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SU(4) Heterotic Compactification:

V , G = SU(4)
“slope” stable

D = 6X, “Schoen” CY 

W , F = Z3 � Z3R4

N = 1 SUSY

G = SU(4)� E8 � Spin(10)

R4 Theory Gauge Group:

Choose the               Wilson lines to be Z3 � Z3

�T3R = eiYT3R
2�
3 , �B�L = eiYB�L

2�
3

Brief Review of a Realistic String Vacuum:



where
2(H1 + H2 + H3) = 3(B � L)YB�L =

H4 + H5 = 2(Y � 1
2
(B � L)) = 2T3RYT3R =

arise “naturally” and is called the “canonical basis”. ⇒
Spin(10)� SU(3)C � SU(2)L� U(1)T3R � U(1)B�L

R4 Theory Spectrum:

nr = (h1(X, UR(V ))�R)Z3�Z3 .⇒ of quarks/leptons3 families 

and 1 pair of Higgs-Higgs conjugate fields

under



Wilson Line Breaking:

�1

�
X/(Z3 � Z3)

�
= Z3 � Z3⇒ 2 independent classes of 

non-contractible curves. ⇒ each Wilson line has a mass scale 
M�T3R

,M�B�L .  At a generic region of moduli space

M�T3R
�M�B�L

�
� MU

�

which we henceforth assume.  We find that

MU = 3.15� 1016 GeV

At this scale, we statistically scatter the 24 soft supersymmetry
parameters in the range 

�M

f
,Mf

�

M = 2.7 TeV , f = 3.3

where, to make all sparticle
.

The results are subjected to all present phenomenological 
constraints-- namely

A) B-L symmetry is radiatively broken at 

B) EW symmetry is radiatively broken at 

MB�L > 2.5 TeV

MZ = 91.2 GeV

masses CERN accessible, we choose



In addition, we will enforce that all sparticle masses exceed their

present experimental bounds. These are given by

We find that most of the RGE scaling behaviour is dominated by the 

two parameters 

C) The Higgs mass is given by MH0 = 125.36± 0.82 GeV



that out of 10 million random initial points in SUSY breaking parameter 

space, all points that break B-L symmetry with 

we can plot our results in a two-dimensional space. We find

MB�L > 2.5 TeV are

Of these, there are 44,884 “valid” black points that satisfy all

phenomenological requirements.

⇒



Sneutrino-Higgs Inflation:

Once again consider the B-L MSSM, but now as a  possible

framework for inflationary cosmology satisfying all Planck2015

bounds. To do this, we must couple the theory to N=1 supergravity.

Recall that the B-L MSSM arises as the observable sector of
a class of vacua of heterotic M-theory. The generic coupling of 

such a theory to N=1 supergravity was carried out in

The results are easily applied to the B-L MSSM. To begin, we first 

assume that--with the exception of the two complex “universal”  

are stabilized and sufficiently heavy to be ignored at low energy.

geometrical moduli--all other geometric and vector bundle moduli



The real parts of the two universal moduli are the “breathing modes”

of the CY and orbifold, a(x) and c(x) respectively, defined in the

in the     -dimensional metric by

In the limit,  these moduli also decouple from ordinary

matter and can be ignored. However, for finite this is no longer
the case, and must be included when coupling the B-L MSSM to

supergravity. Specifically, the Kahler potential is altered to

where the sum is over all complex scalar matter fields 

where

S1/Z2

Ci and

11

no-scale supergravity➝



Similarly, to lowest order, the gauge kinetic function is given by

Both the Kahler potental and gauge kinetic function are identical

to those found in the weakly coupled heterotic string and are 

consistent with the requisite “new minimal” supergravity multiplet.

Putting K and f, as well as the superpotential W, into the above

formalism gives the Lagrangian for the B-L MSSM coupled to 

N=1 supergravity. Henceforth, we set MP = 1 and assume that 

both S and T are stabilized at fixed VEV’s.   

⇒

By scaling

both S and T can be eliminated from the Lagrangian.



Recalling that the matter kinetic energy terms are  

⇒ for small values of the fields there is no mixing and the KE is

canonically normalized. However, this is no longer true for fields

approaching the Planck scale.

Now consider the remaining parts of the Lagrangian. The purely 

gravitational action is simply

That is

The matter potential energy breaks into supersymmetric F-terms

and D-terms given by



where W is the B-L MSSM superpotential and

are the functions

In addition, there is a soft SUSY breaking potential 

Given these potentials, we want to search for a “stable” valley down 

which a scalar field can “slow roll” and, hence, produce inflation.

To enhance the stability of the valley, we demand that it be D-flat; 

that is
VD = 0



We will restrict ourselves to fields not charged under SU(3)C

or U(1)EM . ⇒ We are led naturally to the field configuration

fields �i, i = 1, 2, 3 using

with all other fields set to zero. It is helpful to define three new

The �1 field corresponds to the D-flat direction while �2 �3,

are orthogonal directions with positive potential. Note that

with the associated soft mass squared given by



Henceforth, restrict to the real field �1 = ��
1

Setting all fields to zero except �1⇒ VD = 0 and the Lagrangian

becomes

where

is the third family sneutrino Yukawa coupling� O(10�12) and

is the supersymmetric Higgs parameter. Note that is globally

U(1) invariant. . ⇒

To canonically normalize the kinetic energy term, define a new real

scalar field � by



The Lagrangian now becomes

where is determined from the above and

Primordial Parameters:

For an arbitrary potential  V define 

In an interval of slow-roll inflation, these parameters must satisfy

We define the smallest value of the field where inflation ends to 

be �end

��

. The value of the field which precedes by exactly

60 e-foldings is denoted .



The “spectral index” and the “scalar to tensor” ratio are defined by 

respectively. The label denotes quantities evaluated at ��.

In addition, the Planck2015 normalization of the CMB fluctuations

requires that

where we have restored dimensionful units for clarity.

Let us now evaluate these quantities for the B-L MSSM potential

. Begin by considering alone. We find that

and

which are consistent with the Planck2015 data.



Inserting this value for r above gives

m = 1.55� 1013 GeV

⇒

Note that for M�T3R
�M�B�L

�
� MU

�
the analysis presented earlier 

is valid for arbirarily high values of soft SUSY breaking.  Also note

that although must be trans-Planckian at the start of inflation

The form of our potential has arisen in other contexts. However



Now consider the F-term potential 

However, to keep from ruining the slow-roll behavior of  

, we must choose the 

three order of magnitude smaller than m. For specificity,

parameter to be at least

take

Combining both potentials, we find

again both consistent with the Planck2015 data.  Also

and

⇒

. The Yukawa coupling 

is small and, hence, that term in      can be ignored. � O(10�12)



The potentials and are individually plotted in Figure 1.

Note that the F-term potential acts as a natural “cut-off” of the 

inflation potential for values of This gives a

supersymmetric realization of the “Inflation without Selfreproduction”

mechanism introduced by Mukhanov.



The complete potential is plotted in Figure 2.

We have now demonstrated that the B-L MSSM coupled to N=1

supergravity can naturally produce a period of slow-roll inflation. 
However, to do so we had to raise the soft SUSY breaking scale to 

>> O(1� 10 TeV)



Is this still consistent with all low energy phenomenology?

Redoing our earlier analysis, but now taking 
�M

f
,Mf

�
where M = m = 1.58� 1013 GeV, f = 3.3

we find

Each black “valid” point is consistent with all low energy 

phenomenology as well as being a theory of inflation satisfying

all Planck2015 constraints.



Perturbative Reheating:
It was shown in several papers by J. Ellis and K. Olive that within the  
context of Higgs and Sneutrino inflation in no-scale N=1 supergravity
perturbative reheating can predominate over “preheating” for a 
significant range of input parameters. Here, we assume that is the case 
and focus exclusively on perturbative reheating.

Classical Behavior of � and H :

The relevant equations of motion in the inflationary and post-inflationary

where              and, since 

regimes are

we can take V = Vsoft �MP = 1



Solving these equations numerically, we find



Behavior of � and H during Particle Decay: 

The relevant equations of motion in the post-inflationary regime are
modified to

.

Expansion of � :

We expand � around its root mean square value. That is

(� �)



Decay Species:

a) up-quarks- Let F denote an up-quark. Then

⇒
F̄

F

where
,

Note that
=constant

b) charginos
c) neutralinos
d) gauge bosons-  For example, consider WR . Then

Note that
�d �� 0

scale of R-parity breaking << reheating temperature⟵

��2� �� 0 �



Plotted as a function of , we find

t

The fractional energy density for the i-th decay species is given by

where . Plotted as a function of t
↑

recall 3H2 =
1
2
�̇2 + V (�) +

�

i

�i



Defining

we find

t_{1}

t1

⇒
Complete reheating has occurred at the time when

It follows that
tR � 8� 109

We



Attaining Thermal Equilibrium:

In order to define a reheating temperature for the plasma of decay
products, one must show they have obtained thermal equilibrium 
by the end of reheating.This will be the case if the interaction rate

This ⇒ the mean interaction length is within the causal horizon .

As an example, let us determine the rate for the process 

where are the charginos. They can self-interact via the neutral gauge  
bosons

,,

However, at this scale their gauge coupling parameters and mass are
very similar. Hence, for simplicity, we consider the interactions via  only.



The associated Feynman diagrams are

We find that

where , and



The result for the decay rate of charginos is

We find a similar result for all decay species.



We have shown that the plasma is in thermal equilibrium at

and using a standard formula that the reheat temperature is

⇒ tR � 8� 109


