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The cosmological constant fine-tuning problem

All forms of vacuum energy contribute to the cosmological constant Λ:

ρvac ∼
m

∼ m4 ln m2

µ2

From the Standard Model of particle physics, we therefore expect

|ρvac | > (100 GeV)4
.

Assuming the ΛCDM cosmological model, the measured vacuum energy density is

ρvac

∣∣
obs
≈
(
10−12 GeV

)4
.

Possible theoretical resolution:

I Lagrangians fined-tuned in the ultra-violet

I Symmetry principle (SUSY,...) constraining ρvac

I Dynamical relaxation mechanism of the Hubble rate H(t)

I ?



Contents

1. The cosmological constant fine-tuning problem

2. Dynamical damping scenarios

3. Technical naturalness

4. Summary and future directions



Dynamical damping scenarios
Scalar-tensor models studied in 1810.12336 (Phys. Rev. D) together with Oleg
Evnin:

S =
1

16πG

∫
d4x
√−g [R − 2Λ]

− 1

2

∫
d4x
√−g

[
(∂µφ)2 + m2φ2 + ξRφ2 + λφ4 + GλRRφ

4
]

• ξ < 0 : unstable/growing solutions + negative energy component

• λ, λR > 0: potential bounded from below + stabilization of φ

lim
t→∞

φ(t) = φ0

• Gm2, λ, λR � |ξ|: unstable regime dominates until φ� 0

Dynamical damping of the Hubble rate

lim
t→∞

H(t) = H0 such that Geff H
2
0 ∼ 10−120.
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Dynamical damping scenarios

φ

V (φ,R,Λ) = Λ + m2φ2 + ξRφ2 + λφ4 + λRRφ
4

Λ

Ansatz: φ(t), ds2 = −dt2 + a(t)2d~x2, H(t) ≡ ȧ

a

Friedmann equation (adiabatic approximation):

H2
(
1− ξφ2 − GλRφ

4
)
≈ H2

Λ + m2φ2 + λφ4, Λ ≡ 3H2
Λ



Dynamical attractor solutions

Assuming Gm2, λ, λR � |ξ|:

I II III IV V

Gm2, λR � λ Gm2 . λR ∼ λ 0 < λR . λ� Gm2 λ� λR � Gm2 Gm2, λ� λR

GeffH
2
0

λ
3ξ2

λ
3ξ2

λ
3ξ2

9Gm2λR
4|ξ|3

32GH2
Λλ

2
R

ξ4

H2
0 H2

Λ

(
3H2

Λλ
2

108G2ξ2λR

)1/3
1
6

√
m2λ

2G|ξ|λR
m2

4|ξ|
4H2

ΛλR
ξ2

φ2
0

6|ξ|H2
Λ

λ

6|ξ|H2
0

λ

√
m2|ξ|

2GλλR

|ξ|
3GλR

|ξ|
2GλR

Geff
λ

3ξ2H2
Λ

λ
3ξ2H2

0

√
8GλλR
m2|ξ|

9GλR
ξ2

8GλR
ξ2

Table 1: Characteristic quantities of late-time constant attractor solutions in relevant re-
gions of the parameter space.

1

Resolution of the cosmological constant problem

Fine-tuning of Λ −→ hierarchy of couplings



Examples of dynamical attractor solutions (III)
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Examples of dynamical attractor solutions (V)
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Technical naturalness

’t Hooft (1979):

“(...) the effective interactions at (...) a low energy scale µ1, should follow from
the properties at a (...) much higher energy scale µ2, without the requirements
that various different parameters at the energy scale µ2 match with an accuracy of
the order of µ1/µ2. That would be unnatural.”

A small vacuum energy at the measured energy scale is NOT technically natural,
since it requires fine-tuning of couplings at higher energy scales. This can be seen
from the β-function:

βρΛ
≈
∑

all

M4
i



Technical naturalness

’t Hooft (1979):

“(...) the effective interactions at (...) a low energy scale µ1, should follow from
the properties at a (...) much higher energy scale µ2, without the requirements
that various different parameters at the energy scale µ2 match with an accuracy of
the order of µ1/µ2. That would be unnatural.”

A small vacuum energy at the measured energy scale is NOT technically natural,
since it requires fine-tuning of couplings at higher energy scales. This can be seen
from the β-function:

βρΛ
≈
∑

all

M4
i



Technical naturalness

Unstability under perturbations of couplings at higher energy scales
= sensitivity to UV physics

ρΛ(µ)

µ

µ1

µ2

(
10−12GeV

)4 (100 GeV )4

δρΛ(µ2)

δρΛ(µ1)



Technical naturalness

Consistent low-energy EFT

The hierarchy pattern is stable under perturbations of couplings at higher energy
scales, and is therefore technically natural.

This can be seen from the β-functions (assuming λR = 0):

βm2 ≈ m2λ

βξ ≈
(
ξ − 1

6

)
λ

βλ ≈ λ2

Softly broken shift symmetry

The couplings m2φ2, ξRφ2, λφ4, λRRφ
4 break the shift symmetry φ→ φ+ a.

This guarantees that other interaction terms do not induce radiative corrections to
these couplings.
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Summary

I Scalar-tensor theories achieving dynamical damping of the Hubble rate

Initial instability period due to nonminimal coupling ξ < 0
Stabilization through quartic couplings λ, λR > 0

I General Relativity recovered once the attractor solution is reached

I Conversion of the cosmological constant fine-tuning to a hierarchy of
couplings

I Technically natural (softly broken shift symmetry)



Future directions

I Rigorous proof of the attractor behavior

I Phenomenological robustness? (post-Newtonian parameters,... )

I Include radiation- and matter-dominated eras

I Include inflation

I Construct generalizations (multi-fields, spins, higher-dimension operators,...)

I ...



Thanks!



Dynamical cancellation of H0: First attempt

First attempt by A. Dolgov and L. Ford in the 80s:

φ

ξRφ2 + Λ

Λ

Friedmann equation (adiabatic approximation):

H2
(
1− ξφ2

)
≈ H2

Λ, Λ ≡ 3H2
Λ



Vanishing of Newton’s constant and Weinberg’s no-go

The model has an attractor solution at late-time t →∞:

φ(t) ∼ t,

a(t) ∼ tα, α ≡ 2|ξ|+ 1

4|ξ| .

In particular,
H(t) ∼ t−1 → 0

Vanishing of the effective Newton constant

Geff ∼ t−2 → 0,
1

16πGeff
≡ 1

16πG
− ξφ2

2

Weinberg’s no-go theorem

Scalar-tensor theories do no admit flat solutions with nonvanishing Geff , unless the
Lagrangian is fine-tuned.
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