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Brief Review of a Realistic String Vacuum:

SU(4) Heterotic Compactification:

X, D =6 “Schoen” CY

Q “slope” stable

W,FZZgXZg

N =1S5US8Y

R* Theory Gauge Group:

Es — Spin(10)

Choose the 73 x Zs Wilson lines to be
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where
Yp_ 1, = 2(H1 + Ho —I—H3) = 3(B — L)

Yr = Hi+Hs=2Y ~ (B~ L)) = 2T
arise “naturally” and is called the “ A
Spm(l()) — SU(S)C X SU(Q)LX U(l)T3R X U(l)B_L

R* Theory Spectrum:

n, = (K1 (X,Ur(V)) @ R)***%s = 3 families of quarks/leptons
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and | pair of Higgs-Higgs conjugate fields

1 . | .

under SU(3)c x SU(2), x U(1)p, x U(1)p_1.



Wilson Line Breaking:

m1(X/(Zs x Z3)) = Zs x Zs = 2 independent classes of
non-contractible curves. = each Wilson line has a mass scale
. At a generic region of moduli space

MXTgR = MXB—L( = MU)

which we henceforth assume. We find that

My = 3.15 x 10*° GeV

At this scale, we statistically scatter the 24 soft supersymmetry

parameters in the range (%, M f) where, to make all sparticle
masses CERN accessible,’'we choose M =2.7TeV , f=3.3.

The results are subjected to all present phenomenological
constraints-- namely

A) B-L symmetry is radiatively broken at

B) EW symmetry is radiatively broken at



C) The Higgs mass is given by

In addition, we will that all sparticle masses exceed their

present experimental bounds. These are given by

Particle(s) Lower Bound
Left-handed sneutrinos 45.6 GeV
Charginos, sleptons 100 GeV
Squarks, except for stop or sbottom LSP’s| 1000 GeV
Stop LSP (admixture) 450 GeV
Stop LSP (right-handed) 400 GeV
Sbottom LSP 500 GeV
Gluino 1300 GeV
Zr 2500 GeV

We find that most of the RGE scaling behaviour is dominated by the

two parameters
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Sprr = Tr (2m o — Mae — Mg — 2m; + mg. +mg) ,
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—> we can plot our results in a two-dimensional space.VWVe find
that out of |0 million random initial points in SUSY breaking parameter

space, all points that break B-L symmetry with 17, ; > 2.5 7\ are
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Of these, there are 44,884 “valid” black points that satisfy all

phenomenological requirements.



Sneutrino-Higgs Inflation:

Once again consider the B-L MSS5M, but now as a possible
satisfying all Planck2015

bounds. To do this, we must couple the theory to N=1| supergravity.

Recall that the B-L MSSM arises as the of
a class of vacua of heterotic M-theory.The generic coupling of

such a theory to N=I| supergravity was carried out in

A. Lukas, B. A. Ovrut and D. Waldram, “On the four-dimensional effective action of strongly coupled heterotic
string theory,” Nucl. Phys. B 532, 43 (1998)

The results are easily applied to the B-L MSSM. To begin, we first
assume that--with the of the

--all other geometric and vector bundle moduli

are stabilized and sufficiently heavy to be ignored at low energy.



The real parts of the two universal moduli are the

of the CY and S;/Z5 orbifold, and respectively, defined in the

in the 11 -dimensional metric by
ds? = Gupdxtdx” + e?2®)Q) 4 pdzdz® + = )('d;z'”i)‘2

In the Mp — oc limit, these moduli also decouple from ordinary

matter and can be ignored. However, for finite Mp this is no longer
the case, and must be included when coupling the B-L MSSM to
supergravity. Specifically, the Kahler potential is altered to

no-scale supergravity » K = —In(S+ S)—3 In(T Z \[
I)

where the sum is over all complex scalar matter fields and

C-
€% + iV, T = e +ivV2x + Z' ’I

where ¢ = ¢+ 2a.



Similarly, to lowest order, the gauge kinetic function is given by

f==5
Both the Kahler potental and gauge kinetic function are identical

to those found in the and are

consistent with the requisite “new minimal” supergravity multiplet.

Putting K and f, as well as the superpotential WV, into the above
formalism gives the Lagrangian for the B-L MSSM coupled to
N=1 supergravity. Henceforth, we set \/p = | and assume that

both S and T are stabilized at fixed VEV’s. By scaling

3
T+T

/9 2 /9

V20, g = )24, , fora=3,2,3R, BL'

C": ( S’+ §.‘

1

both S and T can be eliminated from the Lagrangian. =

K=-3In(1-)"

[eARS
3 ) . f=1




Recalling that the matter kinetic energy terms are
—> for small values of the fields there is and the KE is

canonically normalized. However, this is no longer true for fields

approaching the Planck scale.

Now consider the remaining parts of the Lagrangian.The purely
gravitational action is simply

1
— vV—agR

2 I,

That is

» The pure gravitational action is canonical. We do not require any “non-canonical” coupling of

matter to the curvature tensor R.

The matter potential energy breaks into supersymmetric F-terms

and D-terms given by



Vi = X (KIDWD,W - 3|W %),  Vp= %Z D;

where W is the B-L MSSM superpotential and D,,a = 3,2,.3R, BL'

are the functions

. oK .. . i~
D, = _g"é}_C',-[T(aﬂf)Cj =
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In addition, there is a soft SUSY breaking potential

Viort = (md Qs> + my, |ursl® + mg, |drs|® + mi|Lel* + my, el

2 2 2 ) p) 2 . \
+mg, |ers|”) +my, |Hul|” +my |Hal” + (bH Hg + hoc.) + ...

Given these potentials, we want to search for a “stable” valley down

which a scalar field can “slow roll” and, hence, produce inflation.

To enhance the stability of the valley, we demand that it be D-flat;
that is



We will restrict ourselves to fields not charged under SU (3)~

or J(1)py- = WWe are led naturally to the field configuration
H, = vgp3 =3

with all other fields set to zero. It is helpful to define three new

fields using

Hy = 2= (61— ¢2 — 63),
na=Jpor+ (3+3m) 0+ (Fr— 1) %
VR3 = %C”] + (W’ {;) P2 + ({; + )—‘§> b3
The ¢, field corresponds to the D-flat direction while ¢-, -

are orthogonal directions with positive potential. Note that

Q1 = % (Hy + vL3 + vr3)
with the associated soft mass squared given by

.') 1
m- = 3 (m” o +m?

VL 3 + Inlln })



Setting all fields to zero except ¢; = Vp = 0 and the Lagrangian

becomes
. 1 "N o . .
L=— (1 " |€) |.)).20p.<91d"¢>1 - VI"(QI) - Vsofl((.bl)
EETPHE
where
L 3|¢1|? (p? + Y5012 i 2 L 1
Vi(1) = | |(§l ” |;;2| . o Viopi(91) = m?|¢y 7
— |62
Yz ~ O(107 ') is the and

(1t is the supersymmetric Higgs parameter. Note that L is globally

U(l) invariant. Henceforth, restrict to the real field ¢; = ¢;. =

» The inflaton is a linear combination of the real parts of H 8, vy, 3 and vy 3 and, hence, is composed

of fields already appearing inthe B — L MSSM.

To canonically normalize the kinetic energy term, define a new real

scalar field ¢ by

. ),
D1 = \/3 tanh | —



The Lagrangian now becomes

L= _5();1‘.1’()} v —Vp(Y) — ""soft(l?*',)

where Vi(¥) is determined from the above and

o ; ¢ W
Vsort(¥) = 3771‘3 t.anh“) (—)

Primordial Parameters:

For an arbitrary potential V define

AN bd /i
—1(X)y L
2 ‘P ‘P

In an , these parameters must satisfy

-

€, |7
We define the smallest value of the field where inflation ends to

be . The value of the field which precedes .4 by exactly

60 e-foldings is denoted



The ™ ” and the “ " ratio are defined by
ng ~ 1+ 2n, — be, , r ~ 16€,

respectively. The label “.” denotes quantities evaluated at 1),
In addition, the Planck2015 normalization of the CMB fluctuations

requires that
1/4 - T o\1/4 16 1 v/
— 1.88(——) """ x 106 GeV
0.10°

where we have restored dimensionful units for clarity.

Let us now evaluate these quantities for the B-L MSSM potential

V = Vi + Vi - Begin by considering v, It alone. We find that

Vend = 1.21, U, = 6.23
and
ne ~ 0.967 . r~ 0.00326

which are



Inserting this value for r above gives

VMY 707 %105 GeV = m = 1.55 x 10'® GeV

*

—

* In order to be consistent with the Planck2015 cosmological data, supersymmetry must be broken at

a high scale of O(10'3 GeV).

Note that for 1/, ~~ M, ,(~ M) the analysis presented earlier
is valid for of soft SUSY breaking. Also note

that although ¥ must be trans-Planckian at the start of inflation
» The physical fields H 3 vy r and vy g, are all sub-Planckian during the entire inflationary epoch.

The form of our potential Vs, has arisen in other contexts. However

* Our Vg, 5 potential arises entirely from the associated soft supersymmetry breaking quadratic term,

rescaled to canonically normalize the kinetic energy.



Now consider the F-term potential V. The Yukawa coupling

Yu3 ~ O(107"%) is small and, hence, that term in V} can be ignored.
However, to keep from ruining the slow-roll behavior of

Viort » We must choose the 1 parameter to be at least

smaller than m. For specificity, take
p= 1.20 x 10" GeV
Combining both potentials, we find

WVend ~ 1.21, s ~6.25
and
ns ~ 0.969 . r~ 0.00334

again both consistent with the Planclk2015 data. Also

VY =807 x 10" GeV = m = 1.58 x 10" GeV



The potentials Vi, and Vi are individually plotted in Figure |.
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FIG. 1. The blue line is a plot of Vo for the soft mass value m = 1.58 x 10" GeV_ Tpe orange line is

a graph of V- for the parameters Y3 ~ 10~ "2 and p = 1.20 x 10! GeV

Note that the F-term potential acts as a natural “cut-off” of the
inflation potential V,,;, for values of ' > 8. This gives a
supersymmetric realization of the “Inflation without Selfreproduction”™

mechanism introduced by Mukhanowv.



The complete potential is plotted in Figure 2.
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FIG. 2. The black line is a graph of the potential V, ;; + V}- for the parameters m = 1.58 x 10'? GeV, Y, 3 ~ 10~12

and = 1.20 x 10'° GeV. For these values of the parameters, the vertical red dashed lines mark v,,,; ~ 1.21 and

U, =~ 6.25 respectively.
We have now demonstrated that the B-L MSSM coupled to N=1
supergravity can

However, to do so we had to raise the soft SUSY breaking scale to

m = 1.58 x 1013 GevV >> O(1 — 10 TeV)



Is this still consistent with all low energy phenomenology?

Redoing our earlier analysis, but now taking

M M 13
(7, f) where M =m =1.58 x 10! GeV, f =3.3
we find , f |
1<) A 1
10-’_ 5 27 SN -
:; O e SRR S -
, 0 no EW breaking
Bl B C 3 EW breaking ||
1 sparticle bounds
Bl [ligos mass
152 | I
—152 —10? 0 10?

Syr({M)
(105GeV)*

Each black “valid” point is consistent with all low energy
phenomenology as well as being a theory of inflation satisfying

all Planck2015 constraints.



Perturbative Reheating:
It was shown in several papers by J. Ellis and K. Olive that within the
context of Higgs and Sneutrino inflation in no-scale N=1 supergravity
perturbative reheating can predominate over “preheating” for a
significant range of input parameters. Here, we assume that is the case

and focus exclusively on perturbative reheating.

Classical Behavior of ¥ and H :
The relevant equations of motion in the inflationary and post-inflationary

regimes are 1

1 ;2
- ——u‘ .

2
U+3HY+Vy =0,

where Mp =1 and, since Vi < Vs, We cantake V = Vi =

P\ 2 4
202 [1— (¥ 1y
m-y [1 (3) +(1620)+"']

V(¢¥) = 3m? tanh? (%) =

b | =



Solving these equations numerically, we find
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The numerical solutions for ¥/(¢) and H(t), where we have set Mp = 1. Note that t. =0
and tena ~ 9.89 x 10° mark the beginning and end of the inflationary period. The times ¢ > fend
correspond to the post inflationary epoch. As defined in the text, ¢,,. o~ 1.096 x 10° marks the time

at which the potential energy is well approximated by V' = 1mu® and ty p ~ 1.387 x 107 is the
time at which our analytic solutions for ¢» and H become valid.



Behavior of ¥ and H during Particle Decay:

The relevant equations of motion in the post-inflationary regime are

modified to .

3H? = 21(}2 + V(@) + Zpi :

LN B
H = —Ed' B Zi:(pt +pi)

P+ <3H +> I‘d,,-) ¥+ V'(¥) =0,

pi+3(1+w;(t)) Hp; —Tq % =0,

where I'; ; is the decay rate of v into the i-th matter species, and p; and p; are the
energy density and pressure respectively of the i-th species in the decay products.
The quantities p; and p; are related by the relation p; = w;(t)p;, where w; = 0 and
1/3 respectively for matter and radiation. The initial conditions for 1) and H are set
by their classical values at the end of the inflationary epoch.

Expansion of ¥ :

We expand % around its root mean square value. That is

¥ =V ({¥?) + v (=)



Decay Species:

a) up-quarks- Let F denote an up-quark. Then

Y 2 217
______ = JpFTw | [ ME
< —> T4 — FF)= 3 [1 B! (mu'r) ] .
F

where
mp = YprV (V?) | my=m=6.49 x 1076
NOte that yg’me max
(P?) — 0 = g — Py =TI'q" =constant

b) charginos

_ «— scale of R-parity breaking << reheating temperature
c) neutralinos

d) gauge bosons- For example, considerWz . Then

g5(¥?) iy ]
Ca(h = WraWh) = —2—_|1-4—F

Note that
Fd — 0



Plotted as a function of J{#) , we find

100%
wel o _
| \\
| \
10 | 4
3 | |
o
| |
1o b e TS TS - T gswews) | | |-
— — @=8'E) ) | |
T @-WoWo) I ¢-B8) | :
10-% - - = o T @-sWeWg) T @-N:Nz) J l [T
o |
/ | |
10-% i A PRI | N Ll PP ul | L
° 10 10% 107 10 10 10+
V) -

The fractional energy density for the i-th decay species is given by

() = 2
Ptotal

where potat = 3H?. Plotted as a function of t
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Defining B _ T
Qy = py/ ptotat With py, = 59° + V(1)

we find
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We plot the evolutions of Qy and ). €2; from #; to sometime after the end

of reheating. The time at which each specie is turned on is marked with a vertical line, where
trys = 8.78x10%, t5a, = 6.45x 107, tww, = 6.93x10%, t,z = 6.95%x10°, tpp, = 7.06x 10°

and tyN. = 7.08 x 107,

Complete reheating has occurred at the time when

It follows that
tp ~ 8 x 10°



Attaining Thermal Equilibrium:

In order to define a reheating temperature for the plasma of decay
products, one must show they have obtained thermal equilibrium

by the end of reheating.This will be the case if the interaction rate

I

int

>H, V1

This = the mean interaction length 1/T , is within the causal horizon1/H .

int

As an example, let us determine the rate for the process
CiCr — CyCy

where ¢i are the charginos. They can self-interact via the neutral gauge
bosons ;

Wp » Wru» B,
However, at this scale their gauge coupling parameters and mass are
very similar. Hence, for , we consider the interactions via w; only.



The associated Feynman diagrams are

ot (Ps. 83) - _
' Gt (1. =1) Gt (s, 2)

C-“l+t (P, 22) C-T (P4, 54) C-'{ (P2, 82) C-'{ (Ps.24)

(a) (b)

We find that
Lint(CCy — CfCy) = now

where n=-2  y~c=1 and
(E)

10°F
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10721
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L1
1x101°
x2=gv < ¢?> 16 (GeV)



The result for the decay rate of charginos is

1042 - T T T T
102

100L
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The rate I',,,; for the process C;"C;y — C{ Cy plotted against time (shown in units

where M p = 1). The rate almost immediately becomes larger than the Hubble parameter H, which
is approximately 7.8 x 10! at the very end of the plot. The time at the end of reheating, tp ~

8 x 10°.

We find a similar result for all decay species.



= We have shown that the plasma is in thermal equilibrium at ¢5 ~ 8 x 10”

and using a standard formula that the reheat temperature is

Tp ~ 1.13 x 10" GeV



