A Graceful Exit for the Cosmological Constant Damping Scenario

Kévin Nguyen

Hot Topics in Modern Cosmology 2019

May 9th

- 1. The cosmological constant fine-tuning problem
- 2. Dynamical damping scenarios
- 3. Technical naturalness

1. The cosmological constant fine-tuning problem

- 2. Dynamical damping scenarios
- 3. Technical naturalness

The cosmological constant fine-tuning problem

All forms of vacuum energy contribute to the cosmological constant Λ :

$$ho_{vac} \sim igodot_{m}^{m} \sim m^4 \ln rac{m^2}{\mu^2}$$

From the Standard Model of particle physics, we therefore expect

 $|
ho_{vac}| > (100 \text{ GeV})^4$.

Assuming the ACDM cosmological model, the measured vacuum energy density is

$$\left. \rho_{\rm vac} \right|_{\rm obs} \approx \left(10^{-12} \ {\rm GeV} \right)^4. \label{eq:rho_vac}$$

Possible theoretical resolution:

- ▶ Lagrangians fined-tuned in the ultra-violet
- Symmetry principle (SUSY,...) constraining ρ_{vac}
- Dynamical relaxation mechanism of the Hubble rate H(t)

▶ ?

1. The cosmological constant fine-tuning problem

- 2. Dynamical damping scenarios
- 3. Technical naturalness

Scalar-tensor models studied in 1810.12336 (Phys. Rev. D) together with Oleg Evnin:

$$S = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left[R - 2\Lambda \right]$$
$$-\frac{1}{2} \int d^4 x \sqrt{-g} \left[(\partial_\mu \phi)^2 + m^2 \phi^2 + \xi R \phi^2 + \lambda \phi^4 + G \lambda_R R \phi^4 \right]$$

Scalar-tensor models studied in 1810.12336 (Phys. Rev. D) together with Oleg Evnin:

$$S = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left[R - 2\Lambda \right]$$
$$-\frac{1}{2} \int d^4 x \sqrt{-g} \left[(\partial_\mu \phi)^2 + m^2 \phi^2 + \xi R \phi^2 + \lambda \phi^4 + G \lambda_R R \phi^4 \right]$$

- $\xi < 0$: unstable/growing solutions + negative energy component
- $\lambda, \lambda_R > 0$: potential bounded from below + stabilization of ϕ

$$\lim_{t\to\infty}\phi(t)=\phi_0$$

• $Gm^2, \lambda, \lambda_R \ll |\xi|$: unstable regime dominates until $\phi \gg 0$

Scalar-tensor models studied in 1810.12336 (Phys. Rev. D) together with Oleg Evnin:

$$S = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left[R - 2\Lambda \right]$$
$$-\frac{1}{2} \int d^4 x \sqrt{-g} \left[(\partial_\mu \phi)^2 + m^2 \phi^2 + \xi R \phi^2 + \lambda \phi^4 + G \lambda_R R \phi^4 \right]$$

- $\xi < 0$: unstable/growing solutions + negative energy component
- $\lambda, \lambda_R > 0$: potential bounded from below + stabilization of ϕ

$$\lim_{t\to\infty}\phi(t)=\phi_0$$

• ${\it Gm}^2,\lambda,\lambda_R\ll |\xi|$: unstable regime dominates until $\phi\gg 0$

Dynamical damping of the Hubble rate $\lim_{t \to \infty} H(t) = H_0 \quad \text{such that} \quad G_{\text{eff}} H_0^2 \sim 10^{-120}.$

Ansatz:
$$\phi(t)$$
, $ds^2 = -dt^2 + a(t)^2 d\vec{x}^2$, $H(t) \equiv \frac{a}{a}$

Friedmann equation (adiabatic approximation):

$$H^2 \left(1 - \xi \phi^2 - G \lambda_R \phi^4\right) \approx H^2_{\Lambda} + m^2 \phi^2 + \lambda \phi^4, \qquad \Lambda \equiv 3 H^2_{\Lambda}$$

Dynamical attractor solutions

Assuming $Gm^2, \lambda, \lambda_R \ll |\xi|$:

	Ι	II	III	IV	V
	$Gm^2, \lambda_R \ll \lambda$	$Gm^2 \lesssim \lambda_R \sim \lambda$	$0 < \lambda_R \lesssim \lambda \ll Gm^2$	$\lambda \ll \lambda_R \ll Gm^2$	$Gm^2,\lambda\ll\lambda_R$
$G_{eff}H_0^2$	$\frac{\lambda}{3\xi^2}$	$\frac{\lambda}{3\xi^2}$	$\frac{\lambda}{3\xi^2}$	$\frac{9Gm^2\lambda_R}{4 \xi ^3}$	$\frac{32 G H_\Lambda^2 \lambda_R^2}{\xi^4}$
H_0^2	H^2_Λ	$\left(\frac{3H_\Lambda^2\lambda^2}{108G^2\xi^2\lambda_R}\right)^{1/3}$	$\frac{1}{6}\sqrt{\frac{m^2\lambda}{2G \xi \lambda_R}}$	$\frac{m^2}{4 \xi }$	$\frac{4H_{\Lambda}^{2}\lambda_{R}}{\xi^{2}}$
ϕ_0^2	$\frac{6 \xi H_{\Lambda}^2}{\lambda}$	$\frac{6 \xi H_0^2}{\lambda}$	$\sqrt{rac{m^2 \xi }{2G\lambda\lambda_R}}$	$\frac{ \xi }{3G\lambda_R}$	$\frac{ \xi }{2G\lambda_R}$
G_{eff}	$\frac{\lambda}{3\xi^2 H_{\Lambda}^2}$	$\frac{\lambda}{3\xi^2 H_0^2}$	$\sqrt{\frac{8G\lambda\lambda_R}{m^2 \xi }}$	$\frac{9G\lambda_R}{\xi^2}$	$\frac{8G\lambda_R}{\xi^2}$

Table 1: Characteristic quantities of late-time constant attractor solutions in relevant regions of the parameter space.

Resolution of the cosmological constant problem						
Fine-tuning of Λ	\longrightarrow	hierarchy of couplings				

Examples of dynamical attractor solutions (III)

Examples of dynamical attractor solutions (V)

1. The cosmological constant fine-tuning problem

- 2. Dynamical damping scenarios
- 3. Technical naturalness

't Hooft (1979):

"(...) the effective interactions at (...) a low energy scale μ_1 , should follow from the properties at a (...) much higher energy scale μ_2 , without the requirements that various different parameters at the energy scale μ_2 match with an accuracy of the order of μ_1/μ_2 . That would be unnatural."

't Hooft (1979):

"(...) the effective interactions at (...) a low energy scale μ_1 , should follow from the properties at a (...) much higher energy scale μ_2 , without the requirements that various different parameters at the energy scale μ_2 match with an accuracy of the order of μ_1/μ_2 . That would be unnatural."

A small vacuum energy at the measured energy scale is NOT technically natural, since it requires fine-tuning of couplings at higher energy scales. This can be seen from the β -function:

$$eta_{
ho_{\wedge}} pprox \sum_{all} M_i^4$$

 $\label{eq:unstability under perturbations of couplings at higher energy scales \\ = {\rm sensitivity \ to \ UV \ physics}$

Consistent low-energy EFT

The hierarchy pattern is stable under perturbations of couplings at higher energy scales, and is therefore technically natural.

This can be seen from the β -functions (assuming $\lambda_R = 0$):

$$eta_{m^2} pprox m^2 \lambda \ eta_{\xi} pprox \left(\xi - rac{1}{6}
ight) \lambda \ eta_{\lambda} pprox \lambda^2$$

Consistent low-energy EFT

The hierarchy pattern is stable under perturbations of couplings at higher energy scales, and is therefore technically natural.

This can be seen from the β -functions (assuming $\lambda_R = 0$):

$$eta_{m^2} pprox m^2 \lambda \ eta_{\xi} pprox \left(\xi - rac{1}{6}
ight) \lambda \ eta_{\lambda} pprox \lambda^2$$

Softly broken shift symmetry

The couplings $m^2\phi^2$, $\xi R\phi^2$, $\lambda \phi^4$, $\lambda_R R\phi^4$ break the shift symmetry $\phi \to \phi + a$. This guarantees that other interaction terms do not induce radiative corrections to these couplings.

1. The cosmological constant fine-tuning problem

- 2. Dynamical damping scenarios
- 3. Technical naturalness

Summary

- Scalar-tensor theories achieving *dynamical damping* of the Hubble rate Initial instability period due to nonminimal coupling ξ < 0 Stabilization through quartic couplings λ, λ_R > 0
- ▶ General Relativity recovered once the attractor solution is reached
- Conversion of the cosmological constant fine-tuning to a hierarchy of couplings
- Technically natural (softly broken shift symmetry)

Future directions

- ▶ Rigorous proof of the attractor behavior
- ▶ Phenomenological robustness? (post-Newtonian parameters,...)
- Include radiation- and matter-dominated eras
- Include inflation

...

► Construct generalizations (multi-fields, spins, higher-dimension operators,...)

Thanks!

Dynamical cancellation of H_0 : First attempt

First attempt by A. Dolgov and L. Ford in the 80s:

Friedmann equation (adiabatic approximation):

$$H^2\left(1-\xi\phi^2\right)\approx H^2_\Lambda,\qquad\Lambda\equiv 3H^2_\Lambda$$

Vanishing of Newton's constant and Weinberg's no-go

The model has an attractor solution at late-time $t \to \infty$:

$$egin{aligned} \phi(t) &\sim t, \ a(t) &\sim t^lpha, \qquad lpha \equiv rac{2|\xi|+1}{4|\xi|}. \end{aligned}$$

In particular,

$$H(t) \sim t^{-1}
ightarrow 0$$

Vanishing of the effective Newton constant

$$G_{eff} \sim t^{-2} \to 0, \qquad rac{1}{16\pi G_{eff}} \equiv rac{1}{16\pi G} - rac{\xi \phi^2}{2}$$

Weinberg's no-go theorem

Scalar-tensor theories do no admit flat solutions with nonvanishing G_{eff} , unless the Lagrangian is fine-tuned.