind’s developing
understanding of the universe. It is remarkable that all current cosmological data sets are consistent
with a simple six-parameter model: {�b,�CDM, h, �} describe the homogeneous background3, while
{As, ns} characterize the primordial density fluctuations.

Label Definition Physical Origin Value
�b Baryon Fraction Baryogenesis 0.0456± 0.0015

�CDM Dark Matter Fraction TeV-Scale Physics (?) 0.228± 0.013
�� Cosmological Constant Unknown 0.726± 0.015

� Optical Depth First Stars 0.084± 0.016

h Hubble Parameter Cosmological Epoch 0.705± 0.013

As Scalar Amplitude Inflation (2.445± 0.096)⇥ 10�9

ns Scalar Index Inflation 0.960± 0.013

Table 1: The parameters of the current concordance cosmology are summarized. We assume a flat
universe, i.e. �b + �CDM + �� ⌅ 1; if not, we must include a curvature contribution �k.
Likewise, the conventional cosmology includes the microwave background and the neutrino
sector. Both these quantities contribute to �total, but at a (present-day) level well below
�b, the smallest of the three components listed above. The number and energy density of
photons is fixed by the observed black body temperature of the microwave background.
The neutrino sector is taken to consist of three massless species, consistent with the
number of Standard Model families [21], with a number density fixed by assuming the
universe was thermalized at scales above 1 MeV. The parameter h describes the expansion
rate of the universe today, H0 = 100h km s�1 Mpc�1. “Spectrum” refers to the primordial
scalar or density perturbations, parameterized by As(k/k�)ns�1, where k� = 0.002 Mpc�1

is a specified but otherwise irrelevant pivot scale.

Our understanding of the structure and evolution of the universe rests upon well-tested physical
principles, including the general-relativistic description of the expanding universe, the quantum
mechanical laws that govern the recombination era, and the Boltzmann equation which allows us
to track the populations of each species. However, most of the parameters in the concordance
model contain information on areas of physical law about which we have no detailed understanding.
The relative fractions of baryons, dark matter and dark energy in the universe are all governed by

3The six-parameter concordance model assumes a spatially flat universe, such that the dark energy density
is given by �� = 1� �b � �CDM.

10

H=100 h kms-1Mpc-1 

– 101 –

Fig. 32.— The nine-year WMAP TT angular power spectrum. The WMAP data are in
black, with error bars, the best fit model is the red curve, and the smoothed binned cosmic

variance curve is the shaded region. The first three acoustic peaks are well-determined.
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•  	  Evidence:	  	  
	  	  	  	  	  	  Dimming	  of	  type	  Ia	  Supernovae	  z	  >	  0.35	  (about	  a	  thousand	  of	  them	  now)	  	  
	  	  	  	  	  	  Accelerated	  expansion	  (nega=ve	  decelera=on	  parameter):	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [PerlmuZer	  et	  al.	  1998;	  Riess	  et	  al.	  1998,	  …]	  
	  

•  	  	  Homogeneous	  and	  isotropic	  expanding	  geometry	  
	  	  	  	  	  	  Driven	  by	  the	  vacuum	  energy	  density	  ΩΛ and	  maZer	  density	  ΩM	  	  
	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  Equa=on	  of	  state:	  	  	  

•  	  Friedmann	  and	  Raychaudhuri	  equa=ons	  imply:	  	  
	  

	  	  	  	  	  q0	  <	  0	  suggests	  an	  invisible	  smooth	  energy	  distribu=on	  
	  
•  	  Candidates:	  	  
	  	  	  	  	  Cosmological	  constant,	  quintessence	  (scalar	  field),	  more	  complex	  equa=ons	  of	  state,	  

etc.	  
	  
	  
	  

Dark	  Energy	  

p = wρ w ≤1

47.020 −≤−≡
a
aaq
!
!!

q0 =
1
2
3w+1( )Ωm −ΩΛ



Fiwh	  Scalar	  Field	  Avatar:	  Quintessence	  

• 	  V=V0	  exp	  (-‐λφ)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Ratra,	  Peebles	  1988;	  WeZerich	  1988;	  Ferreira,	  Joyce	  1998]	  

• 	  V=V0	  φ-‐α	  ,	  α	  >	  0 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Ratra,	  Peebles	  1988]	  

• 	  V=V0	  φ-‐α	  exp	  (	  λφ	  2	  )	  ,	  α	  >	  0 	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Brax,	  Mar=n	  1999,	  2000]	  

• 	  V=V0	  [exp	  (	  Mp	  /	  φ	  )	  –	  1	  ] 	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Zlatev,	  Wang,	  Steinhardt	  1999]	  

• 	  V=V0	  (	  cosh	  λ	  φ	  -‐	  1	  )p 	   	   	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Sahni,	  Wang	  2000]	  	  	  	  	  

• 	  V=V0	  sinh-‐α	  (	  λφ	  ) 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Sahni,	  Starobinsky	  2000;	  Urena-‐López,	  Matos	  2000]	  

• 	  V=V0	  [	  exp	  (	  βφ	  )	  +	  exp	  (	  γφ	  )	  ] 	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Barreiro,	  Copeland,	  Nunes	  2000]	  

• 	  Scalar-‐Tensor	  Theories	  of	  Gravity	  

[Uzan	  1999;	  Amendola	  1999;	  O.B.,	  Mar=ns	  2000;	  Fujii	  2000;	  ...]	  

• 	  V=V0	  exp(	  -‐λφ	  )	  [	  A	  +	  (	  φ	  -‐	  B	  )2	  ] 	   	  	  	  	  	  	  	  	   	  	  	  	  	  [Albrecht,	  Skordis	  2000]	  

• 	  V=V0	  exp(	  -‐λφ	  )	  [	  a	  +	  (	  φ	  -‐	  φ0	  )2	  + b	  (	  ψ	  -‐	  ψ0	  )2+	  c	  φ	  (	  ψ	  -‐	  ψ0	  )2	  +d	  ψ	  (	  φ	  -‐	  φ0	  )2	  ]	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Bento,	  O.B.,	  Santos	  2002]	  

Varying vacuum energy models 
             [Bronstein 1933; O.B. 1986; Ratra, Peebles 1988; Wetterich 1988; …] 
 



Sixth	  Scalar	  Field	  Avatar:	  	  
the	  Generalized	  Chaplygin	  gas	  model	  

Generalized Chaplygin gas 

 

          : Chaplygin gas 

 

Dust 

 

          : stiff  matter 

 

De Sitter 

•  Unified model for Dark Energy and Dark Matter 

Generalized Born-Infeld Action 

 

          : d-brane 

                  [Kamenshchik, Moschella, Pasquier 2001]  
                                [Bilíc, Tupper, Viollier 2002] 
                                   [Bento, O.B., Sen 2002] 



Dark	  Energy	  -‐	  Dark	  MaZer	  Unifica=on:	  
Generalized	  Chaplygin	  Gas	  Model	  

	  

	  
	  

–  	  CMBR	  Constraints	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Bento,	  O.	  B.,	  Sen	  2003,	  2004;	  Amendola	  et	  al.	  2004,	  Barreiro,	  O.B.,	  Torres	  2008]	  

–  	  SNe	  Ia	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [O.	  B.,	  Sen,	  Sen,	  Silva	  2004;	  Bento,	  O.B.,	  Santos,	  Sen	  2005]	  

–  	  Gravita=onal	  Lensing	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Silva,	  O.	  B.	  2003]	  

–  Structure	  Forma=on	  *	  

	  [Sandvik,	  Tegmark,	  Zaldarriaga,	  Waga	  2004;	  Bento,	  O.	  B.,	  Sen	  2004;	  Avelino	  et	  al.	  2004;	  Bilic,	  Tupper,	  Viollier	  2005;	  …]	  

–  Gamma-‐ray	  bursts	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [O.	  B.,	  Silva	  2006,	  Barreiro,	  O.B.,	  Torres	  2010]	  

–  Cosmic	  topology	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Bento,	  O.	  B.,	  Rebouças,	  Silva	  2006]	  

–  Infla=on	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [O.B.,	  Duvvuri	  2006]	  

–  Coupling	  with	  electromagne=c	  coupling	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Bento,	  O.B.,	  Torres	  2007]	  

–  Coupling	  with	  neutrinos	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Bernardini,	  O.B.	  2007,	  2008,	  2010]	  

Background	  tests:	  	  
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 Model 2  
 

• Real scalar field φ: 
   
 
 
  
 

L = 1
2
∂µϕ ∂µϕ −V (ϕ )

V (ϕ ) =V0A
1/α+1[cosh

2/α+1 (α +1)ϕ
2

!

"#
$

%&
+ cosh

−2α /α+1 (α +1)ϕ
2

!

"#
$

%&
]

    [O.B., Sen, Sen, Silva, MNRAS 2004] 

               Hamiltonian formulation 
       [Bernardini, O.B., Annals Physics 2013]             



	  
•  	  Evidence:	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  Flatness	  of	  the	  rota=on	  curve	  of	  galaxies	  
	  	  	  	  	  	  Large	  scale	  structure	  	  
	  	  	  	  	  	  Gravita=onal	  lensing	  	  
	  	  	  	  	  	  N-‐body	  simula=ons	  and	  comparison	  with	  observa=ons	  
	  	  	  	  	  	  Merging	  galaxy	  cluster	  1E	  0657-‐56	  
	   	  	  Massive	  Clusters	  Collision	  Cl	  0024+17	  
	  	  	  	  	  	  Dark	  core	  of	  the	  cluster	  A520	   	  
	  	  	  
•  Cold	  Dark	  MaZer	  (CDM)	  Model	  	  
	  
	  	  Weakly	  interac=ng	  non-‐rela=vis=c	  massive	  par=cle	  at	  decoupling	  

	  
	  
•  Candidates:	  	  
	  
	  	  	  	  	  Neutralinos	  (SUSY	  WIMPS),	  axions,	  scalar	  fields,	  self-‐interac=ng	  scalar	  par=cles	  

(adamastor	  par=cle),	  etc.	  
	  
	  	  	  	  	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

Dark	  MaZer	  



7th	  &	  8th	  Scalar	  Field	  Avatars:	  Dark	  Energy	  –	  Dark	  MaZer	  Interac=on	   

Results: 

Two-scalar field model:    
 

[O.B., Carrilho, Páramos, Phys. Rev. D 86, 2012] 

2

parameter and the DE-DM coupling is fully determined.
Furthermore, this is an elegant and straightforward way
to link DM and DE with more fundamental physics mod-
els from which these components might stem.
A relevant property of these interaction models is the

existence of an extra force between dark matter parti-
cles, not present in noninteracting models. This force
can influence structure formation, creating an extra bias
between baryon and dark matter fluctuations, which may
in principle be measured through tests of the equivalence
principle [9, 21]. Furthermore, the varying dark matter
mass can also have an influence in the anisotropy spec-
trum of the CMB since, among other effects, it may alter
the ratio between dark matter and radiation densities at
last scattering. This severely constrains the simplest in-
teraction models, in which the DM mass is a linear func-
tion of the DE field, but its effects are still to be studied
in detail for more complex models [22].
In this paper we present a scalar field interaction model

with an interacting potential V (φ,χ), that incorporates
features of some quintessence models inspired in funda-
mental physics theories. We then characterize the phys-
ical solutions and ascertain the role of the interaction
term in the cosmological evolution. The main equations
of the model are derived in Sec. II. Their numerical so-
lutions are presented in Sec III, along with the relevant
physical results. Section IV concludes with a discussion
of the obtained results and a brief outlook on future de-
velopments.

II. INTERACTION MODEL

A. Basic equations

We consider two interacting canonical real scalar fields
φ and χ, whose Lagrangian density is given by3

Ld = −
1

2
gµν(∂µφ∂νφ+ ∂µχ∂νχ)− V (φ,χ) . (2)

Guided by the cosmological principle, we assume the ge-
ometry of the Universe to be given by a flat Robertson-
Walker metric with line element

ds2 = −dt2 + a2(t)
(

dr2 + r2dΩ2
S2

)

, (3)

with a(t) being the scale factor, normalized so that at
present a(t0) = 1 for convenience, and dΩ2

S2 the line el-
ement for the 2-dimensional sphere S2. For the same
reason, we consider both scalar fields to be homogeneous

3 We use the (−,+,+,+) metric signature and natural units with
! = c = 8πG = 1. As a consequence all masses come in terms of
the reduced Planck mass, Mp ≡ MPl/

√
8π.

and isotropic, leading to the following field equations:

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 , (4)

χ̈+ 3Hχ̇+
∂V

∂χ
= 0 , (5)

where H = ȧ/a is the expansion rate. From the stress-
energy tensor we obtain the usual expressions for the
pressure and energy density,

ρd =
1

2
φ̇2 +

1

2
χ̇2 + V (φ,χ) , (6)

pd =
1

2
φ̇2 +

1

2
χ̇2 − V (φ,χ) .

We also consider a Universe filled with perfect fluids for
matter and radiation, which we consider to be uncoupled
and consequently to evolve as ρm ∝ a−3 and ρr ∝ a−4,
respectively. Finally, we consider the Friedmann equa-
tion,

H2 =
1

3

(

ρm + ρr +
1

2
φ̇2 +

1

2
χ̇2 + V (φ,χ)

)

. (7)

We introduce the density parameters Ωi = ρi/3H2, in
terms of which the usual deceleration parameter reads

q ≡ −
äa

ȧ2
=

1

2
(1 + Ωr + 3wdΩd) , (8)

where wd = pd/ρd is the EOS parameter for the fields.

B. Interaction Potential

We shall be interested in studying the following poten-
tial:

V (φ,χ) = e−λφP (φ,χ) +
1

2
m2χ2 , (9)

where P (φ,χ) is a polynomial in φ and χ and m is
the dark matter bare mass. Such exponential couplings
are inspired from fundamental theories like string or M-
theory, or N = 2 supergravity in higher dimensions [23–
25]. Notice that the interaction of chiral superfields in the
context of N=1 supergravity inflationary models [26, 27]
has many common features with the present model. Fur-
thermore, the exponential term for dark energy is the
simplest way to vary its contributions from very high
energy to the present and to respect the bond for nucle-
osynthesis [28]. Hence under these conditions, one con-
siders the general interaction term with an exponential
multiplied by a polynomial of φ and χ.
The polynomial P (φ,χ) can be separated into the in-

teracting and noninteracting terms, P (φ,χ) = Pφ(φ) +
Pint(φ,χ). For the noninteracting part, we choose the
potential first studied in Ref. [29],

Pφ(φ) = A+ (φ− φ0)
2 . (10)

4

derivative, we see that the interaction is irrelevant. On
the other hand, for small values of φ, the term with m2

can be neglected. Assuming the polynomial P̃ (φ) to be of
order one, the transition value φc between the two phases
can be estimated by setting m2eλφ = 1, which results in

φc ≈ −
2

λ
lnm . (23)

Thus, for φ < φc, the interaction is relevant, becom-
ing subdominant as the value of the scalar field grows.
We are interested in studying the late time behavior of
the Universe, near the stage of accelerated expansion.
It is relevant then to estimate whether the interaction
is important at late times. The value of the DE field
near the present φ(0) can be estimated by assuming that
ρde0 ≈ Vde(φ(0)) and that it is close to the critical density
ρc0, which gives

φ(0) ≈ −
1

λ
ln ρc0 . (24)

Requiring that φc ≥ φ(0), yields a rather low bound for
the bare mass,

m !
√
ρc0 ∼ 10−60 . (25)

Thus, this analysis hints that the effects of the interac-
tion will not be detected at the present unless the DM
bare mass is unnaturally small. If P̃ (φ) is O(10s), this
estimate increases by roughly 2s orders of magnitude,
which would only shift the naturalness problem to P̃ (φ).
Another important situation is the onset of the os-

cillatory phase: we must establish the φ field value for
which M2(φ) " H2. In order to obtain it, we use the
well-known result [1] that exponential potentials lead to
scaling solutions. Albeit this is not strictly valid in our
model, since it is not a pure exponential, we proceed by
assuming a scaling behavior before φ falls in the minimum
of the potential, since the polynomial P (φ,χ) varies little
during that stage. In that case, we have

Ωde ≈
3(w + 1)

λ2
⇒ Vde ∼

9(w + 1)

λ2
H2 , (26)

in which w is the effective EOS parameter for the com-
bination of all the components. We can then rewrite the
oscillation condition as

9(w + 1)

λ2

m2eλφ + 2P̃

Pφ
" 1 . (27)

We recall that if the scaling occurs during nucleosyn-
thesis, then λ " 10 [28]. With such a value for λ and
assuming that P̃ ∼ Pφ, the l.h.s. is always less than
unity when the interaction is relevant, meaning that dur-
ing that stage the field χ has not begun oscillating; con-
versely, one expects oscillations to start as the interaction
becomes unimportant. In particular, for the threshold
mass of Eq. (25), the field may not oscillate until the

present, implying the absence of dark matter as such in
the Universe in the past.
Confronted with these problems, we modify the model

so to allow for a difference in the behavior of both expo-
nentials, i.e. we choose instead,

V (φ,χ) =e−λφ
(

A+ (φ− φ0)
2
)

(28)

+e−λ̄φP̃ (φ)χ2 +
1

2
m2χ2 .

with λ̄ ̸= λ. This relaxes the constraint on m to the less
strict condition

m ! ρλ̄/2λc0 . (29)

This modification evades the problem associated to the
onset of oscillations, as these start while the interaction
is still relevant.
A different modification could have been made, by dis-

carding the assumption that the parameters B, C and
D in P̃ (φ) are O(1) in terms of Mp. However, a solu-
tion to the problems mentioned above would require that
they are increased by several orders of magnitude: this
is rather unnatural, since they are already at the Planck
scale.

III. NUMERICAL RESULTS

Let us start by rewriting the equations in terms of the
number of e-folds N = ln a and, for convenience, use the
rescaled variables of Ref. [32],

H̃ =
H

H0
e2N , Φ̃ =

φ̇

H0
e2N , X̃ =

χ̇

H0
e2N , (30)

where H0 = 72 km/s/Mpc is the present value of the
Hubble constant. Thus, Eqs. (4), (5) and (7) now read

H̃2 = Ωm0e
N + Ωr0 +

1

6
Φ̃2 +

1

6
X̃2 +

e4N

3H2
0

V (φ,χ) ,

H̃(Φ̃′ + Φ̃) +
e4N

H2
0

∂V

∂φ
= 0 , (31)

H̃(X̃ ′ + X̃) +
e4N

H2
0

∂V

∂χ
= 0 ,

where the primes denote derivatives with respect to N .
These changes improve the numerical robustness of the
system by shortening the range of values taken by the
new variables. From the onset of the oscillatory phase we
shall use the averaged equations instead, which become

H̃2 = Ωm0e
N + Ωr0 +

1

6
Φ̃2 +

e4N

3H2
0

Veff(φ) , (32)

H̃(Φ̃′ + Φ̃) +
e4N

H2
0

∂Veff

∂φ
= 0 .

We now integrate the equations from N = −70 to N =
5, ranging from the Planck epoch to some time in the

4
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In this paper, we study the effects of an interaction between dark matter and dark energy through
a two scalar field model with a potential V (φ,χ) = e−λφP (φ,χ), where P (φ,χ) is a polynomial.
We show that the cosmic expansion dynamics of the Universe is reproduced for a large range of
the bare mass of the dark matter field and that there exist solutions with transient accelerated
expansion. A modification in the exponential behavior of the potential is studied, with important
physical implications, including the possibility of more realistic transient acceleration solutions.

PACS numbers: 95.35.+d, 95.36.+x, 98.80.-k, 98.80.Cq

I. INTRODUCTION

A large number of models has been proposed to ex-
plain the dark sector of the Universe (see Refs. [1, 2] for
reviews on dark energy (DE) and dark matter (DM), re-
spectively). Most of those models assume that the dark
components are noninteracting and treat them as fluids.
However, there are neither theoretical arguments forbid-
ding such an interaction, nor there exist sufficient ob-
servational results to rule it out. It is then just natural
to study the general situation in which dark matter and
dark energy are coupled, in order to gain a deeper insight
into the nature of these components1. This is motivated
by the theoretically appealing idea that the full dark sec-
tor can be treated in a single framework. Moreover, the
fact that the present energy densities of dark energy and
matter are observed to be the same order of magnitude,
suggests a connection between them.
An intimate connection between DE and DM is natu-

rally expected in unification models, such as for instance
the Chaplygin gas model and its generalizations [5–7].
Actually, in the context of this model, an assumption
about the equation of state (EOS) of DE allows to extract
an explicit interaction between the dark components [8].
A map between the generalized Chaplygin gas (GCG)
model and the interaction model to be discussed in the
following paragraph can be found in Ref. [9].
A general way to describe the DM-DE interaction is to

introduce an energy exchange term Q in the conservation
equations as follows:

ρ̇de + 3H(ρde + pde) = Q , ρ̇dm + 3Hρdm = −Q . (1)

One may phenomenologically study this interaction by
withholding any assumptions about the nature of the

∗ orfeu.bertolami@fc.up.pt; http://web.ist.utl.pt/orfeu.bertolami/;
Also at Instituto de Plasmas e Fusão Nuclear

† pedro.carrilho@ist.utl.pt
‡ paramos@ist.edu; http://web.ist.utl.pt/jorge.paramos/
1 Self-interacting dark matter has been discussed in Refs. [3, 4].

dark sector and treat it straightforwardly as a two-
component fluid. The coupling Q is usually taken to
be of the form Q = δdeHρde+ δdmHρdm, where H is the
expansion rate and δi are coupling terms. This treatment
is encountered in many observational studies [9, 10].
An alternative path to study the interaction assumes

that dark energy can be described by a scalar field
φ in interaction with a fluid, the so-called interacting
quintessence model: this is the case for the models of
Refs. [11, 12], in which the coupling is chosen to be
Q = f(φ)φ̇ρ, where f(φ) is a generic function. A simi-
lar mechanism is the so-called chameleon model [13]. In
these cases the field interacts with every component of
the Universe, leading to observable effects in solar sys-
tem tests of gravity. A simple modification is possible
using a much smaller coupling for baryons than for DM
as in Ref. [14], or simply substituting ρ with ρdm, so that
DE couples only to DM. That is the case for the model
in Ref. [15], in which the quintessence potential and the
interaction term are derived from scaling assumptions.
A more fundamental approach to tackle the interaction

treats DE and DM as fields, which abandons the need for
fluids in the treatment of these components. Usually this
is achieved through two new scalar fields, φ for DE and
χ for DM [16–18]. An interaction potential Vint(φ,χ) is
then introduced to account for the energy exchange. Ul-
timately these models also lead to the coupling of the
interacting quintessence scenario, as long as the inter-
action is in the form of a DM mass term. This is to
be expected, as will be derived in the following sections.
These are then similar to the so-called VAMP models [19]
in which a particle is introduced whose mass varies with
the quintessence field2.
The advantages of this type of approach are manifold:

the full set of coupled equations can be found from an
action and consequently the functional form of the EOS

2 These models can also involve fermions such as the neutrinos, in
the so-called MaVaN models, see Ref. [20] and Refs. therein.

3

As for the interacting term, an obvious choice is to re-
quire the χ field to be equivalent to a fluid of nonrela-
tivistic matter, i.e. with negligible pressure. We recall
that, according to Ref. [30], scalar field oscillations in a
potential V (χ) = aχn with frequency (i.e. mass) much
greater than the expansion rate H , behave like a fluid
with an average EOS given by

⟨pχ⟩ =
n− 2

n+ 2
⟨ρχ⟩ . (11)

Notice that this is equivalent to the virial theorem for
power-law potentials, i.e.

〈

1
2
χ̇2

〉

= n
2
⟨V (χ)⟩. Thus, in

order to ensure that χ is pressureless at all times, we
must set n = 2. A main feature of the present model is
that the interaction with the field φ leads to an oscillation
with varying frequency. Note however that, unlike pre-
heating models (see for example Ref. [31]), which exhibit
parametric resonance, the frequency here changes slowly.
In this case the computations discussed in Ref. [30] for a
constant frequency hold. To finish our discussion of the
potential we rewrite it with an explicit DM varying mass
term in terms of the DE field,

V (φ,χ) = Vde(φ) + Vdm(φ,χ) , (12)

with

Vde(φ) = e−λφ
(

A+ (φ− φ0)
2
)

, (13)

Vdm(φ,χ) =
1

2
M2(φ)χ2 ,

where the mass function M2(φ) is given in our model by
M2(φ) = m2 + 2P̃ (φ)e−λφ and the polynomial for P̃ is
written as

P̃ (φ) = B + Cφ+Dφ2 , (14)

where B, C and D are order unit parameters in terms of
the appropriate powers of the reduced Planck mass.

C. Average Evolution Equations

Given the high frequency of the oscillations, it is rather
infeasible to integrate the χ equation numerically. For
that reason we consider only averages of the field. In
particular, we shall derive the equation for the dark mat-
ter density and work with that instead. First, we define
the dark matter density and pressure from the EOS found
in Eq. (11),

ρdm =
1

2
χ̇2 +

1

2
M2(φ)χ2 , (15)

pdm =
1

2
χ̇2 −

1

2
M2(φ)χ2 .

By construction, their averages over an oscillation cycle
read

⟨ρdm⟩ =
〈

χ̇2
〉

= M2(φ)
〈

χ2
〉

, ⟨pdm⟩ = 0 . (16)

Next, we multiply Eq. (5) by χ̇ and insert a term
φ̇V ′

dm(φ) to obtain

d

dt

(

1

2
χ̇2 + Vdm(φ,χ)

)

+ 3Hχ̇2 − φ̇
∂Vdm

∂φ
= 0 . (17)

Taking the average yields

ρ̇dm + 3Hρdm −
1

2
φ̇
∂M2(φ)

∂φ

〈

χ2
〉

= 0 , (18)

where we have written ⟨ρdm⟩ as ρdm and ⟨ρ̇dm⟩ as ρ̇dm,
since the density is not sensible to the oscillations, to
a good approximation. This can be easily seen by as-
suming the rapid oscillations of χ(t) are described by a
sinusoidal function, and hence the density depends only
on the amplitude of the oscillations, which is not affected
by a cyclic average.
Substituting the average of χ2 given by Eq. (16), we

obtain

ρ̇dm + 3Hρdm =
1

2
φ̇

1

M2(φ)

∂M2(φ)

∂φ
ρdm . (19)

So, as previously mentioned, the equivalence relation be-
tween coupled quintessence and the field theory approach
is established via the relationship

f(φ) =
1

2

∂ lnM2(φ)

∂φ
. (20)

Furthermore, Eq. (19) can be formally solved as a func-
tion of φ, through

ρdm(φ, a) = n0a
−3M(φ) , (21)

where n0 is an integration constant. Notice this corre-
sponds to the statement that ρ = nM , with M being the
DM mass and n the number density, proportional to a−3.
With this solution, the dynamics is reduced to a single
differential equation for φ: this can be obtained from Eq.
(4), with V being replaced by an effective potential Veff

given by

Veff(φ, a) = Vde(φ) + ρdm(φ, a) . (22)

These equations are valid as long as M2(φ) ≫ H2,
otherwise the oscillation regime is not relevant and we
must also solve Eq. (5).

D. Modified Potential

Having defined the potential and derived the relevant
equations, we are now ready to draw some general con-
clusions about the importance of each of the terms of
the potential. As will become clear below, such results
motivate a modification of the potential.
First, notice that for a sufficiently large φ we have

M2(φ) ≈ m2. At this regime, examining ρdm and its
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tween coupled quintessence and the field theory approach
is established via the relationship

f(φ) =
1

2

∂ lnM2(φ)

∂φ
. (20)

Furthermore, Eq. (19) can be formally solved as a func-
tion of φ, through

ρdm(φ, a) = n0a
−3M(φ) , (21)

where n0 is an integration constant. Notice this corre-
sponds to the statement that ρ = nM , with M being the
DM mass and n the number density, proportional to a−3.
With this solution, the dynamics is reduced to a single
differential equation for φ: this can be obtained from Eq.
(4), with V being replaced by an effective potential Veff

given by

Veff(φ, a) = Vde(φ) + ρdm(φ, a) . (22)

These equations are valid as long as M2(φ) ≫ H2,
otherwise the oscillation regime is not relevant and we
must also solve Eq. (5).

D. Modified Potential

Having defined the potential and derived the relevant
equations, we are now ready to draw some general con-
clusions about the importance of each of the terms of
the potential. As will become clear below, such results
motivate a modification of the potential.
First, notice that for a sufficiently large φ we have

M2(φ) ≈ m2. At this regime, examining ρdm and its
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FIG. 4. Evolution of log ρde for m = 10−60 with the initial
conditions χi = 1 (dotted), χi = 2.609 (dashed) and χi = 10
(dot-dashed), as compared to background density log(ρm+ρr)
(solid) and to the noninteracting case (superimposed with the
χi = 1, since it is indistinguishable).

FIG. 5. Results for m = 5.9× 10−57 showing the evolution of
the relative densities Ωde (solid), Ωdm (dashed), Ωr (dotted)
and Ωm (dot-dashed).

fixing the mass at m = 10−15 ∼ 1 TeV. We obtain some-
what similar results to those already found for masses
m > 10−55 for a large range of λ̄, as seen in Figs. 7 and
8. As before, there are no relevant effects at the present
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shown in Figs. 9 and 10. This transient solution does
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of (λ̄,m) and their values are plotted in Fig. 11. The
expression found for the “transient line” is

λ̄ = −0.1625 log(m) + 0.3706 . (33)

This expression is rather similar to Eq. (23), changing
λ to λ̄, since the slope is −2 ln 10/φ(0) ≈ −2 ln 10/φ0 =

FIG. 6. Results for m = 5.9 × 10−57 showing the evolution
of the deceleration parameter q (dashed) and the DE EOS
parameter wde (solid). Also shown is the effect of the oscil-
lations on the deceleration parameter before log a = −1.3; at
that moment the oscillations are averaged and henceforth the
evolution of the relevant quantities is obtained in terms of Eq.
(32).

FIG. 7. Evolution of log ρdm for m = 10−15 for λ̄ = 9.5
(non-interacting case, dotted), λ̄ = 6.5 (dashed), λ̄ = 4.5
(dot-dashed) and λ̄ = 2.8 (double-dot-dashed), as compared
to background density log(ρm + ρr) (solid).

−0.16102. This is expected, since in these transient so-
lutions we anticipate the interaction to be relevant just
until the present. As a consequence, it is not surpris-
ing that the smaller the mass, the greater is the required
value for λ̄.
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teresting, since in situations with mass smaller than
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interaction: the addition of ρdm to the effective potential
raises the minimum of Vde, thus allowing for the field to
escape and continue to roll down the exponential. How-

3

As for the interacting term, an obvious choice is to re-
quire the χ field to be equivalent to a fluid of nonrela-
tivistic matter, i.e. with negligible pressure. We recall
that, according to Ref. [30], scalar field oscillations in a
potential V (χ) = aχn with frequency (i.e. mass) much
greater than the expansion rate H , behave like a fluid
with an average EOS given by

⟨pχ⟩ =
n− 2

n+ 2
⟨ρχ⟩ . (11)

Notice that this is equivalent to the virial theorem for
power-law potentials, i.e.

〈

1
2
χ̇2

〉

= n
2
⟨V (χ)⟩. Thus, in

order to ensure that χ is pressureless at all times, we
must set n = 2. A main feature of the present model is
that the interaction with the field φ leads to an oscillation
with varying frequency. Note however that, unlike pre-
heating models (see for example Ref. [31]), which exhibit
parametric resonance, the frequency here changes slowly.
In this case the computations discussed in Ref. [30] for a
constant frequency hold. To finish our discussion of the
potential we rewrite it with an explicit DM varying mass
term in terms of the DE field,

V (φ,χ) = Vde(φ) + Vdm(φ,χ) , (12)

with

Vde(φ) = e−λφ
(

A+ (φ− φ0)
2
)

, (13)

Vdm(φ,χ) =
1

2
M2(φ)χ2 ,

where the mass function M2(φ) is given in our model by
M2(φ) = m2 + 2P̃ (φ)e−λφ and the polynomial for P̃ is
written as

P̃ (φ) = B + Cφ+Dφ2 , (14)

where B, C and D are order unit parameters in terms of
the appropriate powers of the reduced Planck mass.

C. Average Evolution Equations

Given the high frequency of the oscillations, it is rather
infeasible to integrate the χ equation numerically. For
that reason we consider only averages of the field. In
particular, we shall derive the equation for the dark mat-
ter density and work with that instead. First, we define
the dark matter density and pressure from the EOS found
in Eq. (11),

ρdm =
1

2
χ̇2 +

1

2
M2(φ)χ2 , (15)

pdm =
1

2
χ̇2 −

1

2
M2(φ)χ2 .

By construction, their averages over an oscillation cycle
read

⟨ρdm⟩ =
〈

χ̇2
〉

= M2(φ)
〈

χ2
〉

, ⟨pdm⟩ = 0 . (16)

Next, we multiply Eq. (5) by χ̇ and insert a term
φ̇V ′

dm(φ) to obtain

d

dt

(

1

2
χ̇2 + Vdm(φ,χ)

)

+ 3Hχ̇2 − φ̇
∂Vdm

∂φ
= 0 . (17)

Taking the average yields

ρ̇dm + 3Hρdm −
1

2
φ̇
∂M2(φ)

∂φ

〈

χ2
〉

= 0 , (18)

where we have written ⟨ρdm⟩ as ρdm and ⟨ρ̇dm⟩ as ρ̇dm,
since the density is not sensible to the oscillations, to
a good approximation. This can be easily seen by as-
suming the rapid oscillations of χ(t) are described by a
sinusoidal function, and hence the density depends only
on the amplitude of the oscillations, which is not affected
by a cyclic average.
Substituting the average of χ2 given by Eq. (16), we

obtain

ρ̇dm + 3Hρdm =
1

2
φ̇

1

M2(φ)

∂M2(φ)

∂φ
ρdm . (19)

So, as previously mentioned, the equivalence relation be-
tween coupled quintessence and the field theory approach
is established via the relationship

f(φ) =
1

2

∂ lnM2(φ)

∂φ
. (20)

Furthermore, Eq. (19) can be formally solved as a func-
tion of φ, through

ρdm(φ, a) = n0a
−3M(φ) , (21)

where n0 is an integration constant. Notice this corre-
sponds to the statement that ρ = nM , with M being the
DM mass and n the number density, proportional to a−3.
With this solution, the dynamics is reduced to a single
differential equation for φ: this can be obtained from Eq.
(4), with V being replaced by an effective potential Veff

given by
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These equations are valid as long as M2(φ) ≫ H2,
otherwise the oscillation regime is not relevant and we
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1. Introduction

A variety of observational evidence indicates that the expansion of the universe is accelerating,
for which a promising class of explanations is scalar field “dark energy” with negative pressure [1].
Such a field is expected to couple to Standard Model particles with gravitational strength and would
mediate a new “fifth” force, but such forces are excluded by experiments on a wide range of scales.
Three known ways to hide dark energy-mediated fifth forces include: weak or pseudoscalar cou-
plings between dark energy and matter [2]; effectively weak couplings locally [3]; and an effec-
tively large field mass locally, as in chameleon theories [4, 5, 6].

Chameleons are scalar (or pseudoscalar) fields with a nonlinear potential and a coupling to the
local energy density. They evade fifth force constraints by increasing their effective mass in high-
density environments, while remaining light in the intergalactic medium. Gravity experiments in
the lab [7] and in space [4, 5] can exclude chameleons with gravitational strength matter couplings,
but strongly coupled chameleons evade these constraints [8, 9]. Casimir force experiments rule out
strongly coupled chameleons [10], but are ineffective for a large class of potentials commonly used
to model dark energy. Collider data exclude extremely strongly coupled chameleons [11].

Photon-coupled chameleons may be detected through laser experiments [12] or excitations in
radio frequency cavities [13]. In laser experiments, photons travelling through a vacuum cham-
ber immersed in a magnetic field oscillate into chameleons. They are then trapped through the
chameleon mechanism by the dense walls and windows of the chamber since their higher effective
mass within those materials creates an impenetrably large potential barrier [12, 14, 15]. After a pop-
ulation of chameleons is produced, the laser is turned off and a photodetector exposed in order to
observe the photon afterglow as trapped chameleons oscillate back to photons. The original Gam-
meV experiment included a search for this afterglow and set limits on photon/chameleon couplings
below collider constraints for a limited set of dark energy models [12]. The GammeV Chameleon
Afterglow Search (CHASE) is a new experiment to search for photon coupled chameleons [16]. Its
results bridge the gap between GammeV [12] and collider constraints, improves sensitivity to both
matter and photon couplings to chameleons, and probes a broad class of chameleon models.

2. Chameleon Models

We consider actions of the form

S=
⇤

d4x
⌅
�g

�1
2

M2
PlR� 1

2
�µ⇥� µ⇥ �V (⇥)� 1

4
e�⇤ ⇥/MPlFµ⇧Fµ⇧ +Lm(e2�m⇥/MPlgµ⇧ ,⌥ i

m)
⇥

(2.1)

where the reduced Planck mass MPl = 2.43⇤ 1018 GeV, Lm the Lagrangian for matter fields ⌥ i
m,

and �⇤ and �m are dimensionless chameleon couplings to photons and matter respectively (often
expressed as g⇤ = �⇤/MPl and gm = �m/MPl). We assume universal matter couplings.

The dynamics of this field are governed by an effective potential that depends on a potential
V (⇥), the background matter density ⌃m, and the electromagnetic field Lagrangian density ⌃⇤ =

Fµ⇧Fµ⇧/4 = (B2 �E2)/2 (for pseudoscalars ⌃⇤ = Fµ⇧ F̃µ⇧/4 = ⌅B ·⌅E):

Veff(⇥ ,⌅x) =V (⇥)+ e
�m⇥
MPl ⌃m(⌅x)+ e

�⇤ ⇥
MPl ⌃⇤(⌅x). (2.2)
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A well-studied class of chameleon models has a potential of the form [6]

V (⇥) = M4
Le⇧

�
⇥

ML

⇥N

⇤ M4
L

⇧
1+⇧

⇤
⇥

ML

⌅N
⌃
. (2.3)

where N is a real number and ML = ⌃1/4
de ⇤ 2.4⇥ 10�3 eV is the mass scale of the dark energy

density ⌃de and ⇧ is a dimensionless constant. The constant term in this potential causes cos-
mic acceleration that is indistinguishable from a cosmological constant for cosmological surveys.
However, the local dynamics from the power-law term can be probed in the laboratory.

Following the derivations in [17, 18] the conversion probability between photons and chameleons
is

P⇤⌅⇥ =

⇤
2⌥�⇤B
MPlm2

eff

⌅2

sin2
⇤

m2
eff⇧

4⌥

⌅
k̂⇥ (x̂⇥ k̂). (2.4)

Here, ⌥ is the particle energy, meff =
⌥

Veff,⇥⇥ is the effective chameleon mass in the environment,
⇧ is the distance travelled through the magnetic field, and k̂ is the particle direction.

When a photon/chameleon wavefunction strikes an opaque surface of the vacuum cham-
ber, there is a model-dependent phase shift �ref between the two components and a reduction
in photon amplitude due to absorption. On the other hand, a glass window performs a quan-
tum measurement—chameleons reflect while photons are transmitted. The velocities of trapped
chameleons quickly become isotropic through surface imperfections. The decay rate of a chameleon
to a photon Gdec,⇤ , is found by averaging over initial directions and positions. The observable af-
terglow rate per chameleon Gaft is found by averaging over those trajectories that allow a photon
to reach the detector. Once the geometry of an experiment is defined, these rates can be computed
numerically [18].

A single parameter ⌅ can be used to describe the chameleon effect. If the chameleon mass in
the chamber is dominated by the matter coupling, then meff µ ⌃⌅

m where ⌅ = (N�2)/(2N�2) [18].
The largest value of ⌅ with integer N is ⌅ = 3/4 for N =�1; ⇥ 4 theory (N = 4), has ⌅ = 1/3. We
do not consider 0 < N < 2 since their potentials are either unbounded from below or do not exhibit
the chameleon effect.

3. Apparatus

The design of the CHASE apparatus is shown in Fig. 1. In addition to the windows at the
ends of the vacuum chamber, we centered two glass windows in the cold bore of a Tevatron dipole
magnet which divide the magnetic field into three partitions of lengths 1.0 m, 0.3 m, and 4.7 m. The
shorter partition lengths provide sensitivity to larger-mass chameleons.

For a fixed magnetic field there are limits to the smallest and largest detectable �⇤—small �⇤
produce small afterglow signals while with large �⇤ the chameleon population will decay before
the detector can be exposed. We improve our sensitivity to large �⇤ by operating at a variety of
lower magnetic fields, which lengthen the decay time of the chameleon population and provide
overlapping regions of sensitivity. A mechanical shutter (chopper) modulates any afterglow signal
allowing a measurement of the PMT dark rate and improving sensitivity to low afterglow rates
(small �⇤ ).
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1. Introduction

A variety of observational evidence indicates that the expansion of the universe is accelerating,
for which a promising class of explanations is scalar field “dark energy” with negative pressure [1].
Such a field is expected to couple to Standard Model particles with gravitational strength and would
mediate a new “fifth” force, but such forces are excluded by experiments on a wide range of scales.
Three known ways to hide dark energy-mediated fifth forces include: weak or pseudoscalar cou-
plings between dark energy and matter [2]; effectively weak couplings locally [3]; and an effec-
tively large field mass locally, as in chameleon theories [4, 5, 6].

Chameleons are scalar (or pseudoscalar) fields with a nonlinear potential and a coupling to the
local energy density. They evade fifth force constraints by increasing their effective mass in high-
density environments, while remaining light in the intergalactic medium. Gravity experiments in
the lab [7] and in space [4, 5] can exclude chameleons with gravitational strength matter couplings,
but strongly coupled chameleons evade these constraints [8, 9]. Casimir force experiments rule out
strongly coupled chameleons [10], but are ineffective for a large class of potentials commonly used
to model dark energy. Collider data exclude extremely strongly coupled chameleons [11].

Photon-coupled chameleons may be detected through laser experiments [12] or excitations in
radio frequency cavities [13]. In laser experiments, photons travelling through a vacuum cham-
ber immersed in a magnetic field oscillate into chameleons. They are then trapped through the
chameleon mechanism by the dense walls and windows of the chamber since their higher effective
mass within those materials creates an impenetrably large potential barrier [12, 14, 15]. After a pop-
ulation of chameleons is produced, the laser is turned off and a photodetector exposed in order to
observe the photon afterglow as trapped chameleons oscillate back to photons. The original Gam-
meV experiment included a search for this afterglow and set limits on photon/chameleon couplings
below collider constraints for a limited set of dark energy models [12]. The GammeV Chameleon
Afterglow Search (CHASE) is a new experiment to search for photon coupled chameleons [16]. Its
results bridge the gap between GammeV [12] and collider constraints, improves sensitivity to both
matter and photon couplings to chameleons, and probes a broad class of chameleon models.

2. Chameleon Models

We consider actions of the form

S=
⇤

d4x
⌅
�g

�1
2

M2
PlR� 1

2
�µ⇥� µ⇥ �V (⇥)� 1

4
e�⇤ ⇥/MPlFµ⇧Fµ⇧ +Lm(e2�m⇥/MPlgµ⇧ ,⌥ i

m)
⇥

(2.1)

where the reduced Planck mass MPl = 2.43⇤ 1018 GeV, Lm the Lagrangian for matter fields ⌥ i
m,

and �⇤ and �m are dimensionless chameleon couplings to photons and matter respectively (often
expressed as g⇤ = �⇤/MPl and gm = �m/MPl). We assume universal matter couplings.

The dynamics of this field are governed by an effective potential that depends on a potential
V (⇥), the background matter density ⌃m, and the electromagnetic field Lagrangian density ⌃⇤ =

Fµ⇧Fµ⇧/4 = (B2 �E2)/2 (for pseudoscalars ⌃⇤ = Fµ⇧ F̃µ⇧/4 = ⌅B ·⌅E):

Veff(⇥ ,⌅x) =V (⇥)+ e
�m⇥
MPl ⌃m(⌅x)+ e

�⇤ ⇥
MPl ⌃⇤(⌅x). (2.2)
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Since the only di⇥erence between actions (2.2) and (3.1) is in the matter term, it is obvious that

the additional modification in the field equations will came from the variation of this term. Thus,

considering the variation of this term and using the results from Section 2.1 one obtains,
⌥ ⇧

1⇥
�g

�(
⇥
�gf2(R)Lm)

�gµ�

⌃
�gµ�⇥�gd4x =

⌥ ⇧
�f2(R)
�gµ�

Lm + f2(R)
1⇥
�g

�(
⇥
�gLm)
�gµ�

⌃
�gµ�⇥�gd4x ,

(3.4)

=
⌥ ⇧

Lmf �
2(R)Rµ� ��µ�(Lmf �

2(R))� 1
2
f2(R)Tµ�

⌃
�gµ�⇥�gd4x .

(3.5)

Hence, the field equations obtained from action (3.1) are given by

(f �
1 + 2Lmf �

2)Rµ� �
1
2
f1gµ� ��µ�(f �

1 + 2Lmf �
2) = f2Tµ� . (3.6)

Making explicit the Einstein tensor, Gµ� , one rewrites the field equations and gets

Gµ� =
f2

f �
1 + 2f �

2Lm

�
T̂µ� + Tµ�

⇥
, (3.7)

where the e⇥ective energy-momentum tensor T̂µ� has been defined as

T̂µ� =
1
2

⇤
f1

f2
� f �

1 + 2Lmf �
2

f2
R

⌅
gµ� +

1
f2

�µ� (f �
1 + 2Lmf �

2) . (3.8)

From Eq. (3.7) one can define an e⇥ective coupling

k̂ =
f2

f �
1 + 2Lmf �

2

, (3.9)

and therefore the field equations can be written in a more familiar form,

Gµ� = k̂
�
T̂µ� + Tµ�

⇥
. (3.10)

Thus, in order to keep gravity attractive, k̂ has to be positive from which follows the additional

condition
f2

f �
1 + 2Lmf �

2

> 0 . (3.11)

As expected, setting f1(R) = R and f2(R) = 1 one recovers Einstein’s theory.

The e⇥ective energy-momentum tensor defined by Eq. (3.8) can be written in the form of a perfect

fluid,

Tµ� = (⇥ + p)uµu� � pgµ� , (3.12)

if one defines an e⇥ective energy density and an e⇥ective pressure. However, given the presence of

the higher order derivatives in Eq. (3.8), in order to proceed in this way it is necessary to specify

the metric of the space-time manifold of interest. Since one is interested in cosmological applications,

the Robertson-Walker (RW) metric is a natural choice. Hence, in what follows, one considers the

homogeneous and isotropic flat RW metric with the signature (+,�,�,�),

ds2 = dt2 � a2(t)ds2
3 , (3.13)
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where ds2
3 contains the spacial part of the metric and a(t) is the scale factor.

Using this metric the higher order derivative term is given by

⇥µ⇥h(R,Lm) = (⌅µ⌅⇥ � gµ⇥�)h(R,Lm)

= (⇧µ⇧⇥ � gµ⇥⇧0⇧0)h� (�0
µ⇥ + gµ⇥3H)⇧0h (3.14)

where h(R,Lm) is a generic function of R and Lm, H = ȧ/a is the Hubble expansion parameter and

�0
µ⇥ = aȧ �µ⇥ (with µ, ⇤ ⇤= 0) is the a⌅ne connection. Thus, the e⇤ective energy density is given by

⌅̂ =
1
2

�
f1

f2
� f �

1 + 2Lmf �
2

f2
R

⇥
� 3H

f ��
1 + 2Lmf ��

2

f2
Ṙ (3.15)

while the e⇤ective pressure is given by

p̂ = �1
2

�
f1

f2
� f �

1 + 2Lmf �
2

f2
R

⇥
+ (R̈ + 2HṘ)

f ��
1 + 2Lmf ��

2

f2
+

f ���
1 + 2Lmf ���

2

f2
Ṙ2 , (3.16)

where the dot refers to derivative with respect to time.

The field equations (3.10) along with the definitions of ⌅̂ and p̂ will be useful for deriving the various

energy conditions in Section 3.3.

The non-minimal curvature-matter coupling brings new intriguing features to the modified theories

of gravity. One expects energy to be exchanged between geometry and matter fields in a non-trivial

way. In fact, taking account into the covariant derivative of the field equations (3.6), the Bianchi

identities and the relationship1

⌅µ⇥µ⇥f �
i(R) = (�⌅⇥ �⌅⇥�)f �

i(R) = Rµ⇥⌅µf �
i(R) , (3.17)

one obtains [10]

⌅µTµ⇥ =
f �
2

f2
[gµ⇥Lm � Tµ⇥ ]⌅µR . (3.18)

Thus, one verifies that the energy-momentum tensor is not covariantly conserved. Furthermore,

inserting the energy-momentum tensor of a perfect fluid (Eq. (3.12)) into Eq. (3.18) and contracting

the resultant equation with the projection operator, hµ⇥ = gµ⇥ � uµu⇥ , one obtains [10],

u⇥⌅⇥u� =
1

⇥ + p

�
f �
2

f2
(Lm + p)⌅⇥R +⌅⇥p

⇥
h⇥� (3.19)

⇥f� .

Thus, the motion of a point-like test particle is non-geodesic due to the appearance of the extra force

f�. This force is orthogonal to the four-velocity of the particle due to the fact that, by definition,

h⇥�u� = 0 . (3.20)

1Which arises directly from the definition of the Riemann tensor, ⇥c⇥dXa �⇥d⇥cXa = Ra
bcdXb.
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Chapter 3

f (R) Theories with non-minimal

curvature-matter coupling

3.1 Action, Field Equations and Phenomenology

Recently, there has been a revival of interest in a class of modified gravity theories where, besides

the usual modification in the gravity sector, discussed in the previous chapter, it is introduced a

coupling between curvature and matter. This revival of interest is due to the fact that this non-

minimal curvature-matter coupling gives rise to a violation of the conservation equation of the energy-

momentum tensor which may introduce an extra force in the theory [10] (see also Ref. [11] for a recent

review on the subject). The phenomenology of these models is considered in more detail below.

The action of interest has the following form,

S =
⇤ �

1
2
f1(R) + f2(R)Lm

⇥⇥
�gd4x , (3.1)

where fi (with i = 1, 2) are arbitrary functions of the Ricci scalar. The second function, f2(R), is

usually considered to have the following form,

f2(R) = 1 + ⇥⇤2(R) , (3.2)

where ⇥ is a constant and ⇤2 is another function of R. These kind of non-minimal couplings were first

proposed in Ref. [12] motivated by the issue of the accelerated expansion of the universe. However, in

that paper, it was only considered the case where f2(R) = R�. One considers here a broader class of

models.

As stated in the previous chapter, only the metric formalism is considered. Thus, as performed in

Section 2.1, varying action (3.1) with respect to the metric yields

�S =
⇤ �

1
2
⇥
�g

�(
⇥
�gf1(R))
�gµ⇥

+
1⇥
�g

�(
⇥
�gf2(R)Lm)

�gµ⇥

⇥
�gµ⇥⇥�gd4x . (3.3)
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Action: 

Field equations: 

Effective energy-momentum tensor non-conservation: 

Eq. motion test particle: 
        (Perfect fluid) 

1

�µ⇤ = ⇥µ⇥⇤ � gµ⇤g�⇥⇥�⇥⇥ (1)
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Linearised field eqs. around a Minkowsky background: 

Cosmological constant as a source: 

Dispersion relation: 
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Scalar mode absorbed in 
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Newman-Penrose formalism (full theory): 

[O.B.,	  Gomes,	  Lobo,	  Euro	  Phys.	  J.	  C78	  (2018)]	  	   
	  	   

In NMC with a C.C. other scalar, vector and tensor modes 
are also possible (Φ00,Φ11,Φ00,R are nonzero), but a  
complete characterisation can only be carried out once  
the full solution is known (required for the Ψi).   

NP quantities built from the decomposition of the Weyl 
tensor in terms of irreducible parts: Riemann tensor, 
Ricci tensor and scalar curvature. 
In GR, only Ψ4 is non-vanishing → polarisations + and x 
 

 
 



Dark Energy fluid as a source: 

Scalar modes: 

A further scalar mode is found due to fluctuactions of the matter Lagrangian 
(at linear level!) 
 
 

Extra modes may be detected in future measurements with more precise data is available 
 
It might allow to distinguish between GR and other models! 
 
 
 



Some “Vector” Thoughts … 



Weyl	  Gravity	  
Weyl Gravity was proposed as an attempt to unify GR with Electromagnetism: 

Where the covariant derivative is built from the generalised connection: 

The Ricci tensor reads: 

And its trace: 

[H. Weyl (1918)] 
[P- Dirac (1973)]  



Nonminimally	  coupled	  Weyl	  Gravity	  
We start from the action: 

Variation with respect to the vector field: 

where  

The metric field equations: 
         

and  

The order of the PDEs is lowered, thus avoiding some well known 
instabilities! 
         

[C. Gomes, O.B., 1812.04976 [gr-qc]]  



Does	  a	  cosmological	  constant	  arise	  from	  the	  model?	  
From the contracted Bianchi identities: 

where  
From the generalised contracted Bianchi identities: 
         

where  

Conserved	  quan=ty:	  
trace	  of	  the	  field	  

equa@ons	  
	  

Hence,	  no	  
integra@on	  constant	  

arises	  from	  the	  
model	  

[Einstein (1919)9]  
[Kaloper, Padilla (2014)] 
[O.B., Páramos (2017)] 
[Gomes, O.B.,1812.04976]  



Space	  Form	  Behaviour	  
A pseudo-Riemannian manifold admit a space form behaviour iff: 

Combining the field equations with their trace for the vacuum,       : 

In general, we could have K=K(t), which cannot be identified with 
the constant matter vacuum,       . 

In order to proceed one needs to find a form for the vector field. 



The	  Weyl	  vector	  field	  
A natural ansatz for the vector field:   [Bento, OB., Moniz, Mourão, Sá (1993)]  

which admits invariance under spatial rotations, SO(3) transformations, 
with generators      , and is consistent with homogeneity and isotropy  
 
We further assume a constant scalar curvature:  

Two main cases can be studied: 
 



Varia@on:	  	  	  
Dynamic	  Vector	  Field	  	  

[R. Baptista, O.B., to appear]	  	  

•  SO(3) gauge field in a Robertson-Walker spacetime 
•  … 

_ _ 



Another	  Varia@on	  	  	  
[O.B., Bessa, Páramos, PRD (2016)]	  	  

•  Can inflation by driven by vector fields? 

•  Yes … , but needs a dominating Λ  [Ford, PRD (1989)] 

•  No! SO(3) Gauge Field  
[Bento, O.B., Moniz, Mourão, Sá, CQG (1993)] 
 
•  Yes! But ... only if nonmimimally coupled to gravity!  

Inflationary fixed points 

ê 



Conclusions	  

-‐	  The	  discovery	  of	  the	  Higgs	  field	  provides	  yet	  another	  proof	  that	  gauge	  symmetries	  are	  
realized	  in	  Nature	  and	  that	  the	  vacua	  do	  not	  fully	  share	  these	  symmetries	  

-‐	   Moreover,	   it	   confirms,	   up	   to	   the	   tested	   energy	   scales,	   the	   existence	   of	   at	   least	   one	  
fundamental	  scalar	  field	  	  

-‐	   Should	   one	   generalize	   the	   gauge	   principle	   and	   consider	   the	   so-‐called	   Grand	   Unified	  
Theories	   (GUTs)?	   Should	   one	   consider	   them	   in	   the	   context	   supergravity	   (gauge	  
generaliza=on	  of	  supersymmetry),	  string	  theory,	  etc?	  

-‐	  Does	  gravity	  have	  a	  scalar	  component?	  

-‐	  Is	  the	  inflaton	  a	  scalar	  field	  in	  the	  context	  of	  more	  fundamental	  theories?	  It	  cannot	  be	  
the	   minimally	   coupled	   Higgs	   field	   of	   GUTs.	   It	   can	   be	   a	   chiral	   superfield	   of	   some	  
supergravity	  models,	  even	  though	  not	  the	  moduli	  fields	  of	  string	  theory	  ...	   	  Some	  scalar	  
field	   models	   with	   plateau-‐like	   poten=al	   models	   are	   degenerate	   with	   the	   Starobinsky	  
model	  

-‐	  Is	  there	  an	  underlying	  scalar	  field	  associated	  to	  dark	  maZer?	  What	  about	  dark	  energy?	  
What	  about	  a	  puta=ve	  interac=on	  between	  them?	  

-‐	  ...	  

	  


