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Quick review of Souriau’s universal model of a test particle
(see Pierre Saturnini’s talk)
Idea: see how far you can go with basic assumptions.

A classical elementary particle is determined by two numbers: its mass m
and spin s. Only the mass is accounted for in the geodesic equations in
General Relativity.

Hypothesis:
The action of a diffeomorphism on the metric is unobservable
A test particle description can be expanded in its multipoles
(monopole, dipole, ...)

Up to dipole terms we obtain the Mathisson-Papapetrou-Dixon equations
[Souriau ’74],

Ṗµ = −1
2Rµ

ραβSαβẊρ,

Ṡµν = PµẊ ν − PνẊµ.
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Ṡµν = PµẊ ν − PνẊµ.
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Overview
For a photon, postulate PµPµ = 0 and the Tulczyjew constraint
Sµ

νPν = 0. The Souriau-Saturnini equations are then [Saturnini ’76],

Ẋµ = Pµ + 2
R(S)λ

σSλ
σ Sµ

νR(S)ν
ρPρ ,

Ṗµ = −s Pf(R(S)µ
ν)

R(S)λ
σSλ

σ Pµ ,

Ṡµν = PµẊ ν − ẊµPν .

with −1
2Tr(S2) = s2, s = ±~ and R(S)µ

ν := Rµ
ναβSαβ.

We want to see the practical differences induced by these equations. Two
examples here:

Schwarzschild metric, gravitational lensing [Duval, Marsot, Schücker,
arXiv:1812.03014]

Gravitational wave detections [Marsot, arXiv:1904.09260]
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Schwarzschild metric, isotropic coordinates, and notations

Schwarzschild metric in isotropic coordinates (x, t), where x = (x1, x2, x3),

g = −
( r + a

r

)4
‖dx‖2 +

( r − a
r + a

)2
dt2,

with r :=
√

x · x and 0 < a < r , with a = 1
2GM the Schwarzschild radius.

If (ρ, θ, ϕ, t) are the Schwarzschild coordinates, the isotropic polar ones
(r , θ, ϕ, t) are related by

ρ = r
(
1 + GM

2r

)2
or r = 1

2

(
ρ− GM +

√
ρ(ρ− 2GM)

)
.
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Definitions of P and S
The 4-momentum, with p = (p1, p2, p3),

P =


r2

(r + a)2 p

r + a
r − a ‖p‖

 ,
such that P2 = 0. The spin tensor, with s = (s1, s2, s3),

S = (Sµ
ν) =


j(s) −(s× p)

‖p‖
r2(r − a)
(r + a)3

−(s× p)T

‖p‖
(r + a)3

r2(r − a) 0

 ,
such that SP = 0, with j(s) : p 7→ s× p, and the conserved longitudinal
spin,

−1
2Tr(S2) =

(s · p
‖p‖

)2
= s2.
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The equations in Schwarzschild spacetime (1/2)

Let us introduce the shorthand,

D := r2(s · p)− 3(p · x)(s · x).

dx
dt = r2(r − a)

(r + a)3D
{

r2(s · p) p
‖p‖ − 3‖p‖(s · x) x + 3[x× p · s] x× p

‖p‖
}
,

dp
dt = 2 a

(r + a)4D

{
r2(r − a)

[
(s · p)(p · x)− 3r

(r + a)3 (s · x)[x× p · s]
] p
‖p‖

− r ‖p‖
[
D + r (r − a) (s · p)

]
x + 3 (r − a)[x× p · s] (p · x) x× p

‖p‖

}
,
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The equations in Schwarzschild spacetime (2/2)

ds
dt = 1

‖p‖ (r + a)4D
{
3(r − a)(r + a)3

[ (
−r2‖p‖2 + (x · p)2

)
s× p

+
(
2‖p‖2(x · s)− (x · p)(s · p)

)
x× p

]
+ 2arD ((x · s)p− (x · p)s)

+ 2a(r − a)
(
− r2(s · p)2x− 3[x× p · s]2x

+ r2(x · s)(s · p)p + 3[x× p · s](x · s)x× p
)}
.
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Conserved quantities
The energy E , the angular momentum L and logitudinal spin s,

E = r − a
r + a ‖p‖+ 2ar

(r + a)4‖p‖ [x× p · s] ,

L =
( r + a

r

)2
x× p + r − a

r + a s + 2a
r2(r + a) (s · x) x ,

s = s · p
‖p‖ ,

are conserved. Possible to eliminate s in the equations of motion with the
relations,

x× p · s = r + a
r − a

(
x× p ·L−

( r + a
r

)2 (
r2‖p‖2 − (x · p)2

))
,

s · x = L · x ,

s · p = s‖p‖.
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From 9 to 5 equations of motion
The conservation of energy gives us

‖p‖ = r − a
r + a

(r + a)2E − 2ar
(r2−a2)‖p‖ (x× p ·L)

(r − a)2 − 2a
r‖p‖2 ‖x× p‖2

.

The equations become,

dx
dt = r2(r − a)

(r + a)3D

{
r2sp− 3‖p‖(L · x) x + 3[x× p · s] x× p

‖p‖

}
,

d
dt

( p
‖p‖

)
= 2a

(r + a)4D

{
3(r − a)(x · p)

‖p‖2 [x× p · s] x× p+

+
(
3r(L · x)(x · p)− (2r − a)s‖p‖r2

)(
x− (x · p) p

‖p‖2
)}

.

with D := r2s‖p‖ − 3(p · x)(L · x), and [x× p · s] as above.
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Radial propagation

If the initial momentum is parallel to the initial position, the equations of
motion become much simpler,

dx
dt = r2(r − a)

(r + a)3
p
‖p‖ ,

dp
dt = − 2 a r2

(r + a)4 p,

ds⊥
dt = − 2 a r2

(r + a)4 s⊥

The trajectory described is exactly the null geodesic one. In radial
propagation, the trajectory and redshift are the same whether we consider
the spin of the photon or not. While s is conserved, s⊥ is only parallel
transported.

C. Duval & L. Marsot & T. Schücker Application of the Souriau-Saturnini equations Cargèse, Feb. 10, 2019



Quick reminder: gravitational lensing without spin

The dashed line is the null geodesic trajectory followed by spinless light. It
is bent around the lens, which can be our Sun, a galaxy, or other.

Lens
Emitting star Earth

The full trajectory of spinless light is contained in a plane.
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Schwarzschild numerical solution (ChD, LM, TS)
Starting at perihelion together with a spinless photon,

x0 =

 r0
0
0

 , p0 =

 0
p0
0

 , s0 =

 0
s
0

 ,
with r0 = 3 · 105 m, λ0 = 600 nm, and Schwarzschild radius a = 3 · 103 m.

In the geodesic plane: looks just like the null geodesic!
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Schwarzschild perturbative solution

Same initial conditions at perihelion. Two small parameters,

α = a
r0

& ε = ~
r0 p0

= λ0
2π r0

,

Find a deviation of order ε to the geodesic.

At lowest order in ε and α,

x3 = −ε χ t & p3 = 2 ε αχ p0

√
r2
0 + t2 − r0√

r2
0 + t2

,

corresponding to deviation angles out of the geodesic planes,

β ∼ −(1− 4α) χλ0
2π r0

& γ ∼ χa λ0
π r2

0
.

For the sun, and λ0 = 600nm, 2|β| ∼ 5 · 10−11 ′′ and 2|γ| ∼ 5 · 10−16 ′′.
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Not following its momentum?

x3 and p3 have different signs, intuitively expect something like:

Lens

γ

Spinless
β

χ = −1

χ = +1

The equations are ill-defined at infinity due to the Schwarzschild spacetime
being asymptotically flat.

This problem is solved when considering the cosmological constant. The
equations become well defined “far away” from the star, and the photon
follows its momentum. But not the most satisfactory explanation.
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Observations and (potential) problems with this approach

Angles out of the geodesic plane,

β ∼ −(1− 4α) χλ0
2π r0

& γ ∼ χa λ0
π r2

0
,

featuring a rainbow effect.

Experimental upper bound with radio waves deviated by the sun:
γexp < 10−3 ′′ vs γth ∼ 10−11 ′′ [Harwit, et. al. ’74]

Other approach found the same expression for γ, but in different
direction [Gosselin, Bérard, Mohrbach ’07]

Transverse spin is 0 at perihelion then grows linearly with time (better
with Λ). Due to classical equations ?
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Spin effects in gravitational wave detections?

Gravitational wave (GW) detection involves a laser beam, hence photons
with their spin, travelling through an inhomogeneous gravitational field.

Recall the metric describing a GW in spacetime to linear order in the GW
amplitude ε ∼ 10−20,

g = dt2 −
(
1− ε cos(ω(t − z))

)
dx2

1 −
(
1 + ε cos(ω(t − z))

)
dx2

2 − dx2
3 .

Perturbation around is Minkowski not well defined for massless spinning
particles...

...experimentally we only know an upper bound to the mass of the photon,

mγexp < 10−54kg.
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Justifications for the massive photon trick

The MPD equations with P2 = mγ
2 and SP = 0 are,

Ẋ = P − 2SR(S)P
4P2 − R(S)(S) ,

Ṗ = −1
2R(S)Ẋ ,

Ṡ = PẊ − ẊP.

We recover the Souriau-Saturnini equations in the limit mγ → 0.

Photon such as p = (0, p2, 0), we have,

p2
2 � mγ

2 � R(S)(S)

The mass drops out in the direction of propagation we are interested in.
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Equation of motion for the spinning photon

In the direction of propagation defined by p we have,

dx2
dt = 1− ε

2 cos(ω(t − z))︸ ︷︷ ︸
null geodesic

− ε2
λ2

γ

λ2
GW

s2
1 − s3(s2 + s3))

~2 cos(ω(t − z))︸ ︷︷ ︸
Spin-GW interaction

.

With values taken from LIGO/Virgo, λγ = 1064 nm,

ε

2
λ2

γ

λ2
GW
∼ 10−46

The time of flight depends on the polarization state of the photon, but the
amplitude of the change is lower than second order geodesic terms in ε.
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Conclusions

Schwarzschild spacetime:

No contribution of the spin to radial propagation

Additional deviation angle for gravitational lensing, featuring
birefringence and a rainbow effect

Theoretical prediction 8 orders of magnitude below experimental upper
bound in 1974

Gravitational wave background:

Additional time delay in time of flight in LIGO/Virgo detectors

Predictions 25 orders of magnitude below current experimental values

A better interpretation of the classical transverse spin is needed
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