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Symmetry Group: G  

           Yang-Mills theories

Generators ta ( a=1, …, n; n=dim G) satisfy a Lie algebra: 

Covariant derivative Matter fields Ψf 
Gauge fields Aa

µ 

Field strength/ 
Gauge “curvature” 

Action  

Yang-Mills field eqs. 

Dµ = ∂µ + igA
a
µta

DµDν −DνDµ( )Ψ = igtaF
a
µνΨ

Bianchi ids. 

DµF
aµν = J aν

DµF
a
νλ +DλF

a
µν +DνF

a
λµ = 0

ta, tb[ ] = f abctc

Ψ f (x)→Ψ '
f (x) = exp −iθ a (x)ta( )Ψ f (x) ≡U(x)Ψ f (x)

SYM− f = [− 1
4∫ Fa

µνF
aµν + Ψ f

f
∑ (iγ µDµ −mf )Ψ f ]d

4x

J aµ = Ψ fγ
µtaΨ f

f
∑

Fa
µν = ∂µA

a
ν −∂νA

a
µ + gf

abcAb
µA

c
ν

Dirac eqs. (iγ µDµ −mf )Ψ f = 0

Aa
µta = Aµ Aµ → A'µ =U(x)AµU(x)

−1 + iU(x)−1∂µU(x)



Relevant Gauge Groups:  
Electrodynamics G=U(1) 
Electroweak theory G=SU(2) X U(1) 
Cromodynamics G=SU(3)* 
Standard Model G=SU(3) x S(2) x U(1) 
Grand Unified Theories G=SU(5), SO(10), E6, … 

Heterotic String Theory G=E8 x E8 

           Yang-Mills theories

Allow for a successful  
quantization and lead to  
renormalizable theories!   

* Asymptotic freedom & confinement 

Fermions and gauge bosons 



           Brout-Englert–Higgs–Guralnik–Hagen–Kibble Mechanism
                          First Scalar Field Avatar: the Higgs Boson

Spontaneous symmetry  
breaking mechanism 

ê 
SH + SHΨ = d 4x[DµH

+DµH −m2H +H +
λ
2
(H +H )2 ]∫ + d 4x gf HΨ fΨ f

f
∑∫

ê 

H ≠ 0 è Non-vanishing vacuum energy 

ê 
Cosmological constant problem 

mV = gV H ,mf = gf H

H 

V(H,T) 

Higgs field Universal history 

ç h(x) = H (x)− H

Min. V(H,T) 

V ( H , 0) =O( H 4 ) ≅O(246GeV )4 >> ρC ≅ (10
−3eV )4



Invariance under diffs. 
    Matter/Energy Space-time curvature 

           General Relativity

Covariant derivative/ 
Minimal coupling 

Torsionless 
connection 

Riemann tensor/ 
Space-time curvature 

Action (Λ≠0) 

Einstein’s field equations 

Rµν = R
λ
µλν ,R = R

λ
λ,g := det(gµν )

Aν
;µ := DµA

ν = ∂µA
ν +Γν

λµA
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•  CPT	
  symmetry	
  

	
  	
  	
  
•  Equivalence	
  Principle	
  
	
  

	
  Weak	
  Equivalence	
  Principle	
  (WEP)	
  	
  

	
  

	
  	
  	
  Local	
  Lorentz	
  Invariance	
  (LLI)	
  	
  	
  

	
  

	
  	
  	
  Local	
  Posi=on	
  Invariance	
  (LPI)	
  

	
  	
  

	
  	
  	
  Strong	
  Equivalence	
  Principle	
  (SEP)	
  

	
  	
  	
  	
  	
  

•  Varia=on	
  of	
  the	
  fundamental	
  couplings	
  (LPI)	
  	
  

	
  

Fundamental	
  Symmetries	
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(GR :γ = β =1;η = −1−β + 2γ = 0)

	
  	
  	
  	
  	
  	
  	
  	
  New!	
  
MICROSCOPE!	
  

η ≤10−5

γ1 −γ2 <10
−28 	
  	
  Polarized	
  GRB	
  +	
  DM	
  

	
  [O.B.	
  &	
  Landim	
  2018]	
  



	
  Tales of Mystery and Imagination ���
 ���

(Budapest 2012)

•  Higgs	
  boson	
  (found!)	
  

•  Cosmological	
  constant	
  problem	
  (work	
  in	
  progress	
  for	
  the	
  last	
  40	
  years	
  …)	
  

•  Viola=ons	
  of	
  Lorentz	
  symmetry	
  and	
  Equivalence	
  Principle	
  (No	
  evidence!)	
  

•  Dark	
  maZer	
  (Observa=onally	
  consensual	
  &	
  plenty	
  of	
  candidates	
  …	
  Detec=on)	
  

•  Dark	
  energy	
  (Observa=onal	
  tracers)	
  	
  

•  Dark	
  energy	
  -­‐	
  dark	
  maZer	
  unifica=on	
  and	
  interac=on	
  (Observa=onal	
  signatures)	
  	
  

•  Varia=on	
  of	
  fundamental	
  constants?	
  (No	
  evidence!)	
  

•  Gravita=onal	
  Waves	
  (Detected!)	
  

•  Black	
  holes	
  (Singulari=es,	
  Nature,	
  Prolifera=on	
  …	
  Detected!)	
  	
  

•  Pioneer	
  (NO	
  more!)	
  and	
  Flyby	
  anomalies	
  (Evidence	
  has	
  shrank	
  considerably)	
  	
  

•  …	
  



Forces	
  of	
  Nature,	
  Unite!	
  



Superstring/M-­‐theory	
  
Second	
  Scalar	
  Field	
  Avatar:	
  the	
  dilaton	
  

•  Unifica=on	
  of	
  the	
  exis=ng	
  string	
  theories	
  in	
  the	
  context	
  of	
  M-­‐theory	
  
–  Spectrum	
  of	
  closed	
  string	
  theory	
  contains	
  as	
  zero	
  mass	
  eigenstates:	
  

•  Graviton	
  gMN	
  	
  
•  Dilaton	
  Φ	
  
•  An=symmetric	
  second-­‐order	
  tensor	
  BMN	
  

•  Physics	
  of	
  our	
  4-­‐dimensional	
  world	
  
–  Require	
  a	
  natural	
  mechanism	
  to	
  fix	
  the	
  value	
  of	
  the	
  dilaton	
  field	
  
–  Drop	
  BMN	
  and	
  introduce	
  fermions	
  ψ,	
  Yang-­‐Mills	
  fields	
  Aµ	
  with	
  field	
  strength	
  	
  Fµν
–  Space-­‐=me	
  described	
  by	
  the	
  metric	
  gµν	
  
–  Effec=ve	
  low-­‐energy	
  four-­‐dimensional	
  ac=on	
  

•  where	
  	
  
•  αʹ′	
  is	
  the	
  inverse	
  of	
  the	
  string	
  tension	
  and	
  k	
  is	
  a	
  gauge	
  group	
  constant	
  
•  Constants	
  c0,	
  c1,	
  ...,	
  etc.,	
  are,	
  in	
  principle,	
  computable	
  

^  ^ ^  
 ^ 

[Damour, Polyakov 1994] 
 



•  4q	
  =	
  16πG	
  =	
  α’	
  /	
  4	
  	
  and	
  a	
  conformal	
  transforma=on	
  →	
  coupling	
  constants	
  and	
  masses	
  
become	
  dilaton-­‐dependent	
  

–  g−2	
  =	
  k	
  B(φ)	
  and	
  mA	
  =	
  mA(B(φ))	
  

•  Minimal	
  coupling	
  principle:	
  dilaton	
  is	
  driven	
  towards	
  a	
  local	
  minimum	
  of	
  all	
  masses	
  
–  Local	
  maximum	
  of	
  B(φ)	
  
–  Mass	
  dependence	
  on	
  the	
  dilaton	
  →	
  par=cles	
  fall	
  differently	
  →	
  viola=on	
  of	
  the	
  WEP	
  

•  In	
  the	
  solar	
  system,	
  effect	
  is	
  of	
  order	
  Δa/a	
  ≃	
  10−16	
  

•  Almost	
  within	
  reach	
  of	
  the	
  MICROSCPE	
  mission	
  …	
  	
  

•  Within	
  reach	
  of	
  STEP	
  (Satellite	
  Test	
  of	
  the	
  Equivalence	
  Principle)	
  mission	
  …	
  



String Landscape Problem 

10500  vacua 

“Infinite”	
  number	
  of	
  low-­‐energy	
  models 



Third	
  Scalar	
  Field	
  Avatar:	
  	
  
Scalar-­‐tensor	
  theories	
  of	
  gravity	
  

•  Gravita=onal	
  coupling	
  strength	
  depends	
  on	
  a	
  scalar	
  field,	
  ϕ
–  General	
  ac=on	
  

–  f(ϕ),	
  g(ϕ),	
  V	
  (ϕ)	
  are	
  generic	
  func=ons,	
  qi(ϕ)	
  are	
  coupling	
  func=ons	
  

–   Li	
  is	
  the	
  Lagrangian	
  density	
  of	
  the	
  maZer	
  fields	
  
–  Graviton-­‐dilaton	
  system	
  of	
  string/M-­‐theory	
  can	
  be	
  viewed	
  as	
  a	
  scalar-­‐tensor	
  theory	
  	
  

•  	
  Brans-­‐Dicke	
  theory	
  

–  Defined	
  by	
  f(ϕ)	
  =	
  ϕ,	
  g(ϕ)	
  =	
  ω	
  /	
  ϕ	
  ,	
  a	
  vanishing	
  poten=al	
  V(ϕ)	
  and	
  qi(ϕ)=1	
  
–  Non-­‐canonical	
  kine=c	
  term;	
  ϕ	
  has	
  a	
  dimension	
  of	
  energy	
  squared	
  
–  ω	
  marks	
  observa=onal	
  devia=ons	
  from	
  GR,	
  which	
  is	
  recovered	
  in	
  the	
  limit	
  ω	
  →	
  ∞	
  
–  Sa=fies	
  Mach’s	
  Principle	
  	
  
–  G	
  ∝	
  ϕ−1	
  depends	
  on	
  the	
  maZer	
  energy-­‐momentum	
  tensor	
  through	
  the	
  field	
  equa=ons	
  	
  
–  Observa=onal	
  bounds:	
  |ω|	
  >	
  40000	
  

   [Brans, Dicke 1961] 

[ Will, gr-qc/0504086] 



•  Induced	
  gravity	
  models:	
  

–  f(ϕ)	
  =	
  ϕ2	
  and	
  g(ϕ)	
  =	
  1/2	
  

–  Poten=al	
  V	
  (ϕ)	
  allows	
  for	
  a	
  spontaneous	
  symmetry	
  breaking	
  

–  Field	
  ϕ	
  acquires	
  a	
  non-­‐vanishing	
  vacuum	
  expecta=on	
  value,	
  

	
  

	
  

–  The	
  cosmological	
  constant	
  Λ	
  is	
  given	
  by	
  interplay	
  of	
  V(<0|ϕ|0>)	
  and	
  all	
  other	
  contribu=ons	
  to	
  
the	
  vacuum	
  energy	
  

 [Fujii 1979] 
[Zee 1979] 

 [Adler 1982] 

•  Horndeski	
  gravity	
  (1974)	
  …	
  	
   	
  Can	
  be	
  scru=nized	
  with	
  GWs	
  
	
  	
  	
  	
  	
  	
  [Arai,	
  Nishizawa	
  2017]	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  [Kopp	
  et	
  al.	
  2018]	
  



Fourth	
  Scalar	
  Field	
  Avatar:	
  	
  
the	
  inflaton	
  

Infla=on,	
  an	
  accelerated	
  expansion	
  of	
  the	
  Universe	
  which	
  took	
  place	
  about	
  10-­‐35	
  secs.	
  awer	
  
the	
  Big	
  Bang,	
  which	
  accounts	
  for	
  the	
  main	
  observa=onal	
  features	
  of	
  the	
  Universe:	
  	
  
isotropy,	
  homogeneity,	
  horizon,	
  flatness,	
  absence	
  of	
  magne=c	
  monopoles	
  and	
  rota=on,	
  
and	
  the	
  origin	
  of	
  energy	
  density	
  fluctua=ons	
  that	
  generated	
  the	
  first	
  galaxies	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   [Guth 1981, Linde 1982, Albrecht & Steinhardt 1982, …] 
 

Model: L = 1
2
∂µϕ ∂µϕ −V (ϕ )

Quantum fluctuations of the inflaton è Energy density fluctuations + gravitational waves! 

V(φ) - your favorite …      

ê 
Observed through the Cosmic Microwave Background Radiation (CMBR) 



Infla=on	
  for	
  voyeurs	
  

a(t f ) = a(ti )exp
8π
3

!

"
#

$

%
&
1/2 V 1/2

MP

(t f − ti )
(

)
*
*

+

,
-
-

>exp65≅1028  

,V ≅10−12MP
4

GUTs with Higgs field (troublesome) 

Supergravity-like (fine) 

Chiral superfields 



Infla@on	
  and	
  the	
  CMBR	
  

•  Simple inflation:                  (               )   

 
 

•  Slow-roll predictions:  

 

 

H ⇥ �t ln a. This system will yield the following equations of motion for the homogeneous modes
⇤(t) and a(t),

H2 =
1

3M2
pl

⌅
1
2
⇤̇2 + V (⇤)

⇧
, (4)

ä

a
= � 1

3M2
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⇥
⇤̇2 � V (⇤)

⇤
, (5)

and
⇤̈ + 3H⇤̇ + V �(⇤) = 0 . (6)

The spacetime experiences accelerated expansion, ä > 0, if and only if the potential energy of
the inflaton dominates over its kinetic energy, V ⌃ ⇤̇2. This condition is sustained if |⇤̈| ⇧ |V �|.
These two conditions for prolonged inflation are summarized by restrictions of the form of the
inflaton potential V (⇤) and its derivatives. Quantitatively, inflation requires smallness of the slow-
roll parameters

� ⇥ � Ḣ
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2
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M2
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2

⌅
V �

V
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V ��
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Once these constraints are satisfied, the inflationary process (and its termination) happens gener-
ically for a wide class of models. The slow evolution of the inflaton then produces an exponential
increase in the geometric size of the universe,

a(t) ⌅ a(0)eHt , H ⌅ const . (8)

For inflation to successfully address the Big Bang problems, one must simply ensure that the in-
flationary process produces a su⇤cient number of these ‘e-folds’ of accelerated expansion Ne ⇥
ln(a(tfinal)/a(tinitial)). A typical lower bound on the required number of e-folds is Ne � ln 1026 ⇤ 55
[26, 27, 28].10 Our discussion has so far addressed only the classical and homogeneous evolution of
the inflating system. Small spatial perturbations in the inflaton ⇤ and the metric gµ⇥ are inevitable
due to quantum mechanics; inflation stretches these fluctuations to astronomical scales, eventually
producing large-scale structures including galaxies such as the one we inhabit. Thus inflation is
responsible not just for the universe that we observe, but also for the fact we are here to observe it.

After a su⇤cient number of e-folds have been achieved, the process must terminate. The inflaton
descends towards the minimum of the potential and ‘reheats’ the universe, with ⇤-particles decaying
into radiation, and so initiating the hot Big Bang.

This basic inflation model can be generalized in a variety of ways: several fields collectively
producing the inflaton, non-standard kinetic terms, scalars replaced by axion-like fields, etc. Each of
these models still produces an inflationary period, with the details determining various observables
such as cosmological perturbations, as will be described in further detail below.

There also remain questions of initial conditions and of whether inflation continues eternally.
This latter point may seem paradoxical; if the inflaton completes its evolution as we have just
assumed, how could inflation continue? The answer lies in the fact that inflation produces other

10This estimate of the required number of e-folds assumes GUT scale reheating. For lower reheating
temperatures, fewer e-folds can be su⇤cient.
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H2
=

M2
pl

2
⇤̇2

H2
⌅

M2
pl

2

⌅
V �

V

⇧2

, |⇥| ⌅M2
pl

����
V ��

V

���� . (7)

Once these constraints are satisfied, the inflationary process (and its termination) happens gener-
ically for a wide class of models. The slow evolution of the inflaton then produces an exponential
increase in the geometric size of the universe,

a(t) ⌅ a(0)eHt , H ⌅ const . (8)

For inflation to successfully address the Big Bang problems, one must simply ensure that the in-
flationary process produces a su⇤cient number of these ‘e-folds’ of accelerated expansion Ne ⇥
ln(a(tfinal)/a(tinitial)). A typical lower bound on the required number of e-folds is Ne � ln 1026 ⇤ 55
[26, 27, 28].10 Our discussion has so far addressed only the classical and homogeneous evolution of
the inflating system. Small spatial perturbations in the inflaton ⇤ and the metric gµ⇥ are inevitable
due to quantum mechanics; inflation stretches these fluctuations to astronomical scales, eventually
producing large-scale structures including galaxies such as the one we inhabit. Thus inflation is
responsible not just for the universe that we observe, but also for the fact we are here to observe it.

After a su⇤cient number of e-folds have been achieved, the process must terminate. The inflaton
descends towards the minimum of the potential and ‘reheats’ the universe, with ⇤-particles decaying
into radiation, and so initiating the hot Big Bang.

This basic inflation model can be generalized in a variety of ways: several fields collectively
producing the inflaton, non-standard kinetic terms, scalars replaced by axion-like fields, etc. Each of
these models still produces an inflationary period, with the details determining various observables
such as cosmological perturbations, as will be described in further detail below.

There also remain questions of initial conditions and of whether inflation continues eternally.
This latter point may seem paradoxical; if the inflaton completes its evolution as we have just
assumed, how could inflation continue? The answer lies in the fact that inflation produces other

10This estimate of the required number of e-folds assumes GUT scale reheating. For lower reheating
temperatures, fewer e-folds can be su⇤cient.

17

H ⇥ �t ln a. This system will yield the following equations of motion for the homogeneous modes
⇤(t) and a(t),

H2 =
1

3M2
pl

⌅
1
2
⇤̇2 + V (⇤)

⇧
, (4)

ä
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These two conditions for prolonged inflation are summarized by restrictions of the form of the
inflaton potential V (⇤) and its derivatives. Quantitatively, inflation requires smallness of the slow-
roll parameters

� ⇥ � Ḣ
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Once these constraints are satisfied, the inflationary process (and its termination) happens gener-
ically for a wide class of models. The slow evolution of the inflaton then produces an exponential
increase in the geometric size of the universe,

a(t) ⌅ a(0)eHt , H ⌅ const . (8)

For inflation to successfully address the Big Bang problems, one must simply ensure that the in-
flationary process produces a su⇤cient number of these ‘e-folds’ of accelerated expansion Ne ⇥
ln(a(tfinal)/a(tinitial)). A typical lower bound on the required number of e-folds is Ne � ln 1026 ⇤ 55
[26, 27, 28].10 Our discussion has so far addressed only the classical and homogeneous evolution of
the inflating system. Small spatial perturbations in the inflaton ⇤ and the metric gµ⇥ are inevitable
due to quantum mechanics; inflation stretches these fluctuations to astronomical scales, eventually
producing large-scale structures including galaxies such as the one we inhabit. Thus inflation is
responsible not just for the universe that we observe, but also for the fact we are here to observe it.

After a su⇤cient number of e-folds have been achieved, the process must terminate. The inflaton
descends towards the minimum of the potential and ‘reheats’ the universe, with ⇤-particles decaying
into radiation, and so initiating the hot Big Bang.

This basic inflation model can be generalized in a variety of ways: several fields collectively
producing the inflaton, non-standard kinetic terms, scalars replaced by axion-like fields, etc. Each of
these models still produces an inflationary period, with the details determining various observables
such as cosmological perturbations, as will be described in further detail below.

There also remain questions of initial conditions and of whether inflation continues eternally.
This latter point may seem paradoxical; if the inflaton completes its evolution as we have just
assumed, how could inflation continue? The answer lies in the fact that inflation produces other

10This estimate of the required number of e-folds assumes GUT scale reheating. For lower reheating
temperatures, fewer e-folds can be su⇤cient.
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3.4 Quantum Fluctuations as the Origin of Structure

In Section 3.2 we discussed the classical evolution of the inflaton field. Something remarkable
happens when one considers quantum fluctuations of the inflaton: inflation combined with quantum
mechanics provides an elegant mechanism for generating the initial seeds of all structure in the
universe. In other words, quantum fluctuations during inflation are the source of the primordial
power spectra Ps(k) and Pt(k). In this section we sketch the mechanism by which inflation relates
microscopic physics to macroscopic observables.

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 2: Creation and evolution of perturbations in the inflationary universe. Fluctuations are
created quantum mechanically on sub-horizon scales. While comoving scales, k�1, re-
main constant the comoving Hubble radius during inflation, (aH)�1, shrinks and the
perturbations exit the horizon. Causal physics cannot act on superhorizon perturbations
and they freeze until horizon re-entry at late times.

Quantum fluctuations in quasi-de Sitter
In spatially-flat gauge, perturbations in ⇥ are related to perturbations in the inflaton field value15

�⇧, cf. Eqn. (15) with � = 0

⇥ = �H
�⌅

⌅̇
⇤ �H

�⇧

⇧̇
⇥ �H�t , (26)

where in the second equality we have assumed slow-roll. The power spectrum of ⇥ and the power
spectrum of inflaton fluctuations �⇧ are therefore related as follows

⇧⇥k⇥k0⌃ =
�

H

⇧̇

⇥2

⇧�⇧k �⇧k0⌃ . (27)

Finally, in the case of slow-roll inflation, quantum fluctuations of a light scalar field (m� ⌅ H) in
quasi-de Sitter space (H ⇤ const.) scale with the Hubble parameter H [42]

⇧�⇧k �⇧k0⌃ = (2⇤)3 �(k + k⇥)
2⇤2

k3

�
H

2⇤

⇥2

. (28)

15Intuitively, the curvature perturbation ⇥ is related to a spatially varying time-delay �t(x) for the end of
inflation [41]. This time-delay is induced by the inflaton fluctuation �⇧.
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Finally, it is important to note that the perturbations ⇥⌃ and ⇥gµ⇤ are gauge-dependent, i.e. they
change under coordinate/gauge transformations. Physical questions therefore have to be studied in
a fixed gauge or in terms of gauge-invariant quantities. An important gauge-invariant quantity is
the curvature perturbation on uniform-density hypersurfaces [11]

� ⇤ ⇥ � +
H

⇧̇
⇥⇧ , (15)

where ⇧ is the total energy density of the universe.

3.3.2 Scalar (Density) Perturbations

In a gauge where the energy density associated with the inflaton field is unperturbed (i.e. ⇥⇧⌅ = 0)
all scalar degrees of freedom can be expressed by a metric perturbation ⇤(t,x)12

gij = a2(t)[1 + 2⇤]⇥ij . (16)

Geometrically, ⇤ measures the spatial curvature of constant-density hypersurfaces,R(3) = �4⌃2⇤/a2.
An important property of ⇤ is that it remains constant outside the horizon.13 In a gauge defined
by spatially flat hypersurfaces, ⇤ is the dimensionless density perturbation 1

3⇥⇧/(⇧ + p). Taking
into account appropriate transfer functions to describe the sub-horizon evolution of the fluctuations,
CMB and large-scale structure (LSS) observations can therefore be related to the primordial value
of ⇤. A crucial statistical measure of the primordial scalar fluctuations is the power spectrum of ⇤14

⌅⇤k⇤k0⇧ = (2⌅)3 ⇥(k + k⇥)
2⌅2

k3
Ps(k) . (17)

The scale-dependence of the power spectrum is defined by the scalar spectral index (or tilt)

ns � 1 ⇥ d lnPs

d ln k
. (18)

Here, scale-invariance corresponds to the value ns = 1. We may also define the running of the
spectral index by

�s ⇥
dns

d ln k
. (19)

The power spectrum is often approximated by a power law form

Ps(k) = As(k⌃)
�

k

k⌃

⇥ns(k�)�1+ 1
2�s(k�) ln(k/k�)

, (20)

where k⌃ is the pivot scale.
If ⇤ is Gaussian then the power spectrum contains all the statistical information. Primordial non-

Gaussianity is encoded in higher-order correlation functions of ⇤ (see §5.3). In single-field slow-roll
inflation the non-Gaussianity is predicted to be small [39, 40], but non-Gaussianity can be significant
in multi-field models or in single-field models with non-trivial kinetic terms and/or violation of the
slow-roll conditions.

12In addition to the perturbation to the spatial part of the metric there are fluctuations in gµ0. These are
related to ⇤ by Einstein’s equations.

13This statement is only true for adiabatic perturbations. Non-adiabatic fluctuations can arise in multi-field
models of inflation (see §5 and Appendix A). In that case, ⇤ evolves on super-horizon scales.

14The normalization of the dimensionless power spectrum Ps(k) is chosen such that the variance of ⇤ is
⌅⇤⇤⇧ =

⇤�
0 Ps(k) d ln k.
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3.3.3 Vector (Vorticity) Perturbations

The vector perturbations Si and Fi in equations (13) and (14) are distinguished from the scalar
perturbations B, � and E as they are divergence-free, i.e. ⇧iSi = ⇧iFi = 0. One may show
that vector perturbations on large scales are redshifted away by Hubble expansion (unless they are
driven by anisotropic stress). In particular, vector perturbations are subdominant at the time of
recombination. Since CMB polarization is generated at last scattering the polarization signal is
dominated by scalar and tensor perturbations (§3.5). Most of this section therefore focuses on scalar
and tensor perturbations. However, vector perturbations can be sourced by cosmic strings which
are discussed in §6.1.

3.3.4 Tensor (Gravitational Wave) Perturbations

Tensor perturbations are uniquely described by a gauge-invariant metric perturbation hij

gij = a2(t)[�ij + hij ] , ⇧jhij = hi
i = 0 . (21)

Physically, hij corresponds to gravitational wave fluctuations. The power spectrum for the two
polarization modes of hij ⇥ h+e+

ij + h�e�ij , h ⇥ h+, h�, is defined as

⇤hkhk0⌅ = (2⇥)3 �(k + k⇥)
2⇥2

k3
Pt(k) (22)

and its scale-dependence is defined analogously to (18) but for historical reasons without the �1,

nt ⇥
d lnPt

d ln k
, (23)

i.e.

Pt(k) = At(k�)
�

k

k�

⇥nt(k�)

. (24)

CMB polarization measurements are sensitive to the ratio of tensor power to scalar power

r ⇥ Pt

Ps
. (25)

The parameter r will be of fundamental importance for the discussion presented in this paper. As
we argue in Section 4, its value encodes crucial information about the physics of the inflationary era.

20

3.3.3 Vector (Vorticity) Perturbations

The vector perturbations Si and Fi in equations (13) and (14) are distinguished from the scalar
perturbations B, � and E as they are divergence-free, i.e. ⇧iSi = ⇧iFi = 0. One may show
that vector perturbations on large scales are redshifted away by Hubble expansion (unless they are
driven by anisotropic stress). In particular, vector perturbations are subdominant at the time of
recombination. Since CMB polarization is generated at last scattering the polarization signal is
dominated by scalar and tensor perturbations (§3.5). Most of this section therefore focuses on scalar
and tensor perturbations. However, vector perturbations can be sourced by cosmic strings which
are discussed in §6.1.

3.3.4 Tensor (Gravitational Wave) Perturbations

Tensor perturbations are uniquely described by a gauge-invariant metric perturbation hij

gij = a2(t)[�ij + hij ] , ⇧jhij = hi
i = 0 . (21)

Physically, hij corresponds to gravitational wave fluctuations. The power spectrum for the two
polarization modes of hij ⇥ h+e+

ij + h�e�ij , h ⇥ h+, h�, is defined as

⇤hkhk0⌅ = (2⇥)3 �(k + k⇥)
2⇥2

k3
Pt(k) (22)

and its scale-dependence is defined analogously to (18) but for historical reasons without the �1,

nt ⇥
d lnPt

d ln k
, (23)

i.e.

Pt(k) = At(k�)
�

k

k�

⇥nt(k�)

. (24)

CMB polarization measurements are sensitive to the ratio of tensor power to scalar power

r ⇥ Pt

Ps
. (25)

The parameter r will be of fundamental importance for the discussion presented in this paper. As
we argue in Section 4, its value encodes crucial information about the physics of the inflationary era.

20

The r.h.s. of (27) is to be evaluated at horizon exit of a given perturbation k = aH (see Figure 2).
Inflationary quantum fluctuations therefore produce the following power spectrum for ⇤

Ps(k) =
⌅

H

⌃̇

⇧2 ⌅
H

2⇧

⇧2
�����
k=aH

. (29)

In addition, quantum fluctuations during inflation excite tensor metric perturbations hij [6]. Their
power spectrum (in general models of inflation) is simply that of a massless field in de Sitter space

Pt(k) =
8

M2
pl

⌅
H

2⇧

⇧2
�����
k=aH

. (30)

Slow-roll predictions
Models of single-field slow-roll inflation makes definite predictions for the primordial scalar and

tensor fluctuation spectra. Under the slow-roll approximation one may relate the predictions for
Ps(k) and Pt(k) to the shape of the inflaton potential V (⌃).16 To compute the spectral indices one
uses d ln k ⇤ d ln a (H ⇤ const.). To first order in the slow-roll parameters ⇥ and ⌅ one finds [43]

Ps(k) =
1

24⇧2M4
pl

V

⇥

�����
k=aH

, ns � 1 = 2⌅ � 6⇥ , (31)

Pt(k) =
2

3⇧2

V

M4
pl

�����
k=aH

, nt = �2⇥ , r = 16⇥ . (32)

We note that the value of the tensor-to-scalar ratio depends on the time-evolution of the inflaton
field

r = 16⇥ =
8

M2
pl

⇥ ⌃̇

H

⇤2
. (33)

We also point out the existence of a slow-roll consistency relation between the tensor-to-scalar ratio
and the tensor tilt which, at lowest order, has the form

r = �8nt . (34)

Measuring the amplitudes of Pt (⌅ V ) and Ps (⌅ V �) and the scale-dependence of the scalar
spectrum ns (⌅ V ��) and �s (⌅ V ���) allows a reconstruction of the inflaton potential as a Taylor
expansion around ⌃⇥ (corresponding to the time when fluctuations on CMB scales exited the horizon)

V (⌃) = V |⇥ + V ���
⇥
(⌃� ⌃⇥) +

1
2

V ����
⇥
(⌃� ⌃⇥)2 +

1
3!

V �����
⇥
(⌃� ⌃⇥)3 + · · · , (35)

where (. . . )|⇥ = (. . . )|�=��
. Furthermore, if one assumes that the primordial perturbations are

produced by an inflationary model with a single slowly rolling scalar field, one can fit directly to the
slow-roll parameters, bypassing the spectral indices entirely, and then reconstruct the form of the
underlying potential [44, 45, 46, 47, 48, 49, 50, 51].

16In Appendix A we present the results for general single-field models. In this case, the primordial power
spectra receive contributions from a non-trivial speed of sound cs ⇧= 1 and its time evolution. The slow-roll
results arise as the limit cs ⌅ 1, ċs ⌅ 0.
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Finally, it is important to note that the perturbations ⇥⌃ and ⇥gµ⇤ are gauge-dependent, i.e. they
change under coordinate/gauge transformations. Physical questions therefore have to be studied in
a fixed gauge or in terms of gauge-invariant quantities. An important gauge-invariant quantity is
the curvature perturbation on uniform-density hypersurfaces [11]

� ⇤ ⇥ � +
H

⇧̇
⇥⇧ , (15)

where ⇧ is the total energy density of the universe.

3.3.2 Scalar (Density) Perturbations

In a gauge where the energy density associated with the inflaton field is unperturbed (i.e. ⇥⇧⌅ = 0)
all scalar degrees of freedom can be expressed by a metric perturbation ⇤(t,x)12

gij = a2(t)[1 + 2⇤]⇥ij . (16)

Geometrically, ⇤ measures the spatial curvature of constant-density hypersurfaces,R(3) = �4⌃2⇤/a2.
An important property of ⇤ is that it remains constant outside the horizon.13 In a gauge defined
by spatially flat hypersurfaces, ⇤ is the dimensionless density perturbation 1

3⇥⇧/(⇧ + p). Taking
into account appropriate transfer functions to describe the sub-horizon evolution of the fluctuations,
CMB and large-scale structure (LSS) observations can therefore be related to the primordial value
of ⇤. A crucial statistical measure of the primordial scalar fluctuations is the power spectrum of ⇤14

⌅⇤k⇤k0⇧ = (2⌅)3 ⇥(k + k⇥)
2⌅2

k3
Ps(k) . (17)

The scale-dependence of the power spectrum is defined by the scalar spectral index (or tilt)

ns � 1 ⇥ d lnPs

d ln k
. (18)

Here, scale-invariance corresponds to the value ns = 1. We may also define the running of the
spectral index by

�s ⇥
dns

d ln k
. (19)

The power spectrum is often approximated by a power law form

Ps(k) = As(k⌃)
�

k

k⌃

⇥ns(k�)�1+ 1
2�s(k�) ln(k/k�)

, (20)

where k⌃ is the pivot scale.
If ⇤ is Gaussian then the power spectrum contains all the statistical information. Primordial non-

Gaussianity is encoded in higher-order correlation functions of ⇤ (see §5.3). In single-field slow-roll
inflation the non-Gaussianity is predicted to be small [39, 40], but non-Gaussianity can be significant
in multi-field models or in single-field models with non-trivial kinetic terms and/or violation of the
slow-roll conditions.

12In addition to the perturbation to the spatial part of the metric there are fluctuations in gµ0. These are
related to ⇤ by Einstein’s equations.

13This statement is only true for adiabatic perturbations. Non-adiabatic fluctuations can arise in multi-field
models of inflation (see §5 and Appendix A). In that case, ⇤ evolves on super-horizon scales.

14The normalization of the dimensionless power spectrum Ps(k) is chosen such that the variance of ⇤ is
⌅⇤⇤⇧ =

⇤�
0 Ps(k) d ln k.
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gij = a2(t)[�ij + hij ] , ⇧jhij = hi
i = 0 . (21)

Physically, hij corresponds to gravitational wave fluctuations. The power spectrum for the two
polarization modes of hij ⇥ h+e+

ij + h�e�ij , h ⇥ h+, h�, is defined as

⇤hkhk0⌅ = (2⇥)3 �(k + k⇥)
2⇥2

k3
Pt(k) (22)

and its scale-dependence is defined analogously to (18) but for historical reasons without the �1,

nt ⇥
d lnPt

d ln k
, (23)

i.e.

Pt(k) = At(k�)
�

k

k�

⇥nt(k�)

. (24)

CMB polarization measurements are sensitive to the ratio of tensor power to scalar power

r ⇥ Pt

Ps
. (25)

The parameter r will be of fundamental importance for the discussion presented in this paper. As
we argue in Section 4, its value encodes crucial information about the physics of the inflationary era.
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2 Cosmological Observables: An Overview

2.1 The Concordance Cosmology

It is now conventional to speak of a “concordance cosmology”, the minimal set of parameters whose
measured values characterize the observed universe. These variables are summarized in Table 1,
along with their possible physical origin and current best-fit values [14]. Our ability to construct
and quantify this concordance cosmology marks a profound milestone in humankind’s developing
understanding of the universe. It is remarkable that all current cosmological data sets are consistent
with a simple six-parameter model: {�b,�CDM, h, �} describe the homogeneous background3, while
{As, ns} characterize the primordial density fluctuations.

Label Definition Physical Origin Value
�b Baryon Fraction Baryogenesis 0.0456± 0.0015

�CDM Dark Matter Fraction TeV-Scale Physics (?) 0.228± 0.013
�� Cosmological Constant Unknown 0.726± 0.015

� Optical Depth First Stars 0.084± 0.016

h Hubble Parameter Cosmological Epoch 0.705± 0.013

As Scalar Amplitude Inflation (2.445± 0.096)⇥ 10�9

ns Scalar Index Inflation 0.960± 0.013

Table 1: The parameters of the current concordance cosmology are summarized. We assume a flat
universe, i.e. �b + �CDM + �� ⌅ 1; if not, we must include a curvature contribution �k.
Likewise, the conventional cosmology includes the microwave background and the neutrino
sector. Both these quantities contribute to �total, but at a (present-day) level well below
�b, the smallest of the three components listed above. The number and energy density of
photons is fixed by the observed black body temperature of the microwave background.
The neutrino sector is taken to consist of three massless species, consistent with the
number of Standard Model families [21], with a number density fixed by assuming the
universe was thermalized at scales above 1 MeV. The parameter h describes the expansion
rate of the universe today, H0 = 100h km s�1 Mpc�1. “Spectrum” refers to the primordial
scalar or density perturbations, parameterized by As(k/k�)ns�1, where k� = 0.002 Mpc�1

is a specified but otherwise irrelevant pivot scale.

Our understanding of the structure and evolution of the universe rests upon well-tested physical
principles, including the general-relativistic description of the expanding universe, the quantum
mechanical laws that govern the recombination era, and the Boltzmann equation which allows us
to track the populations of each species. However, most of the parameters in the concordance
model contain information on areas of physical law about which we have no detailed understanding.
The relative fractions of baryons, dark matter and dark energy in the universe are all governed by

3The six-parameter concordance model assumes a spatially flat universe, such that the dark energy density
is given by �� = 1� �b � �CDM.
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H=100 h kms-1Mpc-1 

– 101 –

Fig. 32.— The nine-year WMAP TT angular power spectrum. The WMAP data are in
black, with error bars, the best fit model is the red curve, and the smoothed binned cosmic

variance curve is the shaded region. The first three acoustic peaks are well-determined.



?"1($X1@#$?#$<#1)'#B$[$
$$

DC%

The Universe  

!bh
2 = 0.02205± 0.00028

!ch
2 = 0.1199±  0.0027

H0 = 67.3±1.2 km s!1  Mpc!1

ns = 0.9603± 0.0073

Has more matter and less dark energy 

     Consistent with spatial flatness to % level 

!"#$#%&'()#%%%%%*+),%-'./"0123'.%'4%56#.(7%%/'%-'89'6':;<%
%

Age = 13.81± 0.05 billion years 

ln(1010As ) = 3.089± 0.025

100! =1.04131± 0.00063

Inflation with Planck: a survey of some exotic models, 
Gomes, O.B., Rosa, PRD (2018) 



	
  
•  	
  Evidence:	
  	
  
	
  	
  	
  	
  	
  	
  Dimming	
  of	
  type	
  Ia	
  Supernovae	
  z	
  >	
  0.35	
  (about	
  a	
  thousand	
  of	
  them	
  now)	
  	
  
	
  	
  	
  	
  	
  	
  Accelerated	
  expansion	
  (nega=ve	
  decelera=on	
  parameter):	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [PerlmuZer	
  et	
  al.	
  1998;	
  Riess	
  et	
  al.	
  1998,	
  …]	
  
	
  

•  	
  	
  Homogeneous	
  and	
  isotropic	
  expanding	
  geometry	
  
	
  	
  	
  	
  	
  	
  Driven	
  by	
  the	
  vacuum	
  energy	
  density	
  ΩΛ and	
  maZer	
  density	
  ΩM	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  Equa=on	
  of	
  state:	
  	
  	
  

•  	
  Friedmann	
  and	
  Raychaudhuri	
  equa=ons	
  imply:	
  	
  
	
  

	
  	
  	
  	
  	
  q0	
  <	
  0	
  suggests	
  an	
  invisible	
  smooth	
  energy	
  distribu=on	
  
	
  
•  	
  Candidates:	
  	
  
	
  	
  	
  	
  	
  Cosmological	
  constant,	
  quintessence	
  (scalar	
  field),	
  more	
  complex	
  equa=ons	
  of	
  state,	
  

etc.	
  
	
  
	
  
	
  

Dark	
  Energy	
  

p = wρ w ≤1

47.020 −≤−≡
a
aaq
!
!!

q0 =
1
2
3w+1( )Ωm −ΩΛ



Fiwh	
  Scalar	
  Field	
  Avatar:	
  Quintessence	
  

• 	
  V=V0	
  exp	
  (-­‐λφ)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Ratra,	
  Peebles	
  1988;	
  WeZerich	
  1988;	
  Ferreira,	
  Joyce	
  1998]	
  

• 	
  V=V0	
  φ-­‐α	
  ,	
  α	
  >	
  0 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Ratra,	
  Peebles	
  1988]	
  

• 	
  V=V0	
  φ-­‐α	
  exp	
  (	
  λφ	
  2	
  )	
  ,	
  α	
  >	
  0 	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Brax,	
  Mar=n	
  1999,	
  2000]	
  

• 	
  V=V0	
  [exp	
  (	
  Mp	
  /	
  φ	
  )	
  –	
  1	
  ] 	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Zlatev,	
  Wang,	
  Steinhardt	
  1999]	
  

• 	
  V=V0	
  (	
  cosh	
  λ	
  φ	
  -­‐	
  1	
  )p 	
   	
   	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Sahni,	
  Wang	
  2000]	
  	
  	
  	
  	
  

• 	
  V=V0	
  sinh-­‐α	
  (	
  λφ	
  ) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Sahni,	
  Starobinsky	
  2000;	
  Urena-­‐López,	
  Matos	
  2000]	
  

• 	
  V=V0	
  [	
  exp	
  (	
  βφ	
  )	
  +	
  exp	
  (	
  γφ	
  )	
  ] 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Barreiro,	
  Copeland,	
  Nunes	
  2000]	
  

• 	
  Scalar-­‐Tensor	
  Theories	
  of	
  Gravity	
  

[Uzan	
  1999;	
  Amendola	
  1999;	
  O.B.,	
  Mar=ns	
  2000;	
  Fujii	
  2000;	
  ...]	
  

• 	
  V=V0	
  exp(	
  -­‐λφ	
  )	
  [	
  A	
  +	
  (	
  φ	
  -­‐	
  B	
  )2	
  ] 	
   	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  [Albrecht,	
  Skordis	
  2000]	
  

• 	
  V=V0	
  exp(	
  -­‐λφ	
  )	
  [	
  a	
  +	
  (	
  φ	
  -­‐	
  φ0	
  )2	
  + b	
  (	
  ψ	
  -­‐	
  ψ0	
  )2+	
  c	
  φ	
  (	
  ψ	
  -­‐	
  ψ0	
  )2	
  +d	
  ψ	
  (	
  φ	
  -­‐	
  φ0	
  )2	
  ]	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Bento,	
  O.B.,	
  Santos	
  2002]	
  

Varying vacuum energy models 
             [Bronstein 1933; O.B. 1986; Ratra, Peebles 1988; Wetterich 1988; …] 
 



Sixth	
  Scalar	
  Field	
  Avatar:	
  	
  
the	
  Generalized	
  Chaplygin	
  gas	
  model	
  

Generalized Chaplygin gas 

 

          : Chaplygin gas 

 

Dust 

 

          : stiff  matter 

 

De Sitter 

•  Unified model for Dark Energy and Dark Matter 

Generalized Born-Infeld Action 

 

          : d-brane 

                  [Kamenshchik, Moschella, Pasquier 2001]  
                                [Bilíc, Tupper, Viollier 2002] 
                                   [Bento, O.B., Sen 2002] 



Dark	
  Energy	
  -­‐	
  Dark	
  MaZer	
  Unifica=on:	
  
Generalized	
  Chaplygin	
  Gas	
  Model	
  

	
  

	
  
	
  

–  	
  CMBR	
  Constraints	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Bento,	
  O.	
  B.,	
  Sen	
  2003,	
  2004;	
  Amendola	
  et	
  al.	
  2004,	
  Barreiro,	
  O.B.,	
  Torres	
  2008]	
  

–  	
  SNe	
  Ia	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [O.	
  B.,	
  Sen,	
  Sen,	
  Silva	
  2004;	
  Bento,	
  O.B.,	
  Santos,	
  Sen	
  2005]	
  

–  	
  Gravita=onal	
  Lensing	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Silva,	
  O.	
  B.	
  2003]	
  

–  Structure	
  Forma=on	
  *	
  

	
  [Sandvik,	
  Tegmark,	
  Zaldarriaga,	
  Waga	
  2004;	
  Bento,	
  O.	
  B.,	
  Sen	
  2004;	
  Avelino	
  et	
  al.	
  2004;	
  Bilic,	
  Tupper,	
  Viollier	
  2005;	
  …]	
  

–  Gamma-­‐ray	
  bursts	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [O.	
  B.,	
  Silva	
  2006,	
  Barreiro,	
  O.B.,	
  Torres	
  2010]	
  

–  Cosmic	
  topology	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Bento,	
  O.	
  B.,	
  Rebouças,	
  Silva	
  2006]	
  

–  Infla=on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [O.B.,	
  Duvvuri	
  2006]	
  

–  Coupling	
  with	
  electromagne=c	
  coupling	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Bento,	
  O.B.,	
  Torres	
  2007]	
  

–  Coupling	
  with	
  neutrinos	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [Bernardini,	
  O.B.	
  2007,	
  2008,	
  2010]	
  

Background	
  tests:	
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 Model 2  
 

• Real scalar field φ: 
   
 
 
  
 

L = 1
2
∂µϕ ∂µϕ −V (ϕ )

V (ϕ ) =V0A
1/α+1[cosh

2/α+1 (α +1)ϕ
2

!

"#
$

%&
+ cosh

−2α /α+1 (α +1)ϕ
2

!

"#
$

%&
]

    [O.B., Sen, Sen, Silva, MNRAS 2004] 

               Hamiltonian formulation 
       [Bernardini, O.B., Annals Physics 2013]             



	
  
•  	
  Evidence:	
  
	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  Flatness	
  of	
  the	
  rota=on	
  curve	
  of	
  galaxies	
  
	
  	
  	
  	
  	
  	
  Large	
  scale	
  structure	
  	
  
	
  	
  	
  	
  	
  	
  Gravita=onal	
  lensing	
  	
  
	
  	
  	
  	
  	
  	
  N-­‐body	
  simula=ons	
  and	
  comparison	
  with	
  observa=ons	
  
	
  	
  	
  	
  	
  	
  Merging	
  galaxy	
  cluster	
  1E	
  0657-­‐56	
  
	
   	
  	
  Massive	
  Clusters	
  Collision	
  Cl	
  0024+17	
  
	
  	
  	
  	
  	
  	
  Dark	
  core	
  of	
  the	
  cluster	
  A520	
   	
  
	
  	
  	
  
•  Cold	
  Dark	
  MaZer	
  (CDM)	
  Model	
  	
  
	
  
	
  	
  Weakly	
  interac=ng	
  non-­‐rela=vis=c	
  massive	
  par=cle	
  at	
  decoupling	
  

	
  
	
  
•  Candidates:	
  	
  
	
  
	
  	
  	
  	
  	
  Neutralinos	
  (SUSY	
  WIMPS),	
  axions,	
  scalar	
  fields,	
  self-­‐interac=ng	
  scalar	
  par=cles	
  

(adamastor	
  par=cle),	
  etc.	
  
	
  
	
  	
  	
  	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

Dark	
  MaZer	
  



7th	
  &	
  8th	
  Scalar	
  Field	
  Avatars:	
  Dark	
  Energy	
  –	
  Dark	
  MaZer	
  Interac=on	
   

Results: 

Two-scalar field model:    
 

[O.B., Carrilho, Páramos, Phys. Rev. D 86, 2012] 

2

parameter and the DE-DM coupling is fully determined.
Furthermore, this is an elegant and straightforward way
to link DM and DE with more fundamental physics mod-
els from which these components might stem.
A relevant property of these interaction models is the

existence of an extra force between dark matter parti-
cles, not present in noninteracting models. This force
can influence structure formation, creating an extra bias
between baryon and dark matter fluctuations, which may
in principle be measured through tests of the equivalence
principle [9, 21]. Furthermore, the varying dark matter
mass can also have an influence in the anisotropy spec-
trum of the CMB since, among other effects, it may alter
the ratio between dark matter and radiation densities at
last scattering. This severely constrains the simplest in-
teraction models, in which the DM mass is a linear func-
tion of the DE field, but its effects are still to be studied
in detail for more complex models [22].
In this paper we present a scalar field interaction model

with an interacting potential V (φ,χ), that incorporates
features of some quintessence models inspired in funda-
mental physics theories. We then characterize the phys-
ical solutions and ascertain the role of the interaction
term in the cosmological evolution. The main equations
of the model are derived in Sec. II. Their numerical so-
lutions are presented in Sec III, along with the relevant
physical results. Section IV concludes with a discussion
of the obtained results and a brief outlook on future de-
velopments.

II. INTERACTION MODEL

A. Basic equations

We consider two interacting canonical real scalar fields
φ and χ, whose Lagrangian density is given by3

Ld = −
1

2
gµν(∂µφ∂νφ+ ∂µχ∂νχ)− V (φ,χ) . (2)

Guided by the cosmological principle, we assume the ge-
ometry of the Universe to be given by a flat Robertson-
Walker metric with line element

ds2 = −dt2 + a2(t)
(

dr2 + r2dΩ2
S2

)

, (3)

with a(t) being the scale factor, normalized so that at
present a(t0) = 1 for convenience, and dΩ2

S2 the line el-
ement for the 2-dimensional sphere S2. For the same
reason, we consider both scalar fields to be homogeneous

3 We use the (−,+,+,+) metric signature and natural units with
! = c = 8πG = 1. As a consequence all masses come in terms of
the reduced Planck mass, Mp ≡ MPl/

√
8π.

and isotropic, leading to the following field equations:

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 , (4)

χ̈+ 3Hχ̇+
∂V

∂χ
= 0 , (5)

where H = ȧ/a is the expansion rate. From the stress-
energy tensor we obtain the usual expressions for the
pressure and energy density,

ρd =
1

2
φ̇2 +

1

2
χ̇2 + V (φ,χ) , (6)

pd =
1

2
φ̇2 +

1

2
χ̇2 − V (φ,χ) .

We also consider a Universe filled with perfect fluids for
matter and radiation, which we consider to be uncoupled
and consequently to evolve as ρm ∝ a−3 and ρr ∝ a−4,
respectively. Finally, we consider the Friedmann equa-
tion,

H2 =
1

3

(

ρm + ρr +
1

2
φ̇2 +

1

2
χ̇2 + V (φ,χ)

)

. (7)

We introduce the density parameters Ωi = ρi/3H2, in
terms of which the usual deceleration parameter reads

q ≡ −
äa

ȧ2
=

1

2
(1 + Ωr + 3wdΩd) , (8)

where wd = pd/ρd is the EOS parameter for the fields.

B. Interaction Potential

We shall be interested in studying the following poten-
tial:

V (φ,χ) = e−λφP (φ,χ) +
1

2
m2χ2 , (9)

where P (φ,χ) is a polynomial in φ and χ and m is
the dark matter bare mass. Such exponential couplings
are inspired from fundamental theories like string or M-
theory, or N = 2 supergravity in higher dimensions [23–
25]. Notice that the interaction of chiral superfields in the
context of N=1 supergravity inflationary models [26, 27]
has many common features with the present model. Fur-
thermore, the exponential term for dark energy is the
simplest way to vary its contributions from very high
energy to the present and to respect the bond for nucle-
osynthesis [28]. Hence under these conditions, one con-
siders the general interaction term with an exponential
multiplied by a polynomial of φ and χ.
The polynomial P (φ,χ) can be separated into the in-

teracting and noninteracting terms, P (φ,χ) = Pφ(φ) +
Pint(φ,χ). For the noninteracting part, we choose the
potential first studied in Ref. [29],

Pφ(φ) = A+ (φ− φ0)
2 . (10)

4

derivative, we see that the interaction is irrelevant. On
the other hand, for small values of φ, the term with m2

can be neglected. Assuming the polynomial P̃ (φ) to be of
order one, the transition value φc between the two phases
can be estimated by setting m2eλφ = 1, which results in

φc ≈ −
2

λ
lnm . (23)

Thus, for φ < φc, the interaction is relevant, becom-
ing subdominant as the value of the scalar field grows.
We are interested in studying the late time behavior of
the Universe, near the stage of accelerated expansion.
It is relevant then to estimate whether the interaction
is important at late times. The value of the DE field
near the present φ(0) can be estimated by assuming that
ρde0 ≈ Vde(φ(0)) and that it is close to the critical density
ρc0, which gives

φ(0) ≈ −
1

λ
ln ρc0 . (24)

Requiring that φc ≥ φ(0), yields a rather low bound for
the bare mass,

m !
√
ρc0 ∼ 10−60 . (25)

Thus, this analysis hints that the effects of the interac-
tion will not be detected at the present unless the DM
bare mass is unnaturally small. If P̃ (φ) is O(10s), this
estimate increases by roughly 2s orders of magnitude,
which would only shift the naturalness problem to P̃ (φ).
Another important situation is the onset of the os-

cillatory phase: we must establish the φ field value for
which M2(φ) " H2. In order to obtain it, we use the
well-known result [1] that exponential potentials lead to
scaling solutions. Albeit this is not strictly valid in our
model, since it is not a pure exponential, we proceed by
assuming a scaling behavior before φ falls in the minimum
of the potential, since the polynomial P (φ,χ) varies little
during that stage. In that case, we have

Ωde ≈
3(w + 1)

λ2
⇒ Vde ∼

9(w + 1)

λ2
H2 , (26)

in which w is the effective EOS parameter for the com-
bination of all the components. We can then rewrite the
oscillation condition as

9(w + 1)

λ2

m2eλφ + 2P̃

Pφ
" 1 . (27)

We recall that if the scaling occurs during nucleosyn-
thesis, then λ " 10 [28]. With such a value for λ and
assuming that P̃ ∼ Pφ, the l.h.s. is always less than
unity when the interaction is relevant, meaning that dur-
ing that stage the field χ has not begun oscillating; con-
versely, one expects oscillations to start as the interaction
becomes unimportant. In particular, for the threshold
mass of Eq. (25), the field may not oscillate until the

present, implying the absence of dark matter as such in
the Universe in the past.
Confronted with these problems, we modify the model

so to allow for a difference in the behavior of both expo-
nentials, i.e. we choose instead,

V (φ,χ) =e−λφ
(

A+ (φ− φ0)
2
)

(28)

+e−λ̄φP̃ (φ)χ2 +
1

2
m2χ2 .

with λ̄ ̸= λ. This relaxes the constraint on m to the less
strict condition

m ! ρλ̄/2λc0 . (29)

This modification evades the problem associated to the
onset of oscillations, as these start while the interaction
is still relevant.
A different modification could have been made, by dis-

carding the assumption that the parameters B, C and
D in P̃ (φ) are O(1) in terms of Mp. However, a solu-
tion to the problems mentioned above would require that
they are increased by several orders of magnitude: this
is rather unnatural, since they are already at the Planck
scale.

III. NUMERICAL RESULTS

Let us start by rewriting the equations in terms of the
number of e-folds N = ln a and, for convenience, use the
rescaled variables of Ref. [32],

H̃ =
H

H0
e2N , Φ̃ =

φ̇

H0
e2N , X̃ =

χ̇

H0
e2N , (30)

where H0 = 72 km/s/Mpc is the present value of the
Hubble constant. Thus, Eqs. (4), (5) and (7) now read

H̃2 = Ωm0e
N + Ωr0 +

1

6
Φ̃2 +

1

6
X̃2 +

e4N

3H2
0

V (φ,χ) ,

H̃(Φ̃′ + Φ̃) +
e4N

H2
0

∂V

∂φ
= 0 , (31)

H̃(X̃ ′ + X̃) +
e4N

H2
0

∂V

∂χ
= 0 ,

where the primes denote derivatives with respect to N .
These changes improve the numerical robustness of the
system by shortening the range of values taken by the
new variables. From the onset of the oscillatory phase we
shall use the averaged equations instead, which become

H̃2 = Ωm0e
N + Ωr0 +

1

6
Φ̃2 +

e4N

3H2
0

Veff(φ) , (32)

H̃(Φ̃′ + Φ̃) +
e4N

H2
0

∂Veff

∂φ
= 0 .

We now integrate the equations from N = −70 to N =
5, ranging from the Planck epoch to some time in the

4

derivative, we see that the interaction is irrelevant. On
the other hand, for small values of φ, the term with m2

can be neglected. Assuming the polynomial P̃ (φ) to be of
order one, the transition value φc between the two phases
can be estimated by setting m2eλφ = 1, which results in

φc ≈ −
2

λ
lnm . (23)

Thus, for φ < φc, the interaction is relevant, becom-
ing subdominant as the value of the scalar field grows.
We are interested in studying the late time behavior of
the Universe, near the stage of accelerated expansion.
It is relevant then to estimate whether the interaction
is important at late times. The value of the DE field
near the present φ(0) can be estimated by assuming that
ρde0 ≈ Vde(φ(0)) and that it is close to the critical density
ρc0, which gives

φ(0) ≈ −
1

λ
ln ρc0 . (24)

Requiring that φc ≥ φ(0), yields a rather low bound for
the bare mass,

m !
√
ρc0 ∼ 10−60 . (25)

Thus, this analysis hints that the effects of the interac-
tion will not be detected at the present unless the DM
bare mass is unnaturally small. If P̃ (φ) is O(10s), this
estimate increases by roughly 2s orders of magnitude,
which would only shift the naturalness problem to P̃ (φ).
Another important situation is the onset of the os-

cillatory phase: we must establish the φ field value for
which M2(φ) " H2. In order to obtain it, we use the
well-known result [1] that exponential potentials lead to
scaling solutions. Albeit this is not strictly valid in our
model, since it is not a pure exponential, we proceed by
assuming a scaling behavior before φ falls in the minimum
of the potential, since the polynomial P (φ,χ) varies little
during that stage. In that case, we have

Ωde ≈
3(w + 1)

λ2
⇒ Vde ∼

9(w + 1)

λ2
H2 , (26)

in which w is the effective EOS parameter for the com-
bination of all the components. We can then rewrite the
oscillation condition as

9(w + 1)

λ2

m2eλφ + 2P̃

Pφ
" 1 . (27)

We recall that if the scaling occurs during nucleosyn-
thesis, then λ " 10 [28]. With such a value for λ and
assuming that P̃ ∼ Pφ, the l.h.s. is always less than
unity when the interaction is relevant, meaning that dur-
ing that stage the field χ has not begun oscillating; con-
versely, one expects oscillations to start as the interaction
becomes unimportant. In particular, for the threshold
mass of Eq. (25), the field may not oscillate until the

present, implying the absence of dark matter as such in
the Universe in the past.
Confronted with these problems, we modify the model

so to allow for a difference in the behavior of both expo-
nentials, i.e. we choose instead,

V (φ,χ) =e−λφ
(

A+ (φ− φ0)
2
)

(28)

+e−λ̄φP̃ (φ)χ2 +
1

2
m2χ2 .

with λ̄ ̸= λ. This relaxes the constraint on m to the less
strict condition

m ! ρλ̄/2λc0 . (29)

This modification evades the problem associated to the
onset of oscillations, as these start while the interaction
is still relevant.
A different modification could have been made, by dis-

carding the assumption that the parameters B, C and
D in P̃ (φ) are O(1) in terms of Mp. However, a solu-
tion to the problems mentioned above would require that
they are increased by several orders of magnitude: this
is rather unnatural, since they are already at the Planck
scale.

III. NUMERICAL RESULTS

Let us start by rewriting the equations in terms of the
number of e-folds N = ln a and, for convenience, use the
rescaled variables of Ref. [32],

H̃ =
H

H0
e2N , Φ̃ =

φ̇

H0
e2N , X̃ =

χ̇

H0
e2N , (30)

where H0 = 72 km/s/Mpc is the present value of the
Hubble constant. Thus, Eqs. (4), (5) and (7) now read

H̃2 = Ωm0e
N + Ωr0 +

1

6
Φ̃2 +

1

6
X̃2 +

e4N

3H2
0

V (φ,χ) ,

H̃(Φ̃′ + Φ̃) +
e4N

H2
0

∂V

∂φ
= 0 , (31)

H̃(X̃ ′ + X̃) +
e4N

H2
0

∂V

∂χ
= 0 ,

where the primes denote derivatives with respect to N .
These changes improve the numerical robustness of the
system by shortening the range of values taken by the
new variables. From the onset of the oscillatory phase we
shall use the averaged equations instead, which become

H̃2 = Ωm0e
N + Ωr0 +

1

6
Φ̃2 +

e4N

3H2
0

Veff(φ) , (32)

H̃(Φ̃′ + Φ̃) +
e4N

H2
0

∂Veff

∂φ
= 0 .

We now integrate the equations from N = −70 to N =
5, ranging from the Planck epoch to some time in the

    - dark energy     - dark matter 

ar
X

iv
:1

20
6.

25
89

v3
  [

gr
-q

c]
  2

0 
D

ec
 2

01
2

Two-scalar-field model for the interaction of dark energy and dark matter

Orfeu Bertolami,1, ∗ Pedro Carrilho,2, † and Jorge Páramos2, ‡
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In this paper, we study the effects of an interaction between dark matter and dark energy through
a two scalar field model with a potential V (φ,χ) = e−λφP (φ,χ), where P (φ,χ) is a polynomial.
We show that the cosmic expansion dynamics of the Universe is reproduced for a large range of
the bare mass of the dark matter field and that there exist solutions with transient accelerated
expansion. A modification in the exponential behavior of the potential is studied, with important
physical implications, including the possibility of more realistic transient acceleration solutions.

PACS numbers: 95.35.+d, 95.36.+x, 98.80.-k, 98.80.Cq

I. INTRODUCTION

A large number of models has been proposed to ex-
plain the dark sector of the Universe (see Refs. [1, 2] for
reviews on dark energy (DE) and dark matter (DM), re-
spectively). Most of those models assume that the dark
components are noninteracting and treat them as fluids.
However, there are neither theoretical arguments forbid-
ding such an interaction, nor there exist sufficient ob-
servational results to rule it out. It is then just natural
to study the general situation in which dark matter and
dark energy are coupled, in order to gain a deeper insight
into the nature of these components1. This is motivated
by the theoretically appealing idea that the full dark sec-
tor can be treated in a single framework. Moreover, the
fact that the present energy densities of dark energy and
matter are observed to be the same order of magnitude,
suggests a connection between them.
An intimate connection between DE and DM is natu-

rally expected in unification models, such as for instance
the Chaplygin gas model and its generalizations [5–7].
Actually, in the context of this model, an assumption
about the equation of state (EOS) of DE allows to extract
an explicit interaction between the dark components [8].
A map between the generalized Chaplygin gas (GCG)
model and the interaction model to be discussed in the
following paragraph can be found in Ref. [9].
A general way to describe the DM-DE interaction is to

introduce an energy exchange term Q in the conservation
equations as follows:

ρ̇de + 3H(ρde + pde) = Q , ρ̇dm + 3Hρdm = −Q . (1)

One may phenomenologically study this interaction by
withholding any assumptions about the nature of the

∗ orfeu.bertolami@fc.up.pt; http://web.ist.utl.pt/orfeu.bertolami/;
Also at Instituto de Plasmas e Fusão Nuclear

† pedro.carrilho@ist.utl.pt
‡ paramos@ist.edu; http://web.ist.utl.pt/jorge.paramos/
1 Self-interacting dark matter has been discussed in Refs. [3, 4].

dark sector and treat it straightforwardly as a two-
component fluid. The coupling Q is usually taken to
be of the form Q = δdeHρde+ δdmHρdm, where H is the
expansion rate and δi are coupling terms. This treatment
is encountered in many observational studies [9, 10].
An alternative path to study the interaction assumes

that dark energy can be described by a scalar field
φ in interaction with a fluid, the so-called interacting
quintessence model: this is the case for the models of
Refs. [11, 12], in which the coupling is chosen to be
Q = f(φ)φ̇ρ, where f(φ) is a generic function. A simi-
lar mechanism is the so-called chameleon model [13]. In
these cases the field interacts with every component of
the Universe, leading to observable effects in solar sys-
tem tests of gravity. A simple modification is possible
using a much smaller coupling for baryons than for DM
as in Ref. [14], or simply substituting ρ with ρdm, so that
DE couples only to DM. That is the case for the model
in Ref. [15], in which the quintessence potential and the
interaction term are derived from scaling assumptions.
A more fundamental approach to tackle the interaction

treats DE and DM as fields, which abandons the need for
fluids in the treatment of these components. Usually this
is achieved through two new scalar fields, φ for DE and
χ for DM [16–18]. An interaction potential Vint(φ,χ) is
then introduced to account for the energy exchange. Ul-
timately these models also lead to the coupling of the
interacting quintessence scenario, as long as the inter-
action is in the form of a DM mass term. This is to
be expected, as will be derived in the following sections.
These are then similar to the so-called VAMP models [19]
in which a particle is introduced whose mass varies with
the quintessence field2.
The advantages of this type of approach are manifold:

the full set of coupled equations can be found from an
action and consequently the functional form of the EOS

2 These models can also involve fermions such as the neutrinos, in
the so-called MaVaN models, see Ref. [20] and Refs. therein.

3

As for the interacting term, an obvious choice is to re-
quire the χ field to be equivalent to a fluid of nonrela-
tivistic matter, i.e. with negligible pressure. We recall
that, according to Ref. [30], scalar field oscillations in a
potential V (χ) = aχn with frequency (i.e. mass) much
greater than the expansion rate H , behave like a fluid
with an average EOS given by

⟨pχ⟩ =
n− 2

n+ 2
⟨ρχ⟩ . (11)

Notice that this is equivalent to the virial theorem for
power-law potentials, i.e.

〈

1
2
χ̇2

〉

= n
2
⟨V (χ)⟩. Thus, in

order to ensure that χ is pressureless at all times, we
must set n = 2. A main feature of the present model is
that the interaction with the field φ leads to an oscillation
with varying frequency. Note however that, unlike pre-
heating models (see for example Ref. [31]), which exhibit
parametric resonance, the frequency here changes slowly.
In this case the computations discussed in Ref. [30] for a
constant frequency hold. To finish our discussion of the
potential we rewrite it with an explicit DM varying mass
term in terms of the DE field,

V (φ,χ) = Vde(φ) + Vdm(φ,χ) , (12)

with

Vde(φ) = e−λφ
(

A+ (φ− φ0)
2
)

, (13)

Vdm(φ,χ) =
1

2
M2(φ)χ2 ,

where the mass function M2(φ) is given in our model by
M2(φ) = m2 + 2P̃ (φ)e−λφ and the polynomial for P̃ is
written as

P̃ (φ) = B + Cφ+Dφ2 , (14)

where B, C and D are order unit parameters in terms of
the appropriate powers of the reduced Planck mass.

C. Average Evolution Equations

Given the high frequency of the oscillations, it is rather
infeasible to integrate the χ equation numerically. For
that reason we consider only averages of the field. In
particular, we shall derive the equation for the dark mat-
ter density and work with that instead. First, we define
the dark matter density and pressure from the EOS found
in Eq. (11),

ρdm =
1

2
χ̇2 +

1

2
M2(φ)χ2 , (15)

pdm =
1

2
χ̇2 −

1

2
M2(φ)χ2 .

By construction, their averages over an oscillation cycle
read

⟨ρdm⟩ =
〈

χ̇2
〉

= M2(φ)
〈

χ2
〉

, ⟨pdm⟩ = 0 . (16)

Next, we multiply Eq. (5) by χ̇ and insert a term
φ̇V ′

dm(φ) to obtain

d

dt

(

1

2
χ̇2 + Vdm(φ,χ)

)

+ 3Hχ̇2 − φ̇
∂Vdm

∂φ
= 0 . (17)

Taking the average yields

ρ̇dm + 3Hρdm −
1

2
φ̇
∂M2(φ)

∂φ

〈

χ2
〉

= 0 , (18)

where we have written ⟨ρdm⟩ as ρdm and ⟨ρ̇dm⟩ as ρ̇dm,
since the density is not sensible to the oscillations, to
a good approximation. This can be easily seen by as-
suming the rapid oscillations of χ(t) are described by a
sinusoidal function, and hence the density depends only
on the amplitude of the oscillations, which is not affected
by a cyclic average.
Substituting the average of χ2 given by Eq. (16), we

obtain

ρ̇dm + 3Hρdm =
1

2
φ̇

1

M2(φ)

∂M2(φ)

∂φ
ρdm . (19)

So, as previously mentioned, the equivalence relation be-
tween coupled quintessence and the field theory approach
is established via the relationship

f(φ) =
1

2

∂ lnM2(φ)

∂φ
. (20)

Furthermore, Eq. (19) can be formally solved as a func-
tion of φ, through

ρdm(φ, a) = n0a
−3M(φ) , (21)

where n0 is an integration constant. Notice this corre-
sponds to the statement that ρ = nM , with M being the
DM mass and n the number density, proportional to a−3.
With this solution, the dynamics is reduced to a single
differential equation for φ: this can be obtained from Eq.
(4), with V being replaced by an effective potential Veff

given by

Veff(φ, a) = Vde(φ) + ρdm(φ, a) . (22)

These equations are valid as long as M2(φ) ≫ H2,
otherwise the oscillation regime is not relevant and we
must also solve Eq. (5).

D. Modified Potential

Having defined the potential and derived the relevant
equations, we are now ready to draw some general con-
clusions about the importance of each of the terms of
the potential. As will become clear below, such results
motivate a modification of the potential.
First, notice that for a sufficiently large φ we have

M2(φ) ≈ m2. At this regime, examining ρdm and its

3
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−3M(φ) , (21)

where n0 is an integration constant. Notice this corre-
sponds to the statement that ρ = nM , with M being the
DM mass and n the number density, proportional to a−3.
With this solution, the dynamics is reduced to a single
differential equation for φ: this can be obtained from Eq.
(4), with V being replaced by an effective potential Veff

given by

Veff(φ, a) = Vde(φ) + ρdm(φ, a) . (22)

These equations are valid as long as M2(φ) ≫ H2,
otherwise the oscillation regime is not relevant and we
must also solve Eq. (5).

D. Modified Potential

Having defined the potential and derived the relevant
equations, we are now ready to draw some general con-
clusions about the importance of each of the terms of
the potential. As will become clear below, such results
motivate a modification of the potential.
First, notice that for a sufficiently large φ we have

M2(φ) ≈ m2. At this regime, examining ρdm and its
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As for the interacting term, an obvious choice is to re-
quire the χ field to be equivalent to a fluid of nonrela-
tivistic matter, i.e. with negligible pressure. We recall
that, according to Ref. [30], scalar field oscillations in a
potential V (χ) = aχn with frequency (i.e. mass) much
greater than the expansion rate H , behave like a fluid
with an average EOS given by
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order to ensure that χ is pressureless at all times, we
must set n = 2. A main feature of the present model is
that the interaction with the field φ leads to an oscillation
with varying frequency. Note however that, unlike pre-
heating models (see for example Ref. [31]), which exhibit
parametric resonance, the frequency here changes slowly.
In this case the computations discussed in Ref. [30] for a
constant frequency hold. To finish our discussion of the
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term in terms of the DE field,
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FIG. 4. Evolution of log ρde for m = 10−60 with the initial
conditions χi = 1 (dotted), χi = 2.609 (dashed) and χi = 10
(dot-dashed), as compared to background density log(ρm+ρr)
(solid) and to the noninteracting case (superimposed with the
χi = 1, since it is indistinguishable).

FIG. 5. Results for m = 5.9× 10−57 showing the evolution of
the relative densities Ωde (solid), Ωdm (dashed), Ωr (dotted)
and Ωm (dot-dashed).

fixing the mass at m = 10−15 ∼ 1 TeV. We obtain some-
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FIG. 6. Results for m = 5.9 × 10−57 showing the evolution
of the deceleration parameter q (dashed) and the DE EOS
parameter wde (solid). Also shown is the effect of the oscil-
lations on the deceleration parameter before log a = −1.3; at
that moment the oscillations are averaged and henceforth the
evolution of the relevant quantities is obtained in terms of Eq.
(32).

FIG. 7. Evolution of log ρdm for m = 10−15 for λ̄ = 9.5
(non-interacting case, dotted), λ̄ = 6.5 (dashed), λ̄ = 4.5
(dot-dashed) and λ̄ = 2.8 (double-dot-dashed), as compared
to background density log(ρm + ρr) (solid).
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raises the minimum of Vde, thus allowing for the field to
escape and continue to roll down the exponential. How-

3

As for the interacting term, an obvious choice is to re-
quire the χ field to be equivalent to a fluid of nonrela-
tivistic matter, i.e. with negligible pressure. We recall
that, according to Ref. [30], scalar field oscillations in a
potential V (χ) = aχn with frequency (i.e. mass) much
greater than the expansion rate H , behave like a fluid
with an average EOS given by

⟨pχ⟩ =
n− 2

n+ 2
⟨ρχ⟩ . (11)

Notice that this is equivalent to the virial theorem for
power-law potentials, i.e.
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⟨V (χ)⟩. Thus, in

order to ensure that χ is pressureless at all times, we
must set n = 2. A main feature of the present model is
that the interaction with the field φ leads to an oscillation
with varying frequency. Note however that, unlike pre-
heating models (see for example Ref. [31]), which exhibit
parametric resonance, the frequency here changes slowly.
In this case the computations discussed in Ref. [30] for a
constant frequency hold. To finish our discussion of the
potential we rewrite it with an explicit DM varying mass
term in terms of the DE field,

V (φ,χ) = Vde(φ) + Vdm(φ,χ) , (12)

with

Vde(φ) = e−λφ
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, (13)

Vdm(φ,χ) =
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M2(φ)χ2 ,

where the mass function M2(φ) is given in our model by
M2(φ) = m2 + 2P̃ (φ)e−λφ and the polynomial for P̃ is
written as

P̃ (φ) = B + Cφ+Dφ2 , (14)

where B, C and D are order unit parameters in terms of
the appropriate powers of the reduced Planck mass.

C. Average Evolution Equations

Given the high frequency of the oscillations, it is rather
infeasible to integrate the χ equation numerically. For
that reason we consider only averages of the field. In
particular, we shall derive the equation for the dark mat-
ter density and work with that instead. First, we define
the dark matter density and pressure from the EOS found
in Eq. (11),

ρdm =
1
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χ̇2 +
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By construction, their averages over an oscillation cycle
read

⟨ρdm⟩ =
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= M2(φ)
〈

χ2
〉
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where we have written ⟨ρdm⟩ as ρdm and ⟨ρ̇dm⟩ as ρ̇dm,
since the density is not sensible to the oscillations, to
a good approximation. This can be easily seen by as-
suming the rapid oscillations of χ(t) are described by a
sinusoidal function, and hence the density depends only
on the amplitude of the oscillations, which is not affected
by a cyclic average.
Substituting the average of χ2 given by Eq. (16), we

obtain

ρ̇dm + 3Hρdm =
1

2
φ̇

1

M2(φ)

∂M2(φ)

∂φ
ρdm . (19)
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tween coupled quintessence and the field theory approach
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Furthermore, Eq. (19) can be formally solved as a func-
tion of φ, through

ρdm(φ, a) = n0a
−3M(φ) , (21)

where n0 is an integration constant. Notice this corre-
sponds to the statement that ρ = nM , with M being the
DM mass and n the number density, proportional to a−3.
With this solution, the dynamics is reduced to a single
differential equation for φ: this can be obtained from Eq.
(4), with V being replaced by an effective potential Veff

given by

Veff(φ, a) = Vde(φ) + ρdm(φ, a) . (22)

These equations are valid as long as M2(φ) ≫ H2,
otherwise the oscillation regime is not relevant and we
must also solve Eq. (5).

D. Modified Potential

Having defined the potential and derived the relevant
equations, we are now ready to draw some general con-
clusions about the importance of each of the terms of
the potential. As will become clear below, such results
motivate a modification of the potential.
First, notice that for a sufficiently large φ we have
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The CHASE laboratory search for chameleon dark energy Jason H. STEFFEN

1. Introduction

A variety of observational evidence indicates that the expansion of the universe is accelerating,
for which a promising class of explanations is scalar field “dark energy” with negative pressure [1].
Such a field is expected to couple to Standard Model particles with gravitational strength and would
mediate a new “fifth” force, but such forces are excluded by experiments on a wide range of scales.
Three known ways to hide dark energy-mediated fifth forces include: weak or pseudoscalar cou-
plings between dark energy and matter [2]; effectively weak couplings locally [3]; and an effec-
tively large field mass locally, as in chameleon theories [4, 5, 6].

Chameleons are scalar (or pseudoscalar) fields with a nonlinear potential and a coupling to the
local energy density. They evade fifth force constraints by increasing their effective mass in high-
density environments, while remaining light in the intergalactic medium. Gravity experiments in
the lab [7] and in space [4, 5] can exclude chameleons with gravitational strength matter couplings,
but strongly coupled chameleons evade these constraints [8, 9]. Casimir force experiments rule out
strongly coupled chameleons [10], but are ineffective for a large class of potentials commonly used
to model dark energy. Collider data exclude extremely strongly coupled chameleons [11].

Photon-coupled chameleons may be detected through laser experiments [12] or excitations in
radio frequency cavities [13]. In laser experiments, photons travelling through a vacuum cham-
ber immersed in a magnetic field oscillate into chameleons. They are then trapped through the
chameleon mechanism by the dense walls and windows of the chamber since their higher effective
mass within those materials creates an impenetrably large potential barrier [12, 14, 15]. After a pop-
ulation of chameleons is produced, the laser is turned off and a photodetector exposed in order to
observe the photon afterglow as trapped chameleons oscillate back to photons. The original Gam-
meV experiment included a search for this afterglow and set limits on photon/chameleon couplings
below collider constraints for a limited set of dark energy models [12]. The GammeV Chameleon
Afterglow Search (CHASE) is a new experiment to search for photon coupled chameleons [16]. Its
results bridge the gap between GammeV [12] and collider constraints, improves sensitivity to both
matter and photon couplings to chameleons, and probes a broad class of chameleon models.

2. Chameleon Models

We consider actions of the form

S=
⇤

d4x
⌅
�g

�1
2

M2
PlR� 1

2
�µ⇥� µ⇥ �V (⇥)� 1

4
e�⇤ ⇥/MPlFµ⇧Fµ⇧ +Lm(e2�m⇥/MPlgµ⇧ ,⌥ i

m)
⇥

(2.1)

where the reduced Planck mass MPl = 2.43⇤ 1018 GeV, Lm the Lagrangian for matter fields ⌥ i
m,

and �⇤ and �m are dimensionless chameleon couplings to photons and matter respectively (often
expressed as g⇤ = �⇤/MPl and gm = �m/MPl). We assume universal matter couplings.

The dynamics of this field are governed by an effective potential that depends on a potential
V (⇥), the background matter density ⌃m, and the electromagnetic field Lagrangian density ⌃⇤ =

Fµ⇧Fµ⇧/4 = (B2 �E2)/2 (for pseudoscalars ⌃⇤ = Fµ⇧ F̃µ⇧/4 = ⌅B ·⌅E):

Veff(⇥ ,⌅x) =V (⇥)+ e
�m⇥
MPl ⌃m(⌅x)+ e

�⇤ ⇥
MPl ⌃⇤(⌅x). (2.2)
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mediate a new “fifth” force, but such forces are excluded by experiments on a wide range of scales.
Three known ways to hide dark energy-mediated fifth forces include: weak or pseudoscalar cou-
plings between dark energy and matter [2]; effectively weak couplings locally [3]; and an effec-
tively large field mass locally, as in chameleon theories [4, 5, 6].

Chameleons are scalar (or pseudoscalar) fields with a nonlinear potential and a coupling to the
local energy density. They evade fifth force constraints by increasing their effective mass in high-
density environments, while remaining light in the intergalactic medium. Gravity experiments in
the lab [7] and in space [4, 5] can exclude chameleons with gravitational strength matter couplings,
but strongly coupled chameleons evade these constraints [8, 9]. Casimir force experiments rule out
strongly coupled chameleons [10], but are ineffective for a large class of potentials commonly used
to model dark energy. Collider data exclude extremely strongly coupled chameleons [11].

Photon-coupled chameleons may be detected through laser experiments [12] or excitations in
radio frequency cavities [13]. In laser experiments, photons travelling through a vacuum cham-
ber immersed in a magnetic field oscillate into chameleons. They are then trapped through the
chameleon mechanism by the dense walls and windows of the chamber since their higher effective
mass within those materials creates an impenetrably large potential barrier [12, 14, 15]. After a pop-
ulation of chameleons is produced, the laser is turned off and a photodetector exposed in order to
observe the photon afterglow as trapped chameleons oscillate back to photons. The original Gam-
meV experiment included a search for this afterglow and set limits on photon/chameleon couplings
below collider constraints for a limited set of dark energy models [12]. The GammeV Chameleon
Afterglow Search (CHASE) is a new experiment to search for photon coupled chameleons [16]. Its
results bridge the gap between GammeV [12] and collider constraints, improves sensitivity to both
matter and photon couplings to chameleons, and probes a broad class of chameleon models.

2. Chameleon Models

We consider actions of the form
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where the reduced Planck mass MPl = 2.43⇤ 1018 GeV, Lm the Lagrangian for matter fields ⌥ i
m,

and �⇤ and �m are dimensionless chameleon couplings to photons and matter respectively (often
expressed as g⇤ = �⇤/MPl and gm = �m/MPl). We assume universal matter couplings.

The dynamics of this field are governed by an effective potential that depends on a potential
V (⇥), the background matter density ⌃m, and the electromagnetic field Lagrangian density ⌃⇤ =
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A well-studied class of chameleon models has a potential of the form [6]
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⇥

ML
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⇤ M4
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⇥

ML
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⌃
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where N is a real number and ML = ⌃1/4
de ⇤ 2.4⇥ 10�3 eV is the mass scale of the dark energy

density ⌃de and ⇧ is a dimensionless constant. The constant term in this potential causes cos-
mic acceleration that is indistinguishable from a cosmological constant for cosmological surveys.
However, the local dynamics from the power-law term can be probed in the laboratory.

Following the derivations in [17, 18] the conversion probability between photons and chameleons
is

P⇤⌅⇥ =

⇤
2⌥�⇤B
MPlm2

eff

⌅2

sin2
⇤

m2
eff⇧

4⌥

⌅
k̂⇥ (x̂⇥ k̂). (2.4)

Here, ⌥ is the particle energy, meff =
⌥

Veff,⇥⇥ is the effective chameleon mass in the environment,
⇧ is the distance travelled through the magnetic field, and k̂ is the particle direction.

When a photon/chameleon wavefunction strikes an opaque surface of the vacuum cham-
ber, there is a model-dependent phase shift �ref between the two components and a reduction
in photon amplitude due to absorption. On the other hand, a glass window performs a quan-
tum measurement—chameleons reflect while photons are transmitted. The velocities of trapped
chameleons quickly become isotropic through surface imperfections. The decay rate of a chameleon
to a photon Gdec,⇤ , is found by averaging over initial directions and positions. The observable af-
terglow rate per chameleon Gaft is found by averaging over those trajectories that allow a photon
to reach the detector. Once the geometry of an experiment is defined, these rates can be computed
numerically [18].

A single parameter ⌅ can be used to describe the chameleon effect. If the chameleon mass in
the chamber is dominated by the matter coupling, then meff µ ⌃⌅

m where ⌅ = (N�2)/(2N�2) [18].
The largest value of ⌅ with integer N is ⌅ = 3/4 for N =�1; ⇥ 4 theory (N = 4), has ⌅ = 1/3. We
do not consider 0 < N < 2 since their potentials are either unbounded from below or do not exhibit
the chameleon effect.

3. Apparatus

The design of the CHASE apparatus is shown in Fig. 1. In addition to the windows at the
ends of the vacuum chamber, we centered two glass windows in the cold bore of a Tevatron dipole
magnet which divide the magnetic field into three partitions of lengths 1.0 m, 0.3 m, and 4.7 m. The
shorter partition lengths provide sensitivity to larger-mass chameleons.

For a fixed magnetic field there are limits to the smallest and largest detectable �⇤—small �⇤
produce small afterglow signals while with large �⇤ the chameleon population will decay before
the detector can be exposed. We improve our sensitivity to large �⇤ by operating at a variety of
lower magnetic fields, which lengthen the decay time of the chameleon population and provide
overlapping regions of sensitivity. A mechanical shutter (chopper) modulates any afterglow signal
allowing a measurement of the PMT dark rate and improving sensitivity to low afterglow rates
(small �⇤ ).
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Since the only di⇥erence between actions (2.2) and (3.1) is in the matter term, it is obvious that

the additional modification in the field equations will came from the variation of this term. Thus,

considering the variation of this term and using the results from Section 2.1 one obtains,
⌥ ⇧

1⇥
�g

�(
⇥
�gf2(R)Lm)

�gµ�

⌃
�gµ�⇥�gd4x =

⌥ ⇧
�f2(R)
�gµ�

Lm + f2(R)
1⇥
�g

�(
⇥
�gLm)
�gµ�

⌃
�gµ�⇥�gd4x ,

(3.4)

=
⌥ ⇧

Lmf �
2(R)Rµ� ��µ�(Lmf �

2(R))� 1
2
f2(R)Tµ�

⌃
�gµ�⇥�gd4x .

(3.5)

Hence, the field equations obtained from action (3.1) are given by

(f �
1 + 2Lmf �

2)Rµ� �
1
2
f1gµ� ��µ�(f �

1 + 2Lmf �
2) = f2Tµ� . (3.6)

Making explicit the Einstein tensor, Gµ� , one rewrites the field equations and gets

Gµ� =
f2

f �
1 + 2f �

2Lm

�
T̂µ� + Tµ�

⇥
, (3.7)

where the e⇥ective energy-momentum tensor T̂µ� has been defined as

T̂µ� =
1
2

⇤
f1

f2
� f �

1 + 2Lmf �
2

f2
R

⌅
gµ� +

1
f2

�µ� (f �
1 + 2Lmf �

2) . (3.8)

From Eq. (3.7) one can define an e⇥ective coupling

k̂ =
f2

f �
1 + 2Lmf �

2

, (3.9)

and therefore the field equations can be written in a more familiar form,

Gµ� = k̂
�
T̂µ� + Tµ�

⇥
. (3.10)

Thus, in order to keep gravity attractive, k̂ has to be positive from which follows the additional

condition
f2

f �
1 + 2Lmf �

2

> 0 . (3.11)

As expected, setting f1(R) = R and f2(R) = 1 one recovers Einstein’s theory.

The e⇥ective energy-momentum tensor defined by Eq. (3.8) can be written in the form of a perfect

fluid,

Tµ� = (⇥ + p)uµu� � pgµ� , (3.12)

if one defines an e⇥ective energy density and an e⇥ective pressure. However, given the presence of

the higher order derivatives in Eq. (3.8), in order to proceed in this way it is necessary to specify

the metric of the space-time manifold of interest. Since one is interested in cosmological applications,

the Robertson-Walker (RW) metric is a natural choice. Hence, in what follows, one considers the

homogeneous and isotropic flat RW metric with the signature (+,�,�,�),

ds2 = dt2 � a2(t)ds2
3 , (3.13)
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where ds2
3 contains the spacial part of the metric and a(t) is the scale factor.

Using this metric the higher order derivative term is given by

⇥µ⇥h(R,Lm) = (⌅µ⌅⇥ � gµ⇥�)h(R,Lm)

= (⇧µ⇧⇥ � gµ⇥⇧0⇧0)h� (�0
µ⇥ + gµ⇥3H)⇧0h (3.14)

where h(R,Lm) is a generic function of R and Lm, H = ȧ/a is the Hubble expansion parameter and

�0
µ⇥ = aȧ �µ⇥ (with µ, ⇤ ⇤= 0) is the a⌅ne connection. Thus, the e⇤ective energy density is given by

⌅̂ =
1
2

�
f1

f2
� f �

1 + 2Lmf �
2

f2
R

⇥
� 3H

f ��
1 + 2Lmf ��

2

f2
Ṙ (3.15)

while the e⇤ective pressure is given by

p̂ = �1
2

�
f1

f2
� f �

1 + 2Lmf �
2

f2
R

⇥
+ (R̈ + 2HṘ)

f ��
1 + 2Lmf ��

2

f2
+

f ���
1 + 2Lmf ���

2

f2
Ṙ2 , (3.16)

where the dot refers to derivative with respect to time.

The field equations (3.10) along with the definitions of ⌅̂ and p̂ will be useful for deriving the various

energy conditions in Section 3.3.

The non-minimal curvature-matter coupling brings new intriguing features to the modified theories

of gravity. One expects energy to be exchanged between geometry and matter fields in a non-trivial

way. In fact, taking account into the covariant derivative of the field equations (3.6), the Bianchi

identities and the relationship1

⌅µ⇥µ⇥f �
i(R) = (�⌅⇥ �⌅⇥�)f �

i(R) = Rµ⇥⌅µf �
i(R) , (3.17)

one obtains [10]

⌅µTµ⇥ =
f �
2

f2
[gµ⇥Lm � Tµ⇥ ]⌅µR . (3.18)

Thus, one verifies that the energy-momentum tensor is not covariantly conserved. Furthermore,

inserting the energy-momentum tensor of a perfect fluid (Eq. (3.12)) into Eq. (3.18) and contracting

the resultant equation with the projection operator, hµ⇥ = gµ⇥ � uµu⇥ , one obtains [10],

u⇥⌅⇥u� =
1

⇥ + p

�
f �
2

f2
(Lm + p)⌅⇥R +⌅⇥p

⇥
h⇥� (3.19)

⇥f� .

Thus, the motion of a point-like test particle is non-geodesic due to the appearance of the extra force

f�. This force is orthogonal to the four-velocity of the particle due to the fact that, by definition,

h⇥�u� = 0 . (3.20)

1Which arises directly from the definition of the Riemann tensor, ⇥c⇥dXa �⇥d⇥cXa = Ra
bcdXb.
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Chapter 3

f (R) Theories with non-minimal

curvature-matter coupling

3.1 Action, Field Equations and Phenomenology

Recently, there has been a revival of interest in a class of modified gravity theories where, besides

the usual modification in the gravity sector, discussed in the previous chapter, it is introduced a

coupling between curvature and matter. This revival of interest is due to the fact that this non-

minimal curvature-matter coupling gives rise to a violation of the conservation equation of the energy-

momentum tensor which may introduce an extra force in the theory [10] (see also Ref. [11] for a recent

review on the subject). The phenomenology of these models is considered in more detail below.

The action of interest has the following form,

S =
⇤ �

1
2
f1(R) + f2(R)Lm

⇥⇥
�gd4x , (3.1)

where fi (with i = 1, 2) are arbitrary functions of the Ricci scalar. The second function, f2(R), is

usually considered to have the following form,

f2(R) = 1 + ⇥⇤2(R) , (3.2)

where ⇥ is a constant and ⇤2 is another function of R. These kind of non-minimal couplings were first

proposed in Ref. [12] motivated by the issue of the accelerated expansion of the universe. However, in

that paper, it was only considered the case where f2(R) = R�. One considers here a broader class of

models.

As stated in the previous chapter, only the metric formalism is considered. Thus, as performed in

Section 2.1, varying action (3.1) with respect to the metric yields

�S =
⇤ �

1
2
⇥
�g

�(
⇥
�gf1(R))
�gµ⇥

+
1⇥
�g

�(
⇥
�gf2(R)Lm)

�gµ⇥

⇥
�gµ⇥⇥�gd4x . (3.3)

9

Action: 

Field equations: 

Effective energy-momentum tensor non-conservation: 

Eq. motion test particle: 
        (Perfect fluid) 

1

�µ⇤ = ⇥µ⇥⇤ � gµ⇤g�⇥⇥�⇥⇥ (1)
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 • Stellar stability [O.B., Páramos, Phys. Rev. D 77 (2008)] 

•  On the non-trivial gravitational coupling to matter 
  [O.B., Páramos, Class. Quant. Grav. 25 (2008)]  

•  Non-minimal coupling of perfect fluids to curvature  
  [O.B., Lobo, Páramos, Phys. Rev. D 78 (2008)] 

•  Non-minimal curvature-matter couplings in modified gravity (Review) 
  [O.B., Páramos, Harko, Lobo, arXiv:0811.2876 [gr-qc]] 

•  A New source for a braneworld cosmological constant from a modified gravity model in the bulk               
[O.B., Carvalho, Laia, Nucl. Phys. B 807 (2009)] 

•  Energy Conditions and Stability in f(R) theories of gravity with non-minimal coupling to matter                 
[O.B., Sequeira, Phys. Rev. B 79 (2009)] 
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•  Accelerated expansion from a non-minimal gravitational coupling to matter  
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•  Mimicking the cosmological constant: Constant curvature spherical solutions in non-minimally coupled 
model     [O.B., Páramos, Phys. Rev. D 84 (2011)] 

•  Mimicking dark matter in clusters through a non-minimal gravitational coupling with matter: the case of the 
Abell cluster A586  [O.B., Frazão, Páramos, Phys. Rev. D 86 (2012)]  
 

 

f2 (R) =1+
R
R0

!

"
#

$

%
&

n



	
  
	
  
	
  
	
  

	
  

•  On the dynamics of perfect fluids in non-minimally coupled gravity  [O.B., Martins, Phys. Rev. D 85 (2012)]   
•  Traversable Wormholes and Time Machines in non-minimally coupled curvature-matter f(R) theories                        
[O.B., Ferreira, Phys. Rev. D 85 (2012)] 

•  Solar System constraints to nonminimally coupled gravity                                                                                             
[O.B., March, Páramos, Phys. Rev. D 88 (2013)] 

•  Cosmological perturbations in theories with non-minimal coupling between curvature and matter                            
[O.B., Frazão, Páramos, JCAP 1305 (2013)]  

•  Minimal extension of General Relativity: alternative gravity model with non-minimal coupling between matter 
and curvature    (Review)                         [O.B., Páramos, Int. J. Geom. Meth. Mod. Phys. 11 (2014)] 

•  The Layzer-Irvine equation in theories with non-minimal coupling  between and matter and curvature     
[O.B., Gomes, JCAP 1409 (2014)]  
 
•  Modified Friedmann Equation from Nonminimally Coupled Theories of Gravity  
[O.B., Páramos, Phys. Rev. D 89 (2014)]  

•  Black hole solutions of gravity theories with non-minimal coupling between matter and curvature           
[O.B., Cadoni, Porru, Class. Quant. Grav. 32 (2015)]  

•  Viability of nominimally coupled f(R) gravity      [O.B., Páramos, Gen. Rel. Grav. 48 (2016)] 

•  1/c expansion on nonminimally coupled curvature-matter gravity models and constraints from planetary 
preceaaion     [March, Páramos, O.B., Dell’Agnello, Phys. Rev. D 95 (2017)] 

•  Inflation in non-minimal matter-curvature coupling theories                                                                          
[Gomes, Rosa, O.B., JCAP 1706 (2017)] 

•  Gravitational waves in theories with a non.minimal curvature-matter coupling                                              
[O.B., Gomes, Lobo, Eur. Phys. C 78 (2018)] 
• Constraining a nonminimally coupled curvature-matter model with ocean experiments                                              
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Chapter 3

f (R) Theories with non-minimal

curvature-matter coupling

3.1 Action, Field Equations and Phenomenology

Recently, there has been a revival of interest in a class of modified gravity theories where, besides

the usual modification in the gravity sector, discussed in the previous chapter, it is introduced a

coupling between curvature and matter. This revival of interest is due to the fact that this non-

minimal curvature-matter coupling gives rise to a violation of the conservation equation of the energy-

momentum tensor which may introduce an extra force in the theory [10] (see also Ref. [11] for a recent

review on the subject). The phenomenology of these models is considered in more detail below.

The action of interest has the following form,

S =
⇤ �

1
2
f1(R) + f2(R)Lm

⇥⇥
�gd4x , (3.1)

where fi (with i = 1, 2) are arbitrary functions of the Ricci scalar. The second function, f2(R), is

usually considered to have the following form,

f2(R) = 1 + ⇥⇤2(R) , (3.2)

where ⇥ is a constant and ⇤2 is another function of R. These kind of non-minimal couplings were first

proposed in Ref. [12] motivated by the issue of the accelerated expansion of the universe. However, in

that paper, it was only considered the case where f2(R) = R�. One considers here a broader class of

models.

As stated in the previous chapter, only the metric formalism is considered. Thus, as performed in

Section 2.1, varying action (3.1) with respect to the metric yields

�S =
⇤ �

1
2
⇥
�g

�(
⇥
�gf1(R))
�gµ⇥

+
1⇥
�g

�(
⇥
�gf2(R)Lm)

�gµ⇥

⇥
�gµ⇥⇥�gd4x . (3.3)
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Action: 

Linearised field eqs. around a Minkowsky background: 

Cosmological constant as a source: 

Dispersion relation: 

[O.B.,	
  Gomes,	
  Lobo,	
  Euro	
  Phys.	
  J.	
  C78	
  (2018)]	
  	
   

R0 = 0 for Minskowski 

Scalar mode absorbed in 
this gauge choice 
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Newman-Penrose formalism (full theory): 

[O.B.,	
  Gomes,	
  Lobo,	
  Euro	
  Phys.	
  J.	
  C78	
  (2018)]	
  	
   
	
  	
   

In NMC with a C.C. other scalar, vector and tensor modes 
are also possible (Φ00,Φ11,Φ00,R are nonzero), but a  
complete characterisation can only be carried out once  
the full solution is known (required for the Ψi).   

NP quantities built from the decomposition of the Weyl 
tensor in terms of irreducible parts: Riemann tensor, 
Ricci tensor and scalar curvature. 
In GR, only Ψ4 is non-vanishing → polarisations + and x 
 

 
 



Dark Energy fluid as a source: 

Scalar modes: 

A further scalar mode is found due to fluctuactions of the matter Lagrangian 
(at linear level!) 
 
 

Extra modes may be detected in future measurements with more precise data is available 
 
It might allow to distinguish between GR and other models! 
 
 
 



Some “Vector” Thoughts … 



Weyl	
  Gravity	
  
Weyl Gravity was proposed as an attempt to unify GR with Electromagnetism: 

Where the covariant derivative is built from the generalised connection: 

The Ricci tensor reads: 

And its trace: 

[H. Weyl (1918)] 
[P- Dirac (1973)] ​ 



Nonminimally	
  coupled	
  Weyl	
  Gravity	
  
We start from the action: 

Variation with respect to the vector field: 

where  

The metric field equations: 
         

and  

The order of the PDEs is lowered, thus avoiding some well known 
instabilities! 
         

[C. Gomes, O.B., 1812.04976 [gr-qc]] ​ 



Does	
  a	
  cosmological	
  constant	
  arise	
  from	
  the	
  model?	
  
From the contracted Bianchi identities: 

where  
From the generalised contracted Bianchi identities: 
         

where  

Conserved	
  quan=ty:	
  
trace	
  of	
  the	
  field	
  

equa@ons	
  
	
  

Hence,	
  no	
  
integra@on	
  constant	
  

arises	
  from	
  the	
  
model	
  

[Einstein (1919)9]  
[Kaloper, Padilla (2014)] 
[O.B., Páramos (2017)] 
[Gomes, O.B.,1812.04976] ​ 



Space	
  Form	
  Behaviour	
  
A pseudo-Riemannian manifold admit a space form behaviour iff: 

Combining the field equations with their trace for the vacuum,       : 

In general, we could have K=K(t), which cannot be identified with 
the constant matter vacuum,       . 

In order to proceed one needs to find a form for the vector field. 



The	
  Weyl	
  vector	
  field	
  
A natural ansatz for the vector field:   [Bento, OB., Moniz, Mourão, Sá (1993)]  

which admits invariance under spatial rotations, SO(3) transformations, 
with generators      , and is consistent with homogeneity and isotropy  
 
We further assume a constant scalar curvature:  

Two main cases can be studied: 
 



Varia@on:	
  	
  	
  
Dynamic	
  Vector	
  Field	
  	
  

[R. Baptista, O.B., to appear]	
  	
  

•  SO(3) gauge field in a Robertson-Walker spacetime 
•  … 

_ _ 



Another	
  Varia@on	
  	
  	
  
[O.B., Bessa, Páramos, PRD (2016)]	
  	
  

•  Can inflation by driven by vector fields? 

•  Yes … , but needs a dominating Λ  [Ford, PRD (1989)] 

•  No! SO(3) Gauge Field  
[Bento, O.B., Moniz, Mourão, Sá, CQG (1993)] 
 
•  Yes! But ... only if nonmimimally coupled to gravity!  

Inflationary fixed points 

ê 



Conclusions	
  

-­‐	
  The	
  discovery	
  of	
  the	
  Higgs	
  field	
  provides	
  yet	
  another	
  proof	
  that	
  gauge	
  symmetries	
  are	
  
realized	
  in	
  Nature	
  and	
  that	
  the	
  vacua	
  do	
  not	
  fully	
  share	
  these	
  symmetries	
  

-­‐	
   Moreover,	
   it	
   confirms,	
   up	
   to	
   the	
   tested	
   energy	
   scales,	
   the	
   existence	
   of	
   at	
   least	
   one	
  
fundamental	
  scalar	
  field	
  	
  

-­‐	
   Should	
   one	
   generalize	
   the	
   gauge	
   principle	
   and	
   consider	
   the	
   so-­‐called	
   Grand	
   Unified	
  
Theories	
   (GUTs)?	
   Should	
   one	
   consider	
   them	
   in	
   the	
   context	
   supergravity	
   (gauge	
  
generaliza=on	
  of	
  supersymmetry),	
  string	
  theory,	
  etc?	
  

-­‐	
  Does	
  gravity	
  have	
  a	
  scalar	
  component?	
  

-­‐	
  Is	
  the	
  inflaton	
  a	
  scalar	
  field	
  in	
  the	
  context	
  of	
  more	
  fundamental	
  theories?	
  It	
  cannot	
  be	
  
the	
   minimally	
   coupled	
   Higgs	
   field	
   of	
   GUTs.	
   It	
   can	
   be	
   a	
   chiral	
   superfield	
   of	
   some	
  
supergravity	
  models,	
  even	
  though	
  not	
  the	
  moduli	
  fields	
  of	
  string	
  theory	
  ...	
   	
  Some	
  scalar	
  
field	
   models	
   with	
   plateau-­‐like	
   poten=al	
   models	
   are	
   degenerate	
   with	
   the	
   Starobinsky	
  
model	
  

-­‐	
  Is	
  there	
  an	
  underlying	
  scalar	
  field	
  associated	
  to	
  dark	
  maZer?	
  What	
  about	
  dark	
  energy?	
  
What	
  about	
  a	
  puta=ve	
  interac=on	
  between	
  them?	
  

-­‐	
  ...	
  

	
  


