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Quantum gravity does not have a perturbative
continuum limit

SEH:/d4a:£EH, EEH:—Q\/gR/Iiz
I{IQ/Mplaan, /{2 = 2nGr

e 6,uu Flis '%H/u/

Lo g irrelevant operators dim" n+4

only continuum limit



But it also has another problem ...
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Problem is in the conformal factor g.. = 0.

.. key to solving the first problem
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Wilsonian RG with right sign kinetic term
necessarily has polynomial interactions
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Wilsonian RG with right sign kinetic term
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Wilsonian RG with wrong sign Kinetic ferm
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Wilsonian RG with wrong sign Kinetic ferm
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Wilsonian RG with wrong sign Kinetic ferm
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Wilsonian RG with wrong sign Kinetic ferm
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Wilsonian RG of perturbative quantum gravity

Non-differentiated fields must be integrable under

1

EXP —2—@ (@2 703 hiV — 2 EMCM)

Interactions are 5(X)(90) polynomials
OPerafor: fX(SO) U(aaa 85907 h757 Ce, C¢, (I)Z) i
Renormalizability: ~ [o] -1 —n <4 ;

o s(n) tadpole corrections

Coefficient ™ fi(e)= > ¢38,(¢)



What is the quantum version of
diffeomorphism invariance?

Wilsonian RG & QME (Slavnov-Taylor identities)
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What is the quantum version of
diffeomorphism invariance?
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What is the quantum version of
diffeomorphism invariance?

A[S] =1(8,8) - Ag= 0
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But that can be done by sending Ag = x!
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N.B. Newtons constant is a “collective’ effect



For [G] = 6 need g;5 = 0.

(but could use also for [c] = 5)
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Thls construction establishes quantum gravity as a
genulne continuum quantum field theory, at O(K)
with all the correct properties.

Inevitable logical consequence of insisting on
Wilsonian RG applied to
(unmodified) Einstein-Hilbert action



Construction crucially different from:
constructions for other QFTSs,
common (mis?)conceptions for QG.

Continuum limit guaranteed by relevant couplings,
but for A, ¢ 2 A, no diffeomorphism invariant
description.

A, p < A, : diffeomorphism invariant theory
recovered through (modified) Slavnov-Taylor
identities

Appears works at higher order in k, with only one more
free parameter: the cosmological constant.

(work in progress)




