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Abstract

We study the covering of the 2-dim de Sitter universe.

1 Introduction

Quantum field theory on curved spacetime provides to date the most reliable access to study

quantum effects in the presence of gravity. The procedure amounts to finding a metric solving

Einstein’s equations and then studying Quantum Fields in that background, possibly consid-

ering also the back-reaction of the fields on the metric in a semiclassical approach to quantum

gravity. It is in this way that the Hawking effect and the spectrum of primordial perturbations

are found and characterized.

There is however a caveat : by solving Einstein’s equations one gets the local metric struc-

ture of a manifold but the global topological properties are not accessible in this way. And

the global topological properties may and do play an important role in the interplay between

quantization and causality. One very well known example of this status of affaires is the Anti-de

Sitter manifold which has closed timelike curves. This problem is ”treated” by passing to the

universal covering of the manifold which allows for scalar theories of any mass to be considered.

Another well known quantum topological effect is the Aharonov - Bohm phenomenon: the

presence of a solenoid makes the configuration space non-simply connected. An example of a

similar nature that we consider in this paper is the two-dimensional de Sitter spacetime which is
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topologically non trivial in the spacelike directions. Why this manifold should be interesting at

all? Two-dimensional models of quantum field theory have played and still play an important

role as theoretical laboratories where to explore quantum phenomena that have then been

recognized also in four dimensional realistic models, the best known being the Schwinger1 [1]

and the Thirring [2, 3] models.

By considering the same models formulated on the two-dimensional de Sitter universe dS2

one may ask what are the features that survive on the curved manifold. This study may also

throw a new light on some of the difficulties encountered in perturbation theory.

We have recently reconsidered the free de Sitter Dirac fields in two dimensions which al-

ready showed interesting new features [4]. The two-dimensional de Sitter manifold admits two

inequivalent spin structures. Correspondingly, there are two distinct Dirac fields which may be

either periodic (Ramond) or anti-periodic (Neveu-Schwarz) w.r.t. spatial rotations of an angle

2π. A requirement of de Sitter covariance (in a certain generalized sense) may be implemented

at the quantum level only in the anti-periodic case [4, 5]. As a consequence the Thirring-de

Sitter model admits covariant solutions [6] only in the antiperiodic case. The double covering

of the de Sitter manifold d̃S2 naturally enters in the arena of soluble models of QFT through

that door.

The manifold d̃S2 is in itself a complete globally hyperbolic manifold. It carries a natural

action of SL(2, R), the double covering of SO0(1, 2), the pseudo-orthogonal group that acts

on dS2. The Lorentzian geometry of d̃S2 is locally indistinguishable from that of dS2 but the

global properties are quite different. This fact has profound consequences at the quantum

level. We present a few of them in this paper by considering the simplest possible model of

quantum field theory, namely a free massive Klein-Gordon field. One of the above mentioned

consequences, the most relevent from the physical viewpoint, is that moving from the de Sitter

spacetime to its double covering makes the Hawking-Gibbons temperature disappear.

It is known that the thermal effects in QFT have to do with spacetimes possessing a bifur-

cate Killing horizon. Examples of such spacetimes include Minkowski spacetime, the extended

Schwarzschild spacetime and de Sitter spacetime. Kay and Wald have proven a uniqueness theo-

rem for such thermal states but there are counterexamples where the suitable geometrical struc-

ture does not imply the existence of the corresponding thermal state as in the Schwarzschild-de

Sitter and in the Kerr cases. Our example is in a sense more peculiar: the double covering of

the two-dimensional manifold is indistinguishable for a geodesic observer from the uncovered

1For example the Schwinger model, which corresponds to two-dimensional quantum electrodynamics, has

allowed for the pre-discovery of some of the most important phenomena expected from quantum chromodynamics

such as asymptotic freedom and confinement.
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manifold. There is no classical experiment that he can do to determine whether he lives in the

de Sitter universe or its double covering. Yet at the quantum level things are different and the

global geometric structure of the double covering makes the SL(2, R) invariance, locality and

analyticity properties incompatible and this forbids the existence of the thermal radiation fro

the horizons.

2 The de Sitter universe as a coset space.

Let us consider the two-dimensional de Sitter group G = SO0(1, 2) which is the component con-

nected to the identity of the pseudo-orthogonal Lorentz group acting on the three-dimensional

Minkowski spacetime M3 with metric (+,−,−). The Iwasawa decomposition KNA of a generic

element g of G is written as follows:

g = k(ζ)n(λ)a(χ) =

=


1 0 0

0 cos ζ sin ζ

0 − sin ζ cos ζ




1 + λ2

2 −λ2

2 λ
λ2

2 1− λ2

2 λ

λ −λ 1




chχ shχ 0

shχ chχ 0

0 0 1

 . (1)

The above decomposition gives natural coordinates (λ, ζ) to points x = x(λ, ζ) = k(ζ)n(λ) of

the coset space G/A, which is seen to be topologically a cylinder. Here ζ is a real number

mod 2π.

The group G acts on G/A by left multiplication: x(λ′, ζ ′) = gx(λ, ζ). The case of a rotation

k(β) ∈ K is of course the easiest to account for and amounts simply to a shift of the angle ζ:

λ′ = λ, ζ ′ = ζ+β, where both ζ and ζ ′ are real numbers mod 2π. The two other subgroups give

rise to slightly more involved transformation rules which we do not reproduce here. However,

by introducing the variables

u =
λ+ tg ζ

2

1− λ tg ζ
2

, v = cot
ζ

2
, (2)

the action of G admit an interesting simple form:

g = k(α)n(µ)a(κ) : u→ u′ =
(eκu+ µ) cos α2 + sin α

2

cos α2 − (eκu+ µ) sin α
2

, v → v′ =
(eκv − µ) cos α2 − sin α

2

cos α2 + (eκv − µ) sin α
2

. (3)

G acts on the variables u and v by homographic transformations.

The simple geometrical interpretation of the above transformation rules may be unveiled

by introducing the standard representation of dS2 as a one-sheeted hyperboloid

dS2 =
{
x ∈M3 : x02 − x12 − x22

= −1
}
. (4)
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The coset space G/A can indeed be identified with dS2 as follows: consider a vector whose

components are the entries x02, x12 and x22 of the third column of the matrix x(λ, ζ) = k(ζ)n(λ).

Obviously such vector belongs to dS2 and is invariant by the right action of the subgroup A.

The so-defined map between G/A and dS2 is a bijection. As a byproduct, the Iwasawa

decomposition (1) gives natural global coordinates (λ, ζ) to points2 x = x(λ, ζ) of the de Sitter

hyperboloid:

x(λ, ζ) =


x0 = λ,

x1 = λ cos ζ + sin ζ,

x2 = cos ζ − λ sin ζ.

(5)

The left action of SO0(1, 2) on the coset space G/A by construction coincides with the linear

action of SO0(1, 2) in M3 restricted to the manifold dS2:

x(λ′, ζ ′) = gx(λ, ζ).

The base point (origin) x(0, 0) = (0, 0, 1) is invariant by the action of the subgroup A. Of

course (5) supposes that we have chosen a certain Lorentz frame in M3, and this frame will

remain fixed in the sequel. Note that the Iwasawa coordinate system (λ, ζ) is not orthogonal:

ds2 =
(

dx02 − dx12 − dx22
)∣∣∣
dS2

= −2dλdζ −
(
λ2 + 1

)
dζ2. (6)

The variables u and v also have a simple geometric interpretation; they correspond to the

two ratios that may be formed by factorizing the equation defining the de Sitter hyperboloid:

u =
1− x2

x1 − x0
, v =

1 + x2

x1 − x0
. (7)

The above ratios transform ”homographically” under the action of the group.

The complexification of the de Sitter manifold can then be equivalently identified either

with the coset space Gc/Ac of the corresponding complexified groups or with the complex de

Sitter hyperboloid

dSc2 = {z ∈ C3 : z02 − z12 − z22
= −1}. (8)

Particularly important subsets of dSc2 are the forward and backward tubes, defined as follows:

T + = {z ∈ C3 : (Im z0)
2 − (Im z1)

2 − (Im z2)
2
> 0, Im z0 > 0}, (9)

T − = {z ∈ C3 : (Im z0)
2 − (Im z1)

2 − (Im z2)
2
> 0, Im z0 < 0}. (10)

2We adopt the same letter x to denote points of the coset space G/A and of the de Sitter hyperboloid dS2,

as they are identified.
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In the following we will make also use of the standard global orthogonal coordinate system:

x(t, θ) =


x0 = sh t,

x1 = ch t sin θ,

x2 = ch t cos θ.

(11)

Here θ is a real number mod 2π. The relation between the two above coordinate system is

quite simple:

λ = sh t, tg θ = tg(ζ + arctanλ). (12)

3 The double covering of the 2-dim de Sitter manifold as a

coset space.

The easiest and most obvious way to describe the double covering d̃S2 of the two-dimensional

de Sitter universe dS2 consists in unfolding the periodic coordinate θ. More precisely, we may

write the covering projection pr : d̃S2 → dS2 as follows:

pr (x̃(t, θ))→ x(t, θ), (13)

where we use the coordinates (t, θ) to parameterize also d̃S2; at the lhs θ is a real number

mod 4π while at the rhs θ is a real number mod 2π.

In a more elaborate construction the double covering d̃S2 arises as a coset space of the double

covering G̃ = SL(2, R) of SO0(1, 2). Let G̃c = SL(2, C). An element of G̃c is parametrised by

four complex numbers a, b, c, d

g̃ =

(
a b

c d

)
(14)

subject to the condition

det g̃ = ad− bc = 1.

For g̃ ∈ G̃ the formulae are the same but all entries are real. Let Ãc be the complex subgroup

of all 2× 2 matrices of the form

h̃(r) =

(
r 0

0 1
r

)
, r ∈ C, r 6= 0 . (15)

Ã is the subgroup of Ãc in which r > 0. Note that Ãc ∩ G̃ = Ã∪−Ã does not coincide with Ã.

Z2 = {1, −1} is the common center of G̃c and G̃, and is contained in Ãc (but not Ã).
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G̃ (resp. G̃c) operates on the real (resp. complex) 3-dimensional Minkowski space M3 (resp.

M
(c)
3 ) by similarity :

x→ X =

(
x0 + x1 x2

x2 x0 − x1

)
, X ′ =

(
x0′ + x1′ x2′

x2′ x0′ − x1′

)
= g̃Xg̃T . (16)

The real (resp. complex) de Sitter manifold is mapped into itself by the above action. In

particular the subgroup Ã is seen to be the stability subgroup of the vector (0, 0, 1) and the

quotient G̃c/Ãc can be identified with the complex de Sitter space. The real trace of the latter,

i.e. G̃/(Ãc ∩ G̃) can be identified to the real de Sitter space dS2. On the other hand G̃/Ã can

be identified to the two-sheeted covering d̃S2 of dS2. If g ∈ G̃c and r 6= 0,

g̃h̃(r) =

(
ra b

r

rc d
r

)
. (17)

Let us first consider the case when g ∈ G̃ and r > 0. Since ad − bc = 1, a and c cannot be

both equal to 0, we can take r = (a2 + c2)−1/2 and we get a′2 + c′2 = 1. Thus every coset g̃A

(g ∈ G̃ = SL(2, R)) contains exactly one element with this property, i.e. we can represent the

double covering d̃S2 as the following real algebraic manifold

d̃S2 = G̃/Ã ' {(a, b, c, d) ∈ R4 : ad− bc = 1, a2 + c2 = 1} (18)

which is the intersection of two quadrics in R4 and can be verified to have no singular point.

The elements representing the coset can be parametrized by using once more the Iwasawa

decomposition of G̃ :

g̃ = k̃(ζ) ñ(λ) ã(χ) =

(
s cos ζ2 sin ζ

2

− sin ζ
2 cos ζ2

)(
1 λ

0 1

)(
e
χ
2 0

0 e−
χ
2

)
, (19)

where λ and χ are real and ζ is a real number mod 4π. The parameters are related to a, b, c

and d as follows:

λ = ab+ cd, r = e
χ
2 =

√
a2 + c2, cos

ζ

2
=

a√
a2 + c2

, sin
ζ

2
= − c√

a2 + c2
. (20)

The Iwasawa parametrization of the coset space G̃/Ã is then

x̃(λ, ζ) = k̃(ζ) ñ(λ) =

(
cos ζ2 λ cos ζ2 + sin ζ

2

− sin ζ
2 cos ζ2 − λ sin ζ

2

)
. (21)

G̃ acts on G̃/Ã by left multiplication; the transformation rules of the parameters formally

coincide with the previous ones with the only exception that rotations are now defined mod 4π.
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The covering map pr : d̃S2 → dS2 can be also represented as follows

pr (x̃(λ, ζ))→ x(λ, ζ) (22)

where at the lhs ζ is a real number mod 4π while at the rhs ζ is a real number mod 2π.

The Maurer-Cartan form provides G̃/Ã with a natural Lorentzian metric that may be

constructed as follows: there is an inner automorphism of G̃ leaving invariant the elements of

the subgroup Ã:

g̃ → µ(g̃) = −γ2g̃γ2, γ2 =

(
i 0

0 −i

)
. (23)

It may be used to construct a map from the coset space G̃/Ã into the group G̃:

g̃(x̃) = x̃µ(x̃)−1 = −x̃γ2x̃−1γ2. (24)

In turn, this map allows to introduce a left invariant Lorentzian metric on the coset space as

follows:

ds2 =
1

2
Tr(dg̃ g̃−1)2 = −2dλdζ −

(
λ2 + 1

)
dζ2. (25)

As expected, the metric coincides with the de Sitter metric (6); the only difference is that now

the angular variable ζ is defined mod 4π.

The algebraic manifold (18) can be complexified, i.e. we can define

V = {(a, b, c, d) ∈ C4 : ad− bc = 1, a2 + c2 = 1} . (26)

Let us again consider eq. (17) but now with complex g̃ and r. If g̃ is such that a2 + c2 6= 0,

we can choose r = ±(a2 + c2)−1/2 and thus the coset g̃Ãc contains two distinct (opposite)

elements with a′2 + c′2 = 1. If p, p′ are points of V such that p 6= ±p′ there is no r 6= 0 such

that p′ = ph̃(r) hence p and p′ belong to different elements of G̃c/Ãc. Conversely two opposite

points p and −p of the manifold V belong to the same coset pÃc i.e. determine a unique element

of Gc/Ac. On the other hand if g̃ is such that a2 +c2 = 0, all elements of the coset g̃Ac have the

same property and none belongs to V. The cosets g̃Ac such that a2 + c2 = 0 can be identified

to certain points of the complex de Sitter space as follows. Let g = (a, b, c, d) ∈ Gc. Then

x = g(0, 0, 1) is given by(
x0 + x1 x2

x2 x0 − x1

)
=

(
a b

c d

)(
0 1

1 0

)(
a c

b d

)
=

(
2ab ad+ bc

ad+ bc 2cd

)
. (27)

(The fact that the determinant of the lhs is equal to −1 expresses x ∈ dS(c)
2 .) a and c cannot

be both 0. Supposing c 6= 0 we get

a

c
=
x0 + x1

x2 − 1
=

x2 + 1

x0 − x1
. (28)
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The condition a2 + c2 = 0 is equivalent to a = ±ic (thus excluding c = 0) and implies

x0 + x1 = ±i(x2 − 1) =⇒ x0 − x1 = ∓i(x2 + 1) . (29)

Conversely one of these conditions implies a2 + c2 = 0. Therefore

a2 + c2 = 0⇐⇒ (x0 + x1)2 + (x2 − 1)2 = 0⇐⇒ (x0 − x1)2 + (x2 + 1)2 = 0 . (30)

It follows that V projects onto dS
(c)
2 with the exception of the manifold N defined by the above

equations. Note that the points (±i, 0, 0) belong to N . Of course the manifold N is not

invariant under the action of G̃ or G̃c.

Note that G̃c acts transitively on dS
(c)
2 , i.e. given (x0, x1, x2) ∈ C3 satisfying x02 − x12 −

x22
= −1, there is a g = (a, b, c, d) such that ad− bc = 1 and eq. (27) holds.

There are other complex manifolds that contain d̃S2 as a real form. For example let us

represent d̃S2 as a cylinder R × S1 as follows: a point is associated to a pair (x0, θ) where

x0 ∈ R and θ ∈ R/4πZ. It projects on the point
x0√

x02 + 1 cos θ√
x02 + 1 sin θ

 ∈ dS2 . (31)

The natural complexification of this is Σ × C/4πZ, where Σ is the Riemann surface of z 7→
√
z2 + 1, a two-sheeted covering of C \ {i, −i}. This complex manifold projects onto dS

(c)
2

with the exception of the points such that (x02
+ 1) = 0, or equivalently (x12

+ x22
) = 0.

4 More about the covering projection

The group G̃ = SL(2, R) acts on the covering space d̃S2 as a group of spacetime transformations

by left multiplication x̃ → g̃x̃ and acts on dS2 by similarity (??). We denote both actions by

the shortcut (·)→ g̃(·). They commute with the covering projection (13):

pr (g̃x̃) = g̃ pr (x̃) ∀g̃ ∈ G̃, ∀x̃ ∈ d̃S2 . (32)

On the de Sitter manifold dS2 the antipodal map x 7→ −x is expressed in the coordinates

(t, θ) by x(t, θ) 7→ −x(t, θ) = x(−t, θ+π). Let τ1 be the operation with the same expression on

the covering manifold d̃S2, i.e.

τ1x̃(t, θ) = x̃(−t, θ + π), x̃ ∈ d̃S2 (33)
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and let τ

τ x̃(t, θ) = x̃(t, θ + 2π), x̃ ∈ d̃S2. (34)

Obviously τ1 is a diffeomorphism of the covering manifold; we have that

τ = τ2
1 , pr (τ1x̃) = −pr (x̃), pr (τ x̃) = pr (x̃) . (35)

The following lemma proves that τ1 commutes with the action of the group G̃.

Lemma 4.1 Let ϕ (resp. ϕ̃) be a continuous map of dS2 (resp. d̃S2) into itself such that

pr ϕ̃(x̃) = ϕ(pr x̃) for all x̃ ∈ d̃S2. Suppose that, for every y ∈ dS2 and every g ∈ G, ϕ(gy) =

gϕ(y). Then, for every x̃ ∈ d̃S2 and every g̃ ∈ G̃, ϕ̃(gx̃) = g̃ϕ̃(x̃).

Proof. Let x̃ ∈ d̃S2. Let B be the set of all g ∈ G̃ such that ϕ̃(gx̃) = gϕ̃(x̃). B contains the

identity and is obviously closed. Let g ∈ B and let V be an open neighborhood of ϕ̃(gx̃) = gϕ̃(x̃)

such that pr is a diffeomorphism of V onto pr V . Let W be an open neighborhood of g in G̃

such that hϕ̃(x̃) ∈ V and ϕ̃(hx̃) ∈ V for all h in W . For any h ∈ G̃,

prhϕ̃(x̃) = hpr ϕ̃(x̃) = hϕ(pr x̃) = ϕ(prhx̃) = pr ϕ̃(hx̃) . (36)

Since pr is a diffeomorphism on V , h ∈W implies that ϕ̃(hx̃) = hϕ̃(x̃), i.e. h ∈ B, i.e. W ⊂ B.

Thus B is open and must coincide with G̃. If we take ϕ̃(x̃) = τ1x̃ and ϕ(x) = −x we obtain

gτ1x = τ1gx for all g ∈ H.

We can also define τ2 by

τ2x̃(t, θ) = x̃(−t, θ − π), (37)

It satisfies τ2τ1 = τ1τ2 = 1 and also commutes with the action of H. It follows that τ = τ2
1 = τ2

2

also commutes with the action of H.

5 Quantum field theory on the 2-dim dS universe vs its double

covering

In the spherical coordinate system (both on dS2 and on d̃S2) the de Sitter Klein-Gordon

equation takes the form

�φ− λ(λ+ 1)φ =
1

ch t
∂t(ch t ∂tφ)− 1

ch2 t
∂2
θφ− λ(λ+ 1)φ = 0. (38)

The parameter λ and, consequently, the squared mass

m2
λ = −λ(λ+ 1) (39)
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are complex numbers; m2
λ is real and positive in the following special cases:

either λ = −1

2
+ iρ, Im ρ = 0, m =

√
1

4
+ ρ2 ≥ 1

2
, (40)

or Imλ = 0, −1 < Reλ < 0, 0 < m <
1

2
. (41)

Let us introduce the complex variable z = i sh t, so that 1 − z2 = ch2 t, and separate the

variables by posing

φ = f(z)eilθ (42)

Eq. (38) implies that f has to solve the Legendre differential equation:

(1− z2)f ′′(z)− 2zf ′(z) + λ(λ+ 1)f(z)− l2

(1− z2)
f(z) = 0. (43)

All the difference between dS2 and its covering d̃S2 is that in the first case l is an integer

number while in the second case 2l is integer. Enlarging the set of possible values of l in this

way will cause many unexpected (and dramatic!) new features. We will describe some of them

below.

Two linearly independent3 solutions of the above equation are the Ferrers functions (also

called “Legendre functions on the cut”) Pµ
ν (z) and Qµ

ν (z), where

ν = λ, µ = −l.

Pµ
ν (z) and Qµ

ν (z) are holomorphic in the cut-plane

∆2 = C \ (−∞− 1] ∪ [1,∞). (47)

3The following formulae are useful to compute the various WronskiansW{w1, w2} = w1(z)w′2(z)−w2(z)w′1(z)

needed:

Pµ
ν (0) =

2µ+1 sin
(
1
2
π(µ+ ν)

)
Γ
(
1
2
(µ+ ν + 2)

)
√
πΓ

(
1
2
(−µ+ ν + 1)

) , (44)

P′
µ
ν (0) =

2µ cos
(
1
2
π(µ+ ν)

)
Γ
(
1
2
(µ+ ν + 1)

)
√
πΓ

(
1
2
(−µ+ ν + 2)

) . (45)

where P′(z) = dP
dz

. We get

W{Pµ
ν (i sh t),Pµ

ν (−i sh t)} =
2

Γ(−µ− ν)Γ(−µ+ ν + 1)
(ch t)−2

W{Pµ
ν (i sh t),P−µν (i sh t)} = −2 sin(πµ)

π
(ch t)−2

W{Pµ
ν (−i sh t),P−µν (−i sh t)} =

2 sin(πµ)

π
(ch t)−2

W{Pµ
ν (i sh t),P−µν (−i sh t)} = −2 sin(πν)

π
(ch t)−2 (46)
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and satisfy the reality conditions

Pµ
ν (z) = Pµ

ν (z̄), Qµ
ν (z) = Qµ

ν (z̄) (48)

for all z ∈ ∆2. Pµ
ν (z) respects the symmetry (39) of the mass squared: for all z ∈ ∆2 it satisfies

the identity [47]

P−lλ (z) = P−l−λ−1(z). (49)

If λ − l and λ + l − 1 are not non-negative integers, P−lλ (z) and P−lλ (−z) also constitute two

linearly independent solutions of Eq. (43). In this case the general solution has the form

φl(t, θ) = [al P
−l
λ (i sh t) + bl P

−l
λ (−i sh t)] eilθ. (50)

In the following we will restrict our attention to values of λ such that

Reλ+
1

2
≥ 0 (51)

i.e. we do not consider here tachyon fields.

6 Canonical commutation relations.

Let us focus on the modes

φl(t, θ) = [alP
−l
λ (i sh t) + blP

−l
λ (−i sh t)]eilθ

φ∗l (t, θ) = [a∗lP
−l
λ (−i sh t) + b∗lP

−l
λ (i sh t)]e−ilθ (52)

where either λ = −1/2 + iν or λ real. The KG product is defined as usual:

(f, g)KG = i

∫
Σ

(f∗∂µg − g ∂µf∗)dΣµ(x) = i

∫
Σ

(f∗∂tg − g ∂tf∗)dθ (53)

On dS2 the integral is over the interval Σ = [0, 2π] and l is integer. When we consider fields

on the covering manifold d̃S2 the integral is over the interval Σ = [0, 4π] and 2l is integer.

The first condition imposed by the canonical quantization procedure is the orthogonality

(φ∗l , φl′)KG = 0 of the modes; it gives rise to the following conditions on the coefficients:

alb−l − bla−l = 0 for l ∈ Z (i.e. on both dS2 and d̃S2), (54)

ala−l − blb−l = cl sin(πλ), alb−l − bla−l = cl sin(πl) for l ∈ 1
2 + Z (only on d̃S2). (55)

The constants cl are unrestricted by the above condition. Both conditions are summarized as

follows:

a−l = cl(al sin(πλ) + bl sin(πl)), b−l = cl(bl sin(πλ) + al sin(πl)). (56)
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The normalization condition is given by

(φl, φl′)KG =
2kπ

γl
(|al|2 − |bl|2) δll′ =

1

Nl
δll′ (57)

where k = 1 for dS2 and k = 2 for d̃S2 and

γl =
1

2
Γ(l − λ)Γ(1 + λ+ l) (58)

so that

Nl =
γl

2kπ(|al|2 − |bl|2)
= 1. (59)

As a function of l the product γl is always positive for λ = −1
2 + iν. When −1 < λ < 0 it takes

negative values for negative half integer l’s.

The commutator finally takes the following form:

C(t, θ, t′, θ′) =
∑
kl∈Z

Nl[φl(t, θ)φ
∗
l (t
′, θ′)− φl(t′, θ′)φ∗l (t, θ)] =

=
∑
kl∈Z

Nl(|al|2 − |bl|2)[P−lλ (i sh t)P−lλ (−i sh t′)−P−lλ (−i sh t)P−lλ (i sh t′)] cos (lθ − lθ′)

+
∑
kl∈Z

iNl(|al|2 + |bl|2)[P−lλ (i sh t)P−lλ (−i sh t′) + P−lλ (−i sh t)P−lλ (i sh t′)] sin (lθ − lθ′)

+
∑
kl∈Z

[2iNlalb
∗
lP
−l
λ (i sh t)P−lλ (i sh t′) + 2iNla

∗
l blP

−l
λ (−i sh t)P−lλ (−i sh t′)] sin (lθ − lθ′).

(60)

where, again, k = 1 for dS2 and k = 2 for d̃S2 . We left in this expression explicitly indicated

Nl as a function of al and bl, as in Eq. (59), even though the normalization condition imposes

Nl = 1. This allows to verify the locality property of the above expression more easily. Let us

indeed verify that the equal time commutator

C(0, θ, 0, θ′) = 2i
∑
kl∈Z

γl(|al + bl|2)

2kπ (|al|2 − |bl|2)
[P−lλ (0)]2 sin (lθ − lθ′) (61)

vanishes. The terms contributing to C(0, θ, 0, θ′) are the ones antisymmetric in the exchange

of θ and θ′ (the second and third line in Eq. (60)). By using Eq. (56) we have that

|al + bl|2

|al|2 − |bl|2
= cot

(
1

2
π(l + λ)

)
tg

(
1

2
π(λ− l)

)
|a−l + b−l|2

|a−l|2 − |b−l|2
(62)

In deriving the above identity we took in to account the hypothesis λ = −1/2 + iν or λ real,

which implies that sinπλ is a real number.
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On the other hand formula (44) gives

γlP
−l
λ (0)2

γ−lP
l
λ(0)2

= tg

(
1

2
π(λ+ l)

)
cot

(
1

2
π(λ− l)

)
. (63)

Therefore the coefficients of sin[l(θ − θ′)] and of sin[−l(θ − θ′)] are equal and the equal time

commutator C(0, θ, 0, θ′) vanishes.

Let us verify now the CCR’s:

∂t′C(t, θ, t, θ′)|t=t′=0 = −2i
∑
kl∈Z

γl
2kπ

[P−lλ (0)P′
−l
λ (0)] cos (lθ − lθ′)+

+2i
∑
kl∈Z

∑ γl
2kπ(|al|2 − |bl|2)

(alb
∗
l − a∗l bl)[P−lλ (0)P′

−l
λ (0)] sin (lθ − lθ′) =

= i
∑
kl∈Z

1

2kπ
cos (lθ − lθ′) = iδ(θ − θ′) (64)

where we used again Eq. (56) As a byproduct we deduce that the second and third line in Eq.

(60) vanish identically and the covariant commutator may be re-expressed as follows:

C(t, θ, t′, θ′) =
∑
kl∈Z

γl
2kπ

[P−lλ (i sh t)P−lλ (−i sh t′)−P−lλ (−i sh t)P−lλ (i sh t′)] cos (lθ − lθ′)

=
∑
kl∈Z

γl
2kπ

[P−lλ (i sh t)P−lλ (−i sh t′)−P−lλ (−i sh t)P−lλ (i sh t′)] exp (ilθ − ilθ′). (65)

The second step follows from the symmetry of the generic term of the series at the right hand

side of Eq. (65) under the change l→ −l.

7 SL(2,R)-invariance of the commutator

While the SL(2, R) invariance of the commutator is (somehow) a priori guaranteed by the

vanishing of the equal time commutator and by the CCR’s (64), it is instructive for what follows

to give a direct proof based on the recurrence relations satisfied by the Legendre functions on

the cut. This will prepare the general proof of the following Section 8, where the question of

finding the more general invariant two-point function will be addressed.

To this aim, let us start by considering the first term at the RHS of Eq. (65) :

W0(x̃, x̃′) =
1

4π

∑
2l∈Z

γl

[
P−lλ (i sh t)P−lλ (−i sh t′)

]
exp(il(θ − θ′)). (66)

This kernel is non local4 but it turns out be SL(2, R)-invariant. The proof of this statement

4Note that the partial sum over the integers provides a local kernel on the de Sitter manifold which is precisely

the Bunch-Davies two point function. We stress again that locality on the de Sitter manifold and on its covering

are two distinct notions.
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amounts to checking that the following infinitesimal condition holds:

δW = sin θ ∂tW + th t cos θ ∂θW + sin θ′ ∂t′W + th t′ cos θ′ ∂θ′W = 0 (67)

namely

δW0 =
∑
l

γl

[
i sin θ ch tP′

−l
λ (z) + il th t cos θP−lλ (z)

]
P−lλ (−z′) eil(θ−θ′)

−
∑
l

γlP
−l
λ (z)

[
i sin θ′ ch t′P′

−l
λ (−z′) + il th t′ cos θ′P−lλ (−z′)

]
eil(θ−θ

′) = 0. (68)

Singling out the Fourier coefficient of exp(ilθ), the above condition translates into the following

requirement:

γl−1P
1−l
λ (−z′)eiθ′

[
ch tP′

1−l
λ (z) + i(l − 1) th t P1−l

λ (z)
]

+

+ γl+1 P−1−l
λ (−z′)e−iθ′

[
− ch tP′

−1−l
λ (z) + i(l + 1) th t P−1−l

λ (z)
]

+

− 2γlP
−l
λ (z)

[
i sin θ′ ch t′P′

−l
λ (−z′) + il th t′ cos θ′P−lλ (−z′)

]
= 0. (69)

This expression may be simplified by using the following crucial identities:

ch tP′
1−l
λ (z) + i(l − 1) th t P1−l

λ (z)

= (λ− l + 1)(λ+ l)
[
− ch tP′

−1−l
λ (z) + i(l + 1) th t P−1−l

λ (z)
]

(70)

= (λ− l + 1)(λ+ l)P−lλ (z). (71)

It takes a little work to verify that the above formulae are nothing but a rewriting of known

relations among the Legendre functions. To prove Eq. (70) one first removes the derivative

P′ = dP
dz by using Eq. 3.8.19 from Bateman’s book [33] and get

i(λ− l + 1) sh t P1−l
λ (z) + (λ− l + 1)P1−l

λ−1(z)

−(λ− l + 1)(λ+ l)
[
−i sh t (λ + l + 1)P−1−l

λ (z) + (λ− l − 1)P−1−l
λ−1 (z)

]
= 0. (72)

Eqs. 3.8.11 and 3.8.15 from Bateman’s book allow to show that (72) is equivalent to

P1−l
λ (z)− 2l i th tP−lλ (z) + (λ− l) (λ + l + 1)P−1−l

λ (z) = 0 (73)

which in turn coincides with Bateman’s Eq. 3.8.11. To prove the second equality (71) one

invokes Bateman’s Eqs. 3.8.17 and 3.8.19.

Now we are ready to show the SL(2, R)-invariance of the kernel (66). Let us insert Eqs.

(70) and (71) in Eq. (69) and divide by γl−1; we get the following equivalent expression

[eiθ
′
P1−l
λ (−z′)− e−iθ′(l − λ)(λ+ l + 1) P−1−l

λ (−z′)]+
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+2
[
i sin θ′ ch t′P′

−l
λ (−z′) + il th t′ cos θ′P−lλ (−z′)

]
= 0. (74)

Here the variable z has disappeared and the condition (69) is now tractable. By singling out

the coefficients of cos θ′ and sin θ′ we are led to examine the validity of the following identities:

P1−l
λ (−z′)− (l − λ)(λ+ l + 1) P−1−l

λ (−z′) + 2il th t′P−lλ (−z′) = 0, (75)

P1−l
λ (−z′) + (l − λ)(λ+ l + 1) P−1−l

λ (−z′) + 2 ch t′P′
−l
λ (−z′) = 0. (76)

Eq. (75) it is once more a known relationship among Legendre functions on the cut, namely

Eq. 3.8.11 of Bateman’s book. As regards the second identity, it can be proven by observing

that the difference of the above two equations coincides with the relation given in Eq. (70).

The SL(2, R)-invariance of the kernel (66) is proven.

An immediate corollary is that the kernels obtained by taking the even and the odd parts

of W0(x̃, x̃′), namely

W0,even(x̃, x̃′) =
1

4π

∑
l∈Z

γl

[
P−lλ (z)P−lλ (−z′)

]
exp(il(θ − θ′)) (77)

and

W0,odd(x̃, x̃
′) =

1

4π

∑
1
2

+l∈Z

γl

[
P−lλ (z)P−lλ (−z′)

]
exp(il(θ − θ′)) (78)

are separately invariant; this follows from Eqs. (75) and (76).

The second corollary is the invariance of the commutator. Let us consider indeed the map

τ1 given in Eq. (116). Since it commutes with the action of SL(2, R) on the covering manifold

d̃S2 we immediately get that also the kernels

W1(x̃, x̃′) =
∑
2l∈Z

γl

[
P−lλ (i sh t)P−lλ (−i sh t′)

]
exp(−il(θ − θ′)). (79)

is SL(2, R) invariant. The invariance of the commutator follows.
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8 Invariance under SL(2, R) and other properties of general

two-point functions

Once given the commutator, the crucial step to get a physical model is to represent the field

φ as an operator-valued distribution in a Hilbert space H. This can be done by finding a

positive-semidefinite bivariate distribution W (x̃, ỹ) solving the KG equation and the functional

equation

C(x̃, x̃′) = W (x̃, x̃′)−W (x̃′, x̃). (80)

Actually, C and W are not functions but distributions so the above equation must be under-

stood in the sense of distributions. Given a solution W , the Gelfand-Naimark-Segal (GNS)

procedure provides the Fock space of the theory and a representation of the field as a local

operator-valued distribution (the word local here refers to local commutativity).

There are of course infinitely many inequivalent solution of Eq. (80). Here we will charac-

terize the most general SL(2, R)–invariant solution.

To this aim let us first consider a general two-point function, i.e. a distribution W on

d̃S2 × d̃S2. There are several conditions that we may (or may not) want to impose on such a

function.

1. Local commutativity (locality): Let

R = {(x̃, x̃′) ∈ d̃S2 × d̃S2 : x̃ and x̃′ are spacelike separated}. (81)

W (x̃, x̃′) has the property of local commutativity (or locality) if

W (x̃, x̃′)−W (x̃′, x̃) = 0 ∀(x̃, x̃′) ∈ R . (82)

2. Symmetry or anti-symmetry:

W (x̃, x̃′) = ±W (x̃′, x̃) ∀(x̃, x̃′) ∈ d̃S2 × d̃S2. (83)

3. Invariance under the group SL(2, R) :

W (g̃x̃, g̃x̃′) = W (x̃, x̃′) ∀(x̃, x̃′) ∈ d̃S2 × d̃S2. ∀g̃ ∈ SL(2, R). (84)

4. Hermiticity:

W (x̃, x̃′) = W (x̃′, x̃) ∀(x̃, x̃′) ∈ d̃S2 × d̃S2. (85)
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5. Positive definiteness:

∫ ∫
W (x̃, x̃′)f̄(x̃)f(x̃′)dx̃dx̃′ ≥ 0 ∀f ∈ C∞0 (d̃S2). (86)

6. Klein-Gordon equation in x̃ and x̃′ with a “mass” λ.

7. Canonical Commutation Relations (80).

8. Analyticity. By this we mean that there is an open tuboid5 U+ in the complexified version

of d̃S2× d̃S2 such that, in a neighborhood of any real point (x, x′) ∈ d̃S2× d̃S2 we have,

in the sense of distributions,

F (x, x′) = lim
(w, w′)∈U+ , (w, w′)→(x, x′)

F+(w, , w′) , (87)

where F+ is holomorphic with locally polynomial behavior in U+. F−(w, w′)
def
= F+(w′, w)

is analytic in

U− = {(w, w′) : (w′, w) ∈ U+} (88)

and we suppose

U− = U+ . (89)

9. Local analyticity:

By this we mean that there is a complex open connected neighborhood N of R such that,

in R, both F (x̃, x̃′) and F (x̃′, x̃) are restrictions of the same function holomorphic in

N . If a two-point function F has the two properties of locality and analyticity as defined

above, then it also has the property of local analyticity by the edge-of-the-wedge theorem.

If W is any two-point function, it can be written as W = Wr + iWi, where

Wr(x̃, x̃
′) =

1

2
W (x̃, x̃′) +

1

2
W (x̃′, x̃), Wi(x̃, x̃

′) =
1

2i
W (x̃, x̃′)− 1

2i
W (x̃′, x̃) . (90)

Wr and Wi are hermitic, and if W satisfies any one of the conditions 2, 3, or 6, so do Wr and

Wi.

If W is any two-point function, it can be written as W = Weven +Wodd where

Weven(x, x′) =
1

2
W (x, x′) +

1

2
W (x, τx′), Wodd(x, x

′) =
1

2
W (x, x′)− 1

2
W (x, τx′) . (91)

5See a general discussion of tuboids in [45].
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8.1 Fourier expansion

We will now restrict our attention to those two-point functions which are rotation-invariant in

our fixed frame, i.e. such that

W ((t, θ), (t′, θ′)) = W ((t, θ + a), (t′, θ′ + a)) ∀a ∈ R (92)

(recall that τ is such a rotation for a = 2π); they can be expanded in a Fourier series as follows:

W (x̃, x̃′) =
∑
l∈L

ul(z, z
′)eil(θ−θ

′) , (93)

As before z = i sh(t) and z′ = i sh(t′). The set L can be Z, 1
2Z, or 1

2 +Z. If L = 1
2
Z then Weven

(resp. Wodd), as defined in (91), is the sum over Z (resp. 1
2

+ Z).

Let us now address the question of finding the most general SL(2, R)–invariant hermitic

two-point function satisfying the Klein-Gordon equation in each variable for a positive squared

mass (i.e for the principal and the complementary series). Since such a function has to be

rotation-invariant we may write

W (x̃, x̃′) =
∑
2l∈Z

γl[AlP
−l
λ (z)P−lλ (−z′) +BlP

−l
λ (−z)P−lλ (z′)]eil(θ−θ

′)

+
∑
2l∈Z

γl[e
iπlClP

−l
λ (z)P−lλ (z′) + e−iπlC∗l P

−l
λ (−z)P−lλ (−z′)]eil(θ−θ′). (94)

Here we neither impose the locality property nor the positive definiteness. We have put γl in

evidence for future convenience, by taking inspiration from the previous section. For the chosen

mass parameters λ and z ∈ iR it happens that P−lλ (z) = P−lλ (−z). With this restriction, F is

hermitic iff Al = A∗l , Bl = B∗l .

The above two-point function is SL(2, R)-invariant if and only if the condition (67) holds.

This amounts to

δA + δB + δC + δC∗ =
∑

2l∈Z iγl sin θ ch t
[
(AlP

−l
λ (−z′) + Cle

iπlP−lλ (z′))P′−lλ (z)

− (BlP
−l
λ (z′) + C∗l e

−iπlP−lλ (−z′))P′−lλ (−z)]
]
eil(θ−θ

′)

+
∑

2l∈Z ilγl th t cos θ
[
(AlP

−l
λ (−z′) + Cle

iπlP−lλ (z′))P−lλ (z)

+(BlP
−l
λ (z′) + C∗l e

−iπlP−lλ (−z′))P−lλ (−z)
]
eil(θ−θ

′)

+
∑

2l∈Z iγl sin θ
′ ch t′

[
(BlP

−l
λ (−z) + Cle

iπlP−lλ (z))P′−lλ (z′)

−(AlP
−l
λ (z) + C∗l e

−iπlP−lλ (−z))P′−lλ (−z′)
]
eil(θ−θ

′)

−
∑

2l∈Z ilγl th t
′ cos θ′

[
[(BlP

−l
λ (−z) + Cle

iπlP−lλ (z))P−lλ (z′)

+(AlP
−l
λ (z) + C∗l e

−iπlP−lλ (−z))P−lλ (−z′)]
]
eil(θ−θ

′) = 0

(95)
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where δA includes all the terms containing A and so on. Singling out the Fourier coefficient of

exp ilθ we get

δA(l) =
1

2
e−ilθ

′
γl−1e

iθ′ Al−1P
1−l
λ (−z′)

[
ch tP′

1−l
λ (z) + i(l − 1) th t P1−l

λ (z)
]

+

+
1

2
e−ilθ

′
γl+1e

−iθ′ Al+1P
−1−l
λ (−z′)

[
− ch tP′

−1−l
λ (z) + i(l + 1) th t P−1−l

λ (z)
]

+

− e−ilθ
′
γlAlP

−l
λ (z)

[
i sin θ′ ch t′P′

−l
λ (−z′) + il cos θ′ th t′P−lλ (−z′)

]
(96)

By itaking into account the crucial identities (70) and (71) and also Eq. (58) this expression

takes the following simpler form:

δA(l) = −1

2
e−ilθ

′
γle

iθ′ Al−1P
1−l
λ (−z′)P−lλ (z)

+
1

2
e−ilθ

′
γl(l − λ)(λ+ l + 1)e−iθ

′
Al+1P

−1−l
λ (−z′)P−lλ (z)+

+ e−ilθ
′
γlAlP

−l
λ (z)

[
i sin θ′(il th t′ P−lλ (−z′) + P1−l

λ (−z′))− il cos θ′ th t′P−lλ (−z′)
]
.

(97)

By using the operator τ1 and τ2 we also immediately get that

δB(l) =
1

2
e−ilθ

′
γle

iθ′ Bl−1P
1−l
λ (z′)P−lλ (−z)

− 1

2
e−ilθ

′
γl(l − λ)(λ+ l + 1)e−iθ

′
Bl+1P

−1−l
λ (z′)P−lλ (−z)+

− e−ilθ
′
γlBlP

−l
λ (−z)

[
i sin θ′(il th t′ P−lλ (z′) + P1−l

λ (z′))− il cos θ′ th t′P−lλ (z′)
]
,

δC(l) =
1

2
e−ilθ

′
eiπlγle

iθ′Cl−1P
1−l
λ (z′)P−lλ (z)

− 1

2
e−ilθ

′
eiπlγl(l − λ)(λ+ l + 1)e−iθ

′
Cl+1P

−1−l
λ (z′)P−lλ (z)+

− e−ilθ
′
eiπlγlClP

−l
λ (z)

[
i sin θ′(il th t′ P−lλ (z′) + P1−l

λ (z′))− il cos θ′ th t′P−lλ (−z′)
]
,

δC∗(l) = −1

2
e−ilθ

′
e−iπlγle

iθ′ C∗l−1P
1−l
λ (−z′)P−lλ (−z)

+
1

2
e−ilθ

′
e−iπlγl(l − λ)(λ+ l + 1)e−iθ

′
C∗l+1P

−1−l
λ (−z′)P−lλ (−z)+

+ e−ilθ
′
e−iπlγlC

∗
l P
−l
λ (−z)

[
i sin θ′(il th t′ P−lλ (−z′) + P1−l

λ (−z′))− il cos θ′ th t′P−lλ (−z′)
]
.

Let us begin by supposing that (B = C = 0). In this case we must have δA(l) = 0. Singling

out as before the coefficients of cos θ′ and sin θ′ in the above expression we get(
−Al−1

2
P1−l
λ (−z′) + (l − λ)(λ+ l + 1)

Al+1

2
P−1−l
λ (−z′)− ilAl th t′P−lλ (−z′)

)
P−lλ (z) = 0.
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((
Al −

Al−1

2

)
P1−l
λ (−z′)− (l − λ)(λ+ l + 1)

Al+1

2
P−1−l
λ (−z′) + ilAl th t

′P−lλ (−z′)
)

P−lλ (z) = 0.

Taking the sum of the above two equations we get

(Al −Al−1) P1−l
λ (−z′)P−lλ (z) = 0. (98)

This shows that there are only two possible values for Al: Al = A0 for l ∈ Z and Al = A 1
2

for

l ∈ 1
2 + Z. The two equations now reduce to

P1−l
λ (−z′)− (l − λ)(λ+ l + 1)P−1−l

λ (−z′) + 2il th t′P−lλ (−z′) = 0 (99)

and this is a known relation between contiguous Legendre functions (Bateman Eq. 3.8.11). In

the general case, proceeding in the same way, we get the condition (95) implies the following

one:

(Al −Al−1) P1−l
λ (−z′)P−lλ (z)− (Bl −Bl−1) P1−l

λ (z′)P−lλ (−z)+
− eiπl (Cl − Cl−1) P1−l

λ (z′)P−lλ (z) + e−iπl
(
C∗l − C∗l−1

)
P1−l
λ (−z′)P−lλ (−z) = 0 (100)

Therefore also in the general case the are only two possible values for Al, Bl and Cl:

Al = A0, Bl = B0, Cl = C0 for l ∈ Z (101)

Al = A 1
2
, Bl = B 1

2
, Cl = C 1

2
for l ∈ 1

2
+ Z. (102)

The verification that these conditions indeed guarantee that δA(l) + δB(l) + δC(l) + δC∗(l) = 0

proceeds as in the previous case.

8.2 Canonicity

If we impose that an invariant two-point function satisfies the canonical commutation relation

(80), a lenghty but simple calculation shows that

A0 −B0 = 1, A 1
2

=
1

2
− eiπlC 1

2
, B 1

2
= −1

2
− eiπlC 1

2
, C 1

2
= −C∗1

2

(103)

while C0 is unrestricted.
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8.3 Positivity

Let us again consider a hermitic 2-point function

W (x̃, x̃′) =
∑
l∈L

ul(z, z
′)eil(θ−θ

′) ,

ul(z, z
′) = γl[AlP

−l
λ (z)P−lλ (−z′) +BlP

−l
λ (−z)P−lλ (z′)

+ eiπlClP
−l
λ (z)P−lλ (z′) + e−iπlC∗l P

−l
λ (−z)P−lλ (−z′)] , (104)

where again z = i sh(t), z′ = i sh(t′), Al = A∗l , Bl = B∗l . W is said to be of positive type if, for

every test-function f , ∫
d̃S2×d̃S2

f(x̃)W (x̃, x̃′)f(x̃′) dx̃ dx̃′ ≥ 0 . (105)

A necessary and sufficient condition for this is that, for every l and every test function f on R,∫
R×R

f(t)ul(t, t
′)f(t′) dt dt′ ≥ 0 . (106)

If f is a test-function on R, let

f1 =

∫
R
f(t)P̌−lλ (i sh(t)) dt, f2 =

∫
R
f(t)P−lλ (i sh(t)) dt, (107)

hence

f1 =

∫
R
f(t)P−lλ (i sh(t)) dt, f2 =

∫
R
f(t)P̌−lλ (i sh(t)) dt. (108)

Then ∫
R×R

f(t)ul(t, t
′)f(t′) dt dt′ = γl

(
f1

f2

)(
Al eiπlCl

e−iπlC∗l Bl

)(
f1

f2

)
. (109)

Therefore W is of positive type if

γlAl ≥ 0, γlBl ≥ 0, (γl)
2(AlBl − ClC∗l ) ≥ 0 ∀l ∈ L . (110)

Let us now suppose that W is invariant, i.e. the conditions (101) and (102) are satisfied. If

l ∈ Z, with our choices of λ, γl > 0 for all l ∈ Z, hence Weven is of positive type iff

A0 > 0, B0 > 0, A0B0 − C0C
∗
0 > 0. (111)

If l ∈ 1
2 + Z and λ = −1

2 + iρ, ρ 6= 0, then γl is always > 0 and Wodd is of positive type iff

A 1
2
> 0, B 1

2
> 0, A 1

2
B 1

2
− C 1

2
C∗1

2

> 0. (112)

If l ∈ 1
2 + Z and −1 < λ < 0, then γl has the sign of l and Wodd is never of positive type.
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8.4 Convergence and (lack of) analyticity

We again consider a series of the form (104). In the preceding subsections such a series was

regarded as the Fourier expansion of some two-point function (or rather distribution). In this

subsection we suppose the series given and ask about its convergence. No generality is lost by

the restriction to a hermitic series. However we will consider only a particular example from

which the general case can be understood. Let

F0(x, x′) =
∑
l∈L

cl(z, z
′)eil(θ−θ

′) ,

cl(z, z
′) = γlP

−l
λ (z)P̌−lλ (z′) . (113)

The dependence of cl on λ has been omitted for simplicity. L = 1
2Z. This series is the simplest

example of the SL(2, R) invariant series discussed in Subsect. 8.1. Recall that

x = (t, θ), z = i sh(t), x′ = (t′, θ′), z′ = i sh(t′) . (114)

We also set

x0 = sh(t) = tg(s), u = s+ θ, v = s− θ, x′0 = sh(t′) = tg(s′), u′ = s′ + θ′, v′ = s′ − θ′,

z = ix0 = i sh(t) = − ch(Re t) sin(Im t) + i sh(Re t) cos(Im t) ,

z′ = ix′0 = i sh(t′) = − ch(Re t′) sin(Im t′) + i sh(Re t′) cos(Im t′) .

(115)

cl(z, z
′) is holomorphic in z (resp. z′) in the cut-plane ∆2 (see (47)). Values such that

Re z > 0, Re z′ < 0 correspond to x ∈ T− , x′ ∈ T+ while Re z < 0, Re z′ > 0 correspond

to x ∈ T+ , x
′ ∈ T−. The convergence of the series can be studied separately for l ∈ Z and

l ∈ 1
2 + Z.

8.4.1 Case of integer l

We first check that:

If l ∈ Z, then cl(z, z
′) = c−l(z, z

′).

It is sufficient to assume that l > 0. Then [47, 3.4 (17) p. 144]

Pl
λ(z) =

cos(lπ)Γ(λ+ l + 1)

Γ(λ− l + 1)
P−lλ (z) , (116)

c−l(z, z
′, λ) =

1

2
Γ(−l − λ)Γ(−l + λ+ 1)

[
Γ(λ+ l + 1)

Γ(λ− l + 1)

]2

P−lλ (z)P−lλ (−z′)

=
−π

2 sinπ(l + λ)

Γ(λ+ l + 1)

Γ(λ− l + 1)
P−lλ (z)P−lλ (−z′) , (117)
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and using
1

Γ(λ− l + 1)
=

1

π
sinπ(l − λ)Γ(l − λ), (118)

we obtain c−l(z, z
′) = cl(z, z

′). We wish to investigate the convergence of the series (113)

in the case when l ∈ Z, Re z > 0 and Re z′ < 0. By the preceding observation, it suffices to

examine the half series l ≥ 0. We use [47, 3.4 (6) p.143] with µ = −l, ν = λ, i.e.

P−lλ (z) =
1

Γ(1 + l)

(
1− z
1 + z

) l
2

F

(
−λ, 1 + λ ; 1 + l ;

1− z
2

)
. (119)

Thus

cl(z, z
′) =

γl(λ)

Γ(1 + l)2

(
1− z
1 + z

) l
2
(

1 + z′

1− z′

) l
2

×

F

(
−λ, 1 + λ ; 1 + l ;

1− z
2

)
F

(
−λ, 1 + λ ; 1 + l ;

1 + z′

2

)
. (120)

Simple geometry shows that

±Re z > 0⇐⇒
∣∣∣∣1∓ z1± z

∣∣∣∣ < 1. (121)

Using the discussion in Appendix A (eqs (181-187)), we make estimates of all the factors

occuring in cl(z, z
′) which will be valid even if l is not an integer, provided l ≥ l0 for some

l0 > 0.

We first let N be the smallest integer ≥ |Reλ|+ 1. Then for l > N∣∣∣∣Γ(l − λ)

Γ(l + 1)

∣∣∣∣ ≤ Γ(l +N)

Γ(l + 1)
≤ (l +N)N−1 ≤ (2l)N−1,∣∣∣∣Γ(l + 1 + λ)

Γ(l + 1)

∣∣∣∣ ≤ Γ(l + 1 +N)

Γ(l + 1)
≤ (2l)N . (122)

We now set z = i tg(s) with Im s < 0 and z′ = i tg(s′) with Im s′ > 0. Then

1− z
1 + z

= e−2is,

∣∣∣∣1− z1 + z

∣∣∣∣ < 1, Re z > 0,
1− z′

1 + z′
= e−2is′ ,

∣∣∣∣1 + z′

1− z′

∣∣∣∣ < 1, Re z′ < 0 . (123)

To discuss the first hypergeometric function appearing in (120) we temporarily denote w =

(1− z)/2 which satisfies

Rew <
1

2
, w =

e−is

2 cos(s)
, |w| ≤ 1

2| Im s|
. (124)

According to (181-187)

|F (−λ, 1 + λ ; 1 + l ; w)− 1| ≤ 1

l + 1
|w|M(w)|1 + Reλ| ch(π Imλ),

M(w) = sup
0≤u≤1

|(1− uw)λ−1| . (125)
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We have, for 0 ≤ u ≤ 1, Reuw < 1
2 , |Arg(1− uw)| < π,

|(1− uw)λ−1| ≤ |1− uw|Reλ−1eπ| Imλ| . (126)

with our choices of λ, Reλ− 1 < −1. Since Reuw < 1
2 , |1− uw| > 1

2 , so that

M(w) ≤ 21−Reλeπ| Imλ|, (127)∣∣∣∣F (−λ, 1 + λ ; 1 + l ;
1− z

2

)
− 1

∣∣∣∣ ≤ 1

(l + 1)| Im s|
2−Reλe2π| Imλ| . (128)

An analogous bound, with s′ instead of s, holds for the second hypergeometric function occuring

in (120). Gathering all this shows that there are positive constants E and Q depending only

on λ such that

|cl(z, z′)| ≤ E
(

1 +
1

| Im s|

)(
1 +

1

| Im s′|

)
(l + 1)Qel(Im s−Im s′) . (129)

Recall again that here Im s < 0 and Im s′ > 0, and that the bound (129) only requires l ≥ l0

for some l0 > 0, and the genericity of λ.

Returning to the case of integer l, we see that the two series∑
l∈Z, l≥0

cl(z, z
′)eil(θ−θ

′) and
∑

l∈Z, l>0

c−l(z, z
′)eil(θ

′−θ) =
∑

l∈Z, l>0

cl(z, z
′)eil(θ

′−θ) (130)

converge absolutely and uniformly on any compact subset of the tubes

{(s, s′, θ, θ′) : Im s < 0, Im s′ > 0, Im(s′ − s− θ′ + θ) > 0} (131)

and

{s, s′, θ, θ′) : Im s < 0, Im s′ > 0, Im(s′ − s+ θ′ − θ) > 0} (132)

respectively, and that the limits are holomorphic functions having boundary values in the sense

of tempered distributions at the real values of (s, s′, θ, θ′). Hence∑
l∈Z

cl(z, z
′, λ)eil(θ−θ

′) (133)

converges to a function holomorphic in the tube

T−,+ = {(s, s′, θ, θ′) : Im s < 0, Im s′ > 0, Im(s′ − s)− | Im(θ′ − θ)| > 0} (134)

which has a tempered boundary value at the real values of (s, s′, θ, θ′). Denoting u = s+ θ,

v = s− θ, u′ = s′ + θ′, v = s′ − θ′, the tube (134) contains the tube

T−,+ = {(u, v, u′, v′) : Imu < 0, Im v < 0, Imu′ > 0, Im v′ > 0}. (135)
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8.4.2 Case of half-odd-integers

We still have

cl(z, z
′) = γl(λ)P−lλ (z)P̌−lλ (z′) , (136)

γl(λ) =
1

2
Γ(l − λ)Γ(l + λ+ 1) , (137)

now assuming that l ∈ 1
2

+ Z.

8.4.3 Positive l

Here l = n+ 1
2
, with integer n ≥ 0. Eqs. (119) and (120) remain valid. We set again z = i tg(s),

z′ = i tg(s′). With Im s < 0 and Im s′ > 0, the estimate (129) still holds and therefore the

series ∑
l∈ 1

2
+Z, l>0

cl(z, z
′)eil(θ−θ

′) (138)

converges uniformly on every compact of the tube (131) (hence also of T−,+ or T−,+ (see

(134, 135))) to a holomorphic function that has a boundary value in the sense of tempered

distributions at real values of s, s′, θ, θ′ (or u, v, u′, v′).

8.4.4 Negative l

Taking again l = 1
2

+ n with integer n ≥ 0 we consider

c−l(z, z
′) = γ(−l)Pl

λ(z)P̌l
λ(z′) (139)

and use the formula (obtainable from [47, 3.3.2 (17) p. 141])

Pl
λ(z) =

Γ(l + λ+ 1)Γ(l − λ)

πΓ(1 + l)
×[

− sin(λπ)

(
1− z
1 + z

) l
2

F

(
−λ, 1 + λ ; 1 + l ;

1− z
2

)

+ sin(lπ)

(
1 + z

1− z

) l
2

F

(
−λ, 1 + λ ; 1 + l ;

1 + z

2

)]
. (140)

Note that

1

2
Γ(−l − λ)Γ(λ− l + 1)

Γ(λ+ l + 1)2Γ(l − λ)2

π2Γ(l + 1)2
= −Γ(l − λ)Γ(l + λ+ 1)

2 cos2(πλ)Γ(l + 1)2

=
−γl

cos2(πλ)Γ(l + 1)2
. (141)
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We set again z = i tg(s), z′ = i tg(s′), u = s + θ, v = s − θ, u′ = s′ + θ′, v′ = s′ − θ′. We can

rewrite

c−l(z, z
′) =

∑
ε,ε′=±

c−l,ε,ε′(z, z
′) (142)

where ε = ∓ (resp. ε′ = ±) denotes the choice of the first or second term in the bracket of

(140). Thus

c−l,−,−(z, z′) =
Γ(l − λ)Γ(l + λ+ 1) sin(πl) sin(πλ)

2Γ(l + 1)2 cos(πλ)2

(
1− z
1 + z

) l
2
(

1− z′

1 + z′

) l
2

×

F

(
−λ, λ+ 1 ; 1 + l ;

1− z
2

)
F

(
−λ, λ+ 1 ; 1 + l ;

1− z′

2

)
, (143)

c−l,+,+(z, z′, λ) =
Γ(l − λ)Γ(l + λ+ 1) sin(πl) sin(πλ)

2Γ(l + 1)2 cos(πλ)2

(
1 + z

1− z

) l
2
(

1 + z′

1− z′

) l
2

×

F

(
−λ, λ+ 1 ; 1 + l ;

1 + z

2

)
F

(
−λ, λ+ 1 ; 1 + l ;

1 + z′

2

)
, (144)

c−l,−,+(z, z′, λ) =
−Γ(l − λ)Γ(l + λ+ 1) sin2(πλ)

2Γ(l + 1)2 cos(πλ)2

(
1− z
1 + z

) l
2
(

1 + z′

1− z′

) l
2

×

F

(
−λ, λ+ 1 ; 1 + l ;

1− z
2

)
F

(
−λ, λ+ 1 ; 1 + l ;

1 + z′

2

)
, (145)

c−l,+,−(z, z′, λ) =
−Γ(l − λ)Γ(l + λ+ 1) sin2(πl)

2Γ(l + 1)2 cos(πλ)2

(
1 + z

1− z

) l
2
(

1− z′

1 + z′

) l
2

×

F

(
−λ, λ+ 1 ; 1 + l ;

1 + z

2

)
F

(
−λ, λ+ 1 ; 1 + l ;

1− z′

2

)
. (146)

For a given choice of ε and ε′ the estimates (122-129) are readily adapted so that the series∑
l= 1

2
+n, n≥0

c−l,ε,ε′(z, z
′, λ)e−il(θ−θ

′) (147)

converges absolutely to a holomorphic function of (s, s′, θ, θ′) in the tube

Tε,ε′ = {(s, s′, θ, θ′) : ε Im s > 0, ε′ Im s′ > 0, Im(ε′s′ + εs)− | Im(θ′ − θ)| > 0} (148)

as well as in

Tε,ε′ = {(u, v, u′, v′) : ε Imu > 0, ε Im v > 0, ε′ Imu′ > 0, ε′ Im v′ > 0}. (149)

This function has a boundary value at real values of these variables in the sense of tempered

distributions.
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8.4.5 Conclusion

The series (113) converges to a distribution F0 which is a finite sum of boundary values of

functions holomorphic in several non-intersecting open tuboids. Thus F0 is not the boundary

value of a function holomorphic in a single open tuboid. It is possible to verify that this is

also true for the invariant functions of the type given by (101) and (102). It might be asked

if F0 (or one of its siblings) could not still have a tuboid of analyticity beyond what follows

from the above proofs of convergence. However in Sect. 10 a general lemma will show that

analyticity is incompatible with the simultaneous requirements of locality (1), invariance (3)

and Klein-Gordon equation (6). The proof of convergence given in this subsection also works

for more general (non-invariant) series of the form (94) provided the Al, ...C
∗
l are polynomially

bounded in l.
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9 Study of local ”vacuum” states invariant under SL(2, R)

One immediate solution of the KG equation constructed in terms of the system of modes φl

(52) is provided by their ”vacuum”; the corresponding two-point function is given by

W (x, x′) =
∑
l

φl(x)φ∗l (x
′) =

=
∑
l

[alP
−l
λ (i sh t) + blP

−l
λ (−i sh t)][a∗lP

−l
λ (−i sh t′) + b∗lP

−l
λ (i sh t′)]eilθ−ilθ

′
(150)

The standard theory of Bogoliubov canonical transformations provides infinitely many other,

possibly inequivalent, vacua by specifying the corresponding two-point functions in terms of

two operators a and b as follows:

Wa,b(x, x
′) =

∑
[aijφj(x) + bij φ

∗
j (x)][a∗ilφ

∗
l (x
′) + b∗il φl(x

′)]. (151)

Since the commutator must not depend on the choice of a and b, Eq. (80) tells us the con-

ditions
∑

(aija
∗
il − b∗ijbil) = δjl and

∑
(aijb

∗
il − ailb

∗
ij) = 0. The states given by Eq. (151)

are ”vacuum states” or else ”pure states” i.e. they provide through the GNS construction

irreducible representations of the field algebra.

Let us now single out among the states (150) those who are SL(2,R)–invariant. This is an

easy corollary of the theorem of the previous section. Eqs. (101) and (102) imply the following

relations:

|al|2 = c1(ε)γl, |bl|2 = c2(ε)γl, alb
∗
l = c3(ε)γle

ilπ (152)

where ε = 0 for l ∈ Z and ε = 1 for l ∈ 1
2 + Z (i.e. there are six independent constants). The

above equations, together with the normalization condition (59), can be solved as follows:

al =

√
γl

2πk
chαε, bl =

√
γl

2πk
shαεe

iφε−ilπ, ε = 0, 1. (153)

Here we took al real without loss of generality.

9.1 Local Commutativity: pure de Sitter

Let us examine whether the above equations are compatible with the requirements imposed by

local commutativity. In the pure de Sitter case (as opposed to its covering) l is integer and the

CCR’s amount to the condition (54) which imposes no further restriction and any choice of

α0 and φ0 gives rise to a de Sitter invariant state which has the right commutator (relatively

to the de Sitter manifold). These states are well-known: they are the so-called alpha vacua

[36, 37, 38, 39].
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Among them, there is a particularly important state corresponding to the choice α0 = 0:

this is the so-called Bunch-Davies vacuum [40, 41, 42, 43, 44, 39]

WBD(x, x′) = W
(0)
α0=0(x, x′) =

∑
l∈Z

γl
2π

P−lλ (i sh t)P−lλ (−i sh t′)eilθ−ilθ
′

=

=
Γ(−λ)Γ(λ+ 1)

4π
Pλ(ζ), (154)

where Pλ(ζ) is the associated Legendre function of the first kind [33] and the de Sitter invariant

variable ζ is the scalar product ζ = x(t − iε, θ) · x′(t′ + iε, θ) in the ambient space sense.

Actually, WBD(x, x′) admits an extension to the complex de Sitter manifold and satisfies there

the maximal analyticity property [43, 44]: it is holomorphic for all ζ ∈ C \ (−∞, −1] i.e.

everywhere except on the locality cut. This crucial property singles the Bunch-Davies vacuum

out of all the other invariant vacua and has a very well known thermal interpretation [42, 43]:

the restriction of the Bunch-Davies state a wedge-like region is a thermal state at temperature

T = 1/2π. A similar property is expected in interacting theories based on an analogue of the

Bisognano-Wichmann theorem [45].

9.2 Covering

In the antiperiodic case the CCR’s

for l ∈ 1
2 + Z

{
ala−l − blb−l = cl sin(πλ)

alb−l − bla−l = cl sin(πl)
(155)

imply the following relation between the constants α and φ and the mass parameter λ of the

field:

eiφ sin(πl)(−i sh(2α) sin(πλ)− i ch(2α) sinφ+ cosφ) = 0. (156)

For λ = −1/2 + iν there is only one possible solution given by

coth 2α = chπν, φ =
π

2
. (157)

We denote the corresponding two-point function W
( 1
2

)
ν (x, x′). Note that the value α = 0, that

would correspond to the above-mentioned maximal analyticity property, is excluded: it would

be attained only for an infinite value of the mass. On the other hand Equation (156) has no

solution at all when λ is real: there is no invariant vacuum of the complementary series.

In conclusion, for λ = −1
2 + iν the most general invariant vacuum state is the superposition

of an arbitrary alpha vacuuum (the even part) plus a fixed odd part W
( 1
2

)
ν (x, x′) as follows

W (x, x′) = W
(0)
α0,φ0

(x, x′) +W
( 1
2

)
ν (x, x′). (158)

For λ = −1
2 + ν there is no SL(2, R) local invariant vacuum state.
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10 Incompatibility of analyticity with some other requirements

In this section the following lemma will be proved:

Lemma 10.1 A two-point function F on d̃S2×d̃S2 that simultaneously satisfies (3) Invariance

under SL(2, R), (6) Klein-Gordon equation, and (9) Local analyticity (see Sect. 8), vanishes

on R (i.e. F (x, x′) = 0 whenever x and x′ are space-like separated).

An example of a non-zero two-point function satisfying these requirements is the canonical

commutator (65). As an obvious corollary of this lemma,

Lemma 10.2 A two-point function F on d̃S2 × d̃S2 that simultaneously satisfies (1) Locality,

(3) Invariance under SL(2, R), (6) Klein-Gordon equation, and (8) Analyticity (see Sect. 8),

is equal to 0.

Proof. Suppose F satisfies the conditions (3), (6), and (9). As in Sect. 8, Let R denote the

(open, connected) set of space-like separated points in d̃S2×d̃S2. and N the complex connected

neighborhood of R in which F (x̃, x̃′) and F (x̃′, x̃) have a common analytic continuation. We

denote F+ this analytic continuation. For any pair k = (w̃, w̃′) we denote, by abuse of notation,

w̃ ·w̃′ or also ψ(k) the scalar product of the projections of w̃ and w̃′ into the complex Minkowski

space M
(c)
3 (i.e. with an abuse of notation, ψ(k) = −1− 1

2
(x− x′)2). In particular N contains

the subset

Eε, η = {(t, θ + iy), (t′, θ′)) : t = t′ = θ′ = 0, ε < θ < 4π − ε, |y| < η} , (159)

where ε > 0 and η > 0 must be chosen small enough. Note that for points of the form (159),

ζ = − cos(θ + iy) = − cos(θ) ch(y) + i sin(θ) sh(y) . (160)

Let k0 = (w̃0, w̃
′
0) ∈ N be such that ζ0 = ψ(k0) 6= ±1. There exists open neighborhoods

U1 ⊂⊂ U2 ⊂⊂ N of k0, and an open neighborhood W0 of the identity in the group SL(2, C)

such that, for all g ∈ W0 and k ∈ U1, gk ∈ U2 and F (gk) = F (k) (since this holds for real g).

Moreover we suppose U2 small enough that the restriction to U2 of the projection pr × pr is

an isomorphism, and also that k 7→
√

1− ψ(k)2 can be defined as a holomorphic function on

U2 (in particular ψ(k) 6= ±1 for all k ∈ U2).

We will prove6 that there is an open neighborhood V0 ⊂⊂ U1 of k0, and a function f0

holomorphic on ψ(V0) such that f0(ψ(k)) = F+(k) for all k ∈ V0. To do this we adopt the

simplifying notation whereby if t̃ ∈ d̃S2
(c)

then t denotes pr t̃ and conversely if t ∈ dS
(c)
2

6These arguments are special cases of more general well-known facts. See e.g. [48], [49].
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then t̃ denotes pr−1t. For any k = (w̃, w̃′) ∈ U2 we contruct a complex Lorentz frame

(e0(k), e1(k), e2(k)) as follows:

e0(k) = iw ,

e1(k) = αw + βw′, e0(k) · e1(k) = 0, e1(k)2 = −1 . (161)

Denoting ζ = w · w′ = ψ(k), this implies

α = βζ, β =
1√

1− ζ2
, (162)

e2(k) = e0(k) ∧ e1(k) . (163)

(Here
√

1− ζ2 denotes the determination of
√

1− ψ(k)2 mentioned above). This implies

w = −ie0(k), w′ =
√

1− ζ2 e1(k) + iζ e0(k) . (164)

For any ζ sufficiently close to ζ0 let h(ζ) = (ṽ(ζ), ṽ′(ζ)) be defined by

v(ζ) = −ie0(k0), v′(ζ) =
√

1− ζ2 e1(k0) + iζ e0(k0) . (165)

It is clear that v(ζ)2 = v′(ζ)2 = −1, v(ζ) · v′(ζ) = ζ, and ej(h(ζ)) = ej(k0) for j = 0, 1, 2). If

k = (w̃, w̃′) is close to k0 and ψ(k) = ζ, there exists an element g(k) of SL(2, C) close to the

identity, such that k = g(k)h(ζ). This element projects onto the unique Lorentz transformation

such that ej(k) = Λ(k)ej(h(ζ)) = Λ(k)ej(k0) for j = 0, 1, 2). We have therefore F (k) =

F (h(ζ)), i.e. a holomorphic function of ζ. We have now shown that every k0 ∈ N such that

ψ(k0) 6= ±1 has an open neighborhood V0 such that F+(k) = f0(ψ(k)) for all k ∈ V0, where f0

is holomorphic in ψ(V0).

If k1 is another point of N such that ψ(k1) 6= ±1, and V1, f1 are the analogous objects, and

if V0 and V1 overlap, it is clear that f1 is an analytic continuation of f0. Thus for any compact

arc contained in N from k0 to k2, f0 can be analytically continued along the image under ψ of

that arc, provided this image avoids the points ±1.

Since F satisfies the Klein-Gordon equation in x and in x′, it follows, by a well-known

calculation, that the f = f0 obtained by the above procedure at a point k0 (with ψ(k0) 6= ±1)

must be a solution of the Legendre equation :

(1− ζ2)f ′′(ζ)− 2ζf ′(ζ) + λ(λ+ 1)f(ζ) = 0 . (166)

By the general theory of such equations, f may be analytically continued along any arc in the

complex plane which avoids the points ±1. Two linearly independent solutions of the equation

are

Pλ(ζ) = P0
λ(ζ) and P̌λ(ζ) = P̌0

λ(ζ) = P0
λ(−ζ) , (167)
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P0
λ(ζ) = F

(
−λ, λ+ 1 ; 1 ;

1− ζ
2

)
. (168)

Note that Pλ is holomorphic in the cut-plane with a cut along (−∞, −1] and is singular at

−1 : according to [47, p. 164] it has a logarithmic singularity at −1. Hence P̌λ is holomorphic

in the cut-plane with a cut along [1, ∞) and has a logarithmic singularity at 1. By [47, (10)

p. 140], for real t > 1,

P̌λ(t+ i0)− P̌λ(t− i0) = −2i sin(λπ)Pλ(t) , t > 1 . (169)

We must have

f(ζ) = aPλ(ζ) + bP̌λ(ζ) , (170)

where a and b are constants. We specialize k0 as

k0 = ((t0 = 0, θ0 = 2ε), (t′0 = 0, θ′0 = 0)) , (171)

where 0 < ε is as in (159), and we suppose ε < π/8. We denote

G(θ + iy) = F+((t = 0, θ + iy), (t′ = 0, θ′ = 0)). (172)

As the restriction of F+ to the set Eε, η, G is holomorphic in the rectangle ε < θ < 4π − ε,
|y| < η. We consider an arc (actually a straight line) γy lying in Eε, η, given by

θ 7→ γy(θ) = ((t = 0, θ + iy), (t′ = 0, θ′ = 0)). (173)

Here y is real with |y| ≤ τ and θ varies in the interval [2ε, 2π]. We also require 0 < τ < η

to be small enough that the starting point γy(2ε) be always contained in the neighborhood

V0 of k0 where the function f = f0 is initially defined. Let y be fixed with 0 < y < τ . As

θ varies in [2ε, 2π], ζ = ψ(γy(θ)) = − cos(θ + iy) runs along an arc of an ellipse with foci

at ±1, starting in the upper half-plane, crossing the real axis at t = ch(y), and returning

through the lower half-plane to −t − i0. Along this arc, f can be analytically continued;

starting as f(ζ) = aPλ(ζ) + bP̌λ(ζ) it becomes, after crossing the real axis at t, equal to

[a− 2ib sin(λπ)]Pλ(ζ) + bP̌λ(ζ) (as a consequence of (169)). Thus at the end point,

f(−t− i0) = G(2π + iy) = [a− 2ib sin(λπ)]Pλ(−t− i0) + bP̌λ(−t− i0) . (174)

Since |G(2π+ iy)| is bounded uniformly in y, while |Pλ(−t− i0)| → ∞ as t→ 1, we must have

a− 2ib sin(λπ) = 0. (175)
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Repeating the argument with y < 0 (the arc of ellipse starts in the lower half-plane and finishes

in the upper half-plane) we now get

a+ 2ib sin(λπ) = 0. (176)

This implies f = 0, and therefore that F+ vanishes in an open complex neighborhood of k0.

Hence F+ = 0, hence F vanishes on R.

There are examples of 2-point functions that satisfy any three out of the four conditions

(1), (3), (6), and (8). For instance let

F2(x, x′) = u0(t, t′, λ)

+
∑

l∈L, l>0

ul(t, t
′, λ)

[
eil(θ−θ

′) + e−il(θ−θ
′)
]
, (177)

ul(t, t
′, λ) = γlP

−l
λ (i sh(t))P−lλ (−i sh(t′)) , l ≥ 0 , (178)

Then F2 satisfies (1), (6) as well as canonicity and positivity. It also satisfies (8) and is the

boundary value of a function holomorphic in the tuboid T−,+ (see (134)) (or T−,+ (see (135))).

But F2 is not invariant under SL(2, R).

11 Concluding remarks

One important fact to be stressed again is that the above states do not share the global

analyticity property characteristic of the Bunch-Davis maximally analytic vacuum[32, 44, 43,

45]. Correspondingly, restriction of the above states to the wedge between the horizons does

not give rise to a thermal state as it happens in the pure de Sitter case (only for the BD

vacuum)[42, 43, 44, 45]. The de Sitter temperature has disappeared.

A Appendix. Estimations for hypergeometric functions

We reproduce here for completeness some estimates from [47, 2.3.2 pp 76-77]. Recall (see e.g.

[46, 5.6(ii)])

|Γ(x+ iy)| ≤ |Γ(x)|, (179)

|Γ(x+ iy)| ≥ 1√
ch y
|Γ(x)|, x ≥ 1

2
. (180)
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Define

ρn+1(a, b, ; c ; z) = F (a, b, ; c ; z)− 1− ab

c
z − ...− (a)n(b)n

(c)nn!
zn

=
Γ(c)Γ(a+ n)zn+1

Γ(b)Γ(c− b)Γ(a)n!
×∫ 1

0
ds

∫ 1

0
dt tb+n(1− t)c−b−1(1− s)n(1− stz)−a−n−1 . (181)

Let a = α+ iα′, b = β + iβ′, c = γ + iγ′. Then

|ρn+1| ≤ µ(n) |z|n+1|c|−βγ−β−n−1 , (182)

where it is assumed that | arg(1− z)| < π, γ > β, n+ β > 0, | arg c| < π − ε, γ > 0 sufficiently

large, n sufficiently large. µ(n) depends on n, a, b, z.

Example: n = 0

ρ1(a, b, ; c ; z) =
Γ(c)z

Γ(b)Γ(c− b)
I ,

I =

∫ 1

0
ds

∫ 1

0
dt tb(1− t)c−b−1(1− stz)−a−1 . (183)

We assume β + 1 > 0, γ − β > 0, γ > 0, and that |1 − z| > ε, | arg(1 − z)| < π − ε for some

ε > 0. In this case the modulus |I| of the integral is bounded by

|I| ≤M(z)

∫ 1

0
tβ(1− t)γ−β−1 dt (184)

with

M(z) = sup
0≤u≤1

|(1− uz)−a−1|. (185)

|I| ≤M(z)
Γ(β + 1)Γ(γ − β)

Γ(γ + 1)
. (186)

Hence using (179)

|ρ1(a, b, ; c ; z)| ≤
|z|M(z)|β|

√
ch(πβ′) chπ(γ′ − β′)

γ
. (187)
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