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1. The cosmological constant fine-tuning problem



The cosmological constant fine-tuning problem
All forms of vacuum energy contribute to the cosmological constant A:

m
2
Pvac ™~ O ~ m4|n'%

From the Standard Model of particle physics, we therefore expect

=

|pvac| > (100 GeV)*.

Assuming the ACDM cosmological model, the measured vacuum energy density is

pvac| ~ (10712 GeV)4.

~
obs

Possible theoretical resolution:
» Lagrangians fined-tuned in the ultra-violet
» Symmetry principle (SUSY,...) constraining pyac
» Dynamical relaxation mechanism of the Hubble rate H(t)
> 7
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2. Dynamical damping scenarios



Dynamical damping scenarios

Scalar-tensor models studied in 1810.12336 (Phys. Rev. D) together with Oleg
Evnin:

4
16G d*x V=g R — 2A]

/ d*x (a,m) + m?¢® + ERP? + \¢* + GArRS*



Dynamical damping scenarios

Scalar-tensor models studied in 1810.12336 (Phys. Rev. D) together with Oleg
Evnin:
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e & < 0: unstable/growing solutions + negative energy component
e A\ \g > 0: potential bounded from below + stabilization of ¢

lim ¢(t) = o

t—o0

o Gm? )\, \g < [£]: unstable regime dominates until ¢ > 0



Dynamical damping scenarios

Scalar-tensor models studied in 1810.12336 (Phys. Rev. D) together with Oleg
Evnin:

4
16G d*x V=g R — 2A]

/ d*x (am) + m?¢® + ERP? + \¢* + GArRS*

e & < 0: unstable/growing solutions + negative energy component

e A\ \g > 0: potential bounded from below + stabilization of ¢

lim ¢(t) = o

t—o0

o Gm? )\, \g < [£]: unstable regime dominates until ¢ > 0

Dynamical damping of the Hubble rate
lim H(t)=Ho  such that Gerr HE ~ 107120,




Dynamical damping scenarios

V(6 R,A) = Ak m*¢® + ERG? + A¢* + ArRo*

(1),

Friedmann equation (adiabatic approximation):
H? (1 — €% — GAro*) & HF + m?¢? + \¢*,

Ansatz:

L | L.

ds? = —dt? + a(t)?dx?,

A=3H2



Dynamical attractor solutions

Assuming Gm? A\, A\ < [€]:

I 1I I11 v \Y

Gm? AR <A Gm?<SAr~ A 0<AgSAKGEM? A A< Gm? Gm? A< Mg

, N N N 9Gm2Ap 32GH3 N,
GeypHo 5 3 3 aep e
1/3
H2 H2 3H,2\)\2 / 1 m2\ m2 4H/2\)\R
0 A 108G2€2AR 6\ 2G| R 41¢] &
o 6| HY 6l¢|Hg m2[¢| 1€ €]
0 X X 2GR 3GAr 2GR
Ie. A A 8GAAr 9GAR 8GAR
eff 362H3 362H3 m2|€| €2 &

Table 1: Characteristic quantities of late-time constant attractor solutions in relevant re-
gions of the parameter space.

Resolution of the cosmological constant problem
Fine-tuning of A —  hierarchy of couplings




Examples of dynamical attractor solutions (I11)
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Examples of dynamical
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3. Technical naturalness



Technical naturalness

't Hooft (1979):

“(...) the effective interactions at (...) a low energy scale 1, should follow from
the properties at a (...) much higher energy scale 1, without the requirements
that various different parameters at the energy scale o, match with an accuracy of
the order of iy /uy. That would be unnatural.”



Technical naturalness

't Hooft (1979):

“(...) the effective interactions at (...) a low energy scale 1, should follow from
the properties at a (...) much higher energy scale 1, without the requirements
that various different parameters at the energy scale o, match with an accuracy of
the order of iy /uy. That would be unnatural.”

A small vacuum energy at the measured energy scale is NOT technically natural,
since it requires fine-tuning of couplings at higher energy scales. This can be seen

from the S-function:
Bop = Z M;‘

all



Technical naturalness

Unstability under perturbations of couplings at higher energy scales
= sensitivity to UV physics

dpn(p2)
A

H2 ¥

Pt (1)

= = o)
(10-2Gev)* (100 GeV)*



Technical naturalness

Consistent low-energy EFT

The hierarchy pattern is stable under perturbations of couplings at higher energy
scales, and is therefore technically natural.

This can be seen from the S-functions (assuming Ag = 0):

Bz ~ m’A

b~ (6-5)

ﬂ)\%AQ



Technical naturalness

Consistent low-energy EFT

The hierarchy pattern is stable under perturbations of couplings at higher energy
scales, and is therefore technically natural.

This can be seen from the S-functions (assuming Ag = 0):

Bz = M2\

b~ (6-5)

ﬂ)\%k2

Softly broken shift symmetry

The couplings m?¢?, £R¢?, A\p*, ArR¢* break the shift symmetry ¢ — ¢ + a.
This guarantees that other interaction terms do not induce radiative corrections to
these couplings.
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4. Summary and future directions



Summary

» Scalar-tensor theories achieving dynamical damping of the Hubble rate

Initial instability period due to nonminimal coupling £ < 0
Stabilization through quartic couplings A, A\g > 0

» General Relativity recovered once the attractor solution is reached

» Conversion of the cosmological constant fine-tuning to a hierarchy of
couplings

» Technically natural (softly broken shift symmetry)



Future directions

Rigorous proof of the attractor behavior

Phenomenological robustness? (post-Newtonian parameters,... )
Include radiation- and matter-dominated eras

Include inflation

Construct generalizations (multi-fields, spins, higher-dimension operators,...)



Thanks!



Dynamical cancellation of Hy: First attempt

First attempt by A. Dolgov and L. Ford in the 80s:

ERP* + A

Friedmann equation (adiabatic approximation):

H? (1-¢¢°) =~ Hi,  AN=3H;



Vanishing of Newton's constant and Weinberg's no-go

The model has an attractor solution at late-time t — oo:

o(t) ~ t,
o 2[f]+1
a(t) ~t-, a=
© [
In particular,
H(t)~t =0

Vanishing of the effective Newton constant

2
Gefr ~ 72 = 0, L ! %

167Gy 167G 2

Weinberg's no-go theorem

Scalar-tensor theories do no admit flat solutions with nonvanishing Ges, unless the

Lagrangian is fine-tuned.
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