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Outline

* Motivation:Why changing GR? Why nonlocal gravity!?

* Nonlocal gravity models for dark energy

* What are the main issues regarding nonlocal gravity (or MG in general)?
* Structure formation
* Localization and Stability
* Solar System tests and GWV signatures

* Derivation from first principles



Why changing GR? Why nonlocal gravity?

* GR works well up to the solar system scales,
but needs too much “dark’ stuff to describe

cosmic motions on larger scales: Dark Matter TR
. None of them detected!
* Dark Energy for cosmic acceleratior

e Dark Matter for galactic dynamics

. DETRLETAY 68.3%
e Can we describe the same effects of the dark

substances w/o invoking them but by modifying GR?

Ostrogradsky
“The only local, metric-based, generally coordinate invariant, potentially

stable models are the so-called f(R) models.” Woodard astro-ph/0601672

* f(R) can give the early-time acceleration or inflation, e.g., Starobinsky inflation,
but neither DE nor DM phenomena. Then, the remaining options are:

* Add fields other than the metric to carry part of the gravitational force
* Break general covariance
* Abandon locality



Two more requirements

* Solar system constraints: Don’t ruin the successes of GR in the solar system

* Stability: Universe lasted |3.8 billion years

So, a lot of discussions about these
issues in the MG literature...




Origin of nonlocality

The quantum effective action is nonlocal: Maggiore's talk

Feynman taught us how to compute objects like correlation functions from the
quantum effective action order by order in perturbation theory.

- Example: A scalar field interacting with a graviton field

A propagator is the inverse of a kinetic operator, i.e., a nonlocal object

If the field is massive, the propagator can be
expanded and truncated, so it becomes local:

14— 1+ ...
. - (1 — m? m +m2+

1
But, if the field is massless: O

1 1 [ [] }

“Nonlocality inevitably arises as quantum loop corrections of massless particles.”

A nonlocal quantum effective action might derive from fundamental theory,
however, no such derivation is currently available, so take a phenomenological approach.

What form of nonlocal actions would do the job!?



Dark Energy: What is making the universe accelerate!

() # 2 (o + 1)

/ AN

Approaching a constant: observed! Falling off with time

* Two options: Add more energy or modify gravity!

e
3

87TGeff( )
3

HQ(t) ——(pm + Pr + Prew) oOF HQ( t) = (om + pr)

* A\CDM
Works with QO ~ 0.7, Q,,~03. Q,~85x107"°
But, why pp = Qap. ~ (107%eV)* so small and why dominant now?

The so-called old & new problems of the cosmological constant

Hint on how to modify: Mimic the behavior of A w/o A!



A nonlocal model replacing DE: Deser-VWoodard model

1
167G

Spw =

/ d4£IZ\/ —g |R+ Rf (1R> Deser & Woodard 0706.215|

* Nonlocality via é and actiton R}

1. . .
—» =R is dimensionless —3» no new mass parameter

* Btw, Ildea of adding R%R is not new

Polyakov 1981, Wetterich 1998, ... in different contexts

* Two built-in delays: desired property for mimicking A

R = 0 during radiation domination =» no modification until teq ~ 10° years

1 4./t . L 1
—R~ —— ln(—) during matter domination —p» —R ~ —15 at 10'° years
u 3\t N

Finally the function f can be tuned to reproduce ACDM, but no huge
fine-tuning is required, thanks to these delays!
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The evolution of X =
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e Dashed line: X = —2In(a/agq) for the purely matter dominated era, a t2/3

'R when R is for ACDM

e Red curve: The evolution of X =

e Green curve: f(X) chosen to fit the ACDM expansion history



Comparison with other nonlocal models replacing DE

Both DW & RR are ruled out by LLR

/d4£13\/7 R 2A 1812.11181 Belgacom, Finke, Fassino, Maggiore

* A\CDM: S5 = 167TG

e Deser-Woodard 0706.2151;: Spw = m d*z\/—g R + Rf R

The nonlocal function nontrivially modulates the scalar curvature. RR model

| , 1 4 2p
Maggiore-Mancarella 1402.0448: Smm = 1603 d*x/— [ —m RD2 R]
* Vardanyan-Akrami-Amendola-Silvestri 1702.08908:
1 ) , 1
SVAAS = T d x\/—g [R—l— m DR]

* Amendola-Burzilla-Nersisyan 1707.04628:

1 ) 1
SABN — m d Ly —(g [ — m @R]

Replace A by a mass parameter and give a modulation with a nonlocal scalar.
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. . . . 1
Digression: Simple Exercise with =
Specialization to FLRW ds? = —dt? + a?(t)d;;dz'dz;

Acting on a function of time f(¢)

1 1
O = \/—_—gap(\/_ggpaaa) — —a—35t(033t)

typos: the lower limits
are t_i

1 t 1t
[ﬁ f] (t) = — ) dt’a3 ) Jy dt"a’(t") f(t")
t
What is O~ R for a(t) ~ t?/3 matter domination?
: a  a°
R = 6(H+2H2)=6(—+—2)
a a
1 R = tdt' d dt” 3 t” R t”
t
— —%1 [ln(ti) -1+ t%] for a(t) = t*/3
eq

. 1 1 5 1
At leading order: ER ~ —In(t), @R ~ t“1In(t) (% RﬁR ~ ln(t)>



Derivation of conserved & causal field equations

* The invariant action guarantees the conservation of field equations obtained from
its variation, whether it is local or nonlocal.

* Variation produces both adv & ret propagators: Equations not causal!

Slol = [ de'ola)Zot!) = [ dola’) [ oGl ol

Example taken from

— /da:’ {G(QZ‘, 33,) + G(33/§ $)} ¢($l) Belgacem, Dirian, Foffa, Maggiore 1712.07066

0¢(x)

* |deally one should derive egns from Schwinger-Keldysh formalism, which guarantees
the equations causal and conserved, but such a derivation is currently not possible...

1 1

* DW used a trick: Replace all advanced Green’s functions = by retarded ones =

adv

* The resulting equations are causal and conserved!

* Other nonlocal models all use the same trick of DW to get their eqns of motion.

11



Modified field equations

G,LLI/ —|— AG/,LI/ — 87TGTILLI/

Gy = |Gy +9w0—DyD, | {f(éR) +2 [Rf’(éR)}} +[006) ~ 59197 |0, (5 R) 25 (é R ’(ER)D

* Localization: Introduce two auxiliary fields X and U defined as

(X =R ’ U = Rf/(X) Nojiri and Odintsov 0708.0924

1
AG,, =[Gy + gD — DuD](f + U) + [5;[)53) S gpa} 0,X0,U

* Specialize to FLRW: Modified field eqns and auxiliary eqns at the Oth order

R
3H? + [3H* + 3HO,|(f +U) + ;0.X0U = 8rGp

—(2H +3H?) — [2H + 3H? + 2HO, + 8?|(f + U) + %8t78tU = 8nGp

—(0? +3H9,)X = 6(H+2H?)
—(0? +3HO,)U = 6(H+2H?) [

12



Reconstruction of f

The function f can be reconstructed for any given expansion history H(t)

Generic technique for the reconstruction: Deffayet & Woodard 0904.096 |

e Step 1: Compute f as a function of time ( =1 + z once h({) = H(()/H, is given

¢t (t r(C2)P(C2)

. 1(C) >
0= =2 [ di @) -0 [ ey | gy * 2 “oieore g

e Step 2: Compute X as a function ¢

* d(y (3 dact
¢ h(Cl) G Cgh /

X(¢) = -

e Step 3: Convert ¢ = ((X) then plug into f(¢) in Step 1, which gives f = f(X)
Note: [ is a solution of the ODE obtained from the Oth order equations
F+5HF + (6H? + 2H) F = —6Hj Q)

daf 1 A
where F = f+ — ( ﬁ)’ X:ER’ QA:3_H§

13



For the case of ACDM, h({) = /Qa + Qm (3 + Q¢4
with {Qa, Qm, -} = {0.72,0.28,8.5 x 10~°}

I =5 2=30 2=200
0.0 @ ®
0.1 _
£(X) 02T z=0 today ]
03l fitted to a simple analytic function )
[ fan(X) = 0.245 [tanh(0.350Y +0.032Y2 + 0.003Y3) — 1]
04} Y = X+16.5 .
i W,
05 —_—
-30 =25 =20 -15 -10 -5

For the case of f(R), the only solution which gives ACDM is f(R) = R — 2A
Dunsby et al. 1005..2205
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Scalar Perturbations

Now, the background expansion is fixed (the same as the one in ACDM).
The next question is how it would be the structure formation in this model.

* To see the growth of matter fluctuations we take scalar perturbations.

* Note: Growth of perturbations is a unique prediction of the model

Take scalar perturbations around the FLRW metric in the Newtonian gauge
ds® = —(1 4 20)dt* + a*(t)(1 + 2®)6;;dz"dx?
Also for auxiliary fields
X=X+6X,U=U+6U
Matter overdensity

0 = @ from 5T()() = p(s

p

=3 Five perturbation variables ®, W, §, 6 X, 0U

15



Perturbation equations

Two sets of perturbation equations

Set A: For five variables ®, ¥, §, X, 0U in the localized version

k*® + k? [@(7 +0U)+ %(7’5}( + 6U)] = 4nGa’p

(®+0)+ (FoX +6U)+ (@ +W)(f+U) = 0
.. - 2
§+2H6 = -'“-2\11
a
k2 k2
(~0% - 3HO, - (?)ax = 25(¥ +29)
2 2
(—Bt—BHat—(%)éU - kz(\p +29)f

Set B: For three variables ®, ¥, § in the nonlocal version

t / - — . .
k2 + k2 {@(7 +U) + k? / | af(tt,) G(t,t'; k) [\Il(k, t') + 20(k, t')][ (X)) + f'(X(t'))]} — 4nGa?pd
td ' / Y 1. 4 v lr e ral
(@ + V) + (& + U)(f + U) + 2k? / 02(tt,)G(t,t k) [R(E, )+ 20(k, ¢)|[ £ (X (1) + F/(X ()] = 0
2
0 +2H6 = -k—zxp
Integral solutions for § X and 6U / a
2 . . ’ .

5X (k1) = dt’G(t t: k) 2: 5 [W(E,¢) +20(K,¢) Construction of Green’s function:

“ () : 1209.0836 Park & Dodelson
SUR 1) = dt’G(t,t’;k)aiz)z W(E, )+ 20(F. )| £(X(X))

t; - .

16



Two different implementations for the sub-horizon limit

Sub-horizon limit k> Ha =~ Quasi-static limit: Drop time derivatives

k2® + k? [@(7 +0)+ %(7'6)( + 6U)]
(® 4+ 0) + (F6X +6U) + (®+ 0)(f +U)

6 +2HS

(87 + 3H, + ]ac—z
(87 + 3HO, + k—z)aU

a2

)X

k*® + k* [cb(? +0) + %(7'6)( + 6U)]
(® + U) + (F6X +6U) + (& + 0)(f + U)

6+ 2HS

0X
oU

Found an error

0 /\
k2

Set A: Dodelson, Park 1310.4329 and Park 1711.08759

:I Forced Harmonic Oscilators

Found discrepancy

—— U Set C: Nersisyan, Fernandez Cid, Amendola 1701.00434

a
—2(T + 20)

—2(¥ + 20) f'(X)

17



An excuse why | made an error in my numerical code

Set B: For three variables ®, ¥, § in the nonlocal version 1310.4329 Dodelson & Park

K2 + k2 {<1>(7 +T) + k2 /t taf(tt',)c(t, s k) [W(E,¢) + 20(F, 0)][ £/(X (1) + f'(X(t’))]} — 4nGa2pd

tdt

(® + U) + (& + V)(f + U) + 2k / G(t,t'; k) [\p(ié, t') + 20(k, t')][ (X)) + f’(?(t'))] — 0

t, a*(t')
N . k2
a
Discretized to solve this:
[~ X
TS fe+ a0 - 5)
dt
e Set B (integro-differential egns) e Set A (differential eqns)
| I hours of running time with a few seconds with NDSolve in
Mathematica in a laptop with the Mathematica

i/ processor in 2017, and 3 days o o
) . Note: the Green function is highly oscillating, so
with an old computer In 2013 needs the number of iterations very big...

* So, simplified the code by somehow localizing it in my head and made an error...

* Actually got it right (which was weaker growth) but back then almost sure we would

get stronger growth: So couldn’t believe the correct result...
18



Solutions of perturbation equations

Initial conditions at z; = 9

®(2;) = ®gr(zi) , ¥Y(2i) = Ygr(zi) = —Pcr(2i)
®cr(2i) , 0'(2i) = dgr(2i)

0X(z) =0, 0U(2)=0, 6X'(2)=0, 6U'(2) =0

2k%a(z;)
3HEQ

6(zi) = Ogr(zi) =

Set A and B give the same solutions as they should do, so let’s compare Set A and C

o)
2.0 |
I DW: Set A (B)
————— DW: Set C
15 — GR
1.0 /
] 2 4 6 8

19

0.2 1
041
0.6
-0.8 \

10"

6
DW: Set A (B)

DW: Set C
GR




0.8

07!

0.6

Solutions of perturbation equations

dIn(D)
dIn(a)

—

fog Growth rate [ =

DW: Set A (B)
————— :Set C

0.45

7 DW: Set A (B)
0.5 - o40-  /  am—e- DW: Set C
GR
0.4 ' I
I 0.35
| L L L 1 1 1 L V4 I I I | I I I | I I | | | | L | L L L | zZ
0.5 1.0 1.5 2.0 0.2 0.4 0.6 0.8 1.0
oX ouU
I | | | 7 | [ L _ L Z
I 2 4 6 4 6 8
_27 A“‘ ‘ - B e e —02
4 I
: ~0.4 -
) DW: Set A (B) el DW: Set A (B)
Y DW: Set C JN DW: Set C
_8
-0.8%
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Comparison with RR model by MM

Cas /\
DW: Set A (B)

..... oW St © 167rG / d'zy/~g [R +RJ (iR)]

GR

0.40

0.35

60—y 7
072 04 0’6 ~_O0AcoMm 1.0

—RR

0.55¢

0.50¢

-
~~
~.
~1

/ I diz\/—g _—
i .. | 167rG / ! [R m' R R

f(2) cgs(Z)

0.40¢

Figure 9 from Belgacem, Dirian, Foffa, Maggiore 1712.07066
0.35/

0.38_



Alternative definitions of effective gravitational constant

k? k?
Eq) = Gegp X AmGpd  vs. — ?\P = Gegy X 47Gpd
Dodelson, Park 1310.4329 Nersisyan, Fernandez Cid, Amendola 1701.00434

The same if the gravitational slip n = % vanished like in GR, but not in DW

-

1
1+ f+ U + o5 (f0X +6U)

Geff@ = > Geﬁ'bgd =

1+ f+U

[ 2 _ 817G xgcem,gd p)

Gefibga from Gego by taking the background modifications only

Geff

1.0\

0.8

, DW: Set A (B)
R N DW: Set C
0.4




Growth equation

0 +2Ho = gﬂgﬂma-%

§+2HS = gHnga_3(1 —10)Gefpd  VS. 6+ 2HS = g gﬂma_3Geffq,6

Dodelson, Park 1310.4329 Nersisyan, Fernandez Cid, Amendola 1701.00434

(1-=1)Gegp = Gegy > 1 enhanced growth
((1 —1N)Geie = Gegy <1 suppressed growth)

D
0.8
0.7 -
i DW: Set A (B)
N e DW: Set C
0.6 -
i GR
0.5 -
Gt n 04 -
1.0 |
: I I I I | I I I I | I I I I | I I I I V4
08 L - 0.5 1.0 1.5 2.0
Geffo [ DW: Set A (B)
Cerry S N —— DW: Set C
_____ Geffbgd

04

05F 0.2




Structure formation in nonlocal cosmology
(nonlocal models replacing DE)

( )
* DW nonlocal gravity model can reproduce ACDM w/o A.

* Growth of structure predicted by the DW model (when the background is
set the same as ACDM) is lower than in ACDM.

v,

‘e MM nonlocal gravity model sets the mass parameter: m ~ Hg then give a
slow variation using the nonlocal scalar, so approximately reproduce ACDM.
* Growth of structure predicted by the MM model (when the background is
.set close to ACDM) is higher than in ACDM. )

* What range of k values would hold these conclusion?

* Full linear equations rather than taking the quasi static limit?
* Growth with some non-ACDM backgrounds? Preliminary analysis for

the DWW model: Park & Shafieloo 1608.0254 1|

24



Gravitational wave signatures

* Metric perturbations around the flat spacetime background, where X = (

e At linear order: the gravitational wave polarizations in the DW model are the

same as in GR, i.e., the speed of GWs is the same as the speed of light, except
G

14 f(0)

0807.3778 Kaoivisto
1811.04647 Chu & Park

the effective Newton's constant is rescaled as ¢ ., =

e At quadratic order: the gravitational energy-momentum flux due to an
isolated system turns out to scale as 1/7 , which would lead to a divergent total
GW energy-momentum at infinity. This divergent flux can be avoided if we set

f'(0) = 0= f"(0

1811.04647 Chu & Park

25



Localization and Stability

* The DW nonlocal action can be re-cast in a localized form by introducing
two auxiliary scalar fields: 0708.0924 Nojiri & Odintsov

1
16wG

Spw = /d4x\/—g [R + Rf(X) +¢""0,X0,U + UR}

* One of the two scalar degrees of freedom turns out to be a ghost field,
hence the localized version suffers from a kinetic energy instability.

e However, the original nonlocal model is a constrained version of its localized
cousin in which the auxiliary scalars and their first derivatives vanish on the

initial value surface, so it can avoid the kinetic instability.
1307.6639 Deser & Woodard

* |t has been explicitly checked that the evolution of permitted perturbations
does not lead to explosive excitation of the ghost mode in the original

nonlocal model but it does so in the localized version.
1809.0684 | Park & Woodard

* A similar analysis can be applied to other classes of nonlocal models.

20



Evolution of kinetic energies of normal (-) and ghost (+) scalars

Energy: ICO Energy: 1CO I1CO : JX(Z.) =0 ’ JU(Z,) =0 ’ 6X'(z,,) =0 ) 5(]’(:,) =)

0.0060;— 1 ) 1 kz

0.0055 -
; 2 a2

— E+ 0.0050%
— E- 0.0045 - l

0.0040 - 0A+ = §(5X +6U)
0.00352

0.0030 -

WYV t (Gyrs) ;\““““\““www“t(Gyrs)
2 11
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0.020 -

[
N

?
o
o)
—
o
—
¥
—
N

0.0157

J— E+ L
— E- 0.010|-

0.005 -

L | L L L | L d N e — I | t (Gyrs)
: 2 4 6 8 10 12 14 -
Energy: IC2 Energy: IC2

IC2: 6X(zi) =6(2i), 0U(z) =d(z), 6X'(2) =8'(z) , oU'(z) = &' (2i)

8x108 - I
i 30000 -

6x10° - — E+
[ — E- 20000
4x108 § ’

6l 10000 |
2x10 |

- : ‘4 t (Gyrs) t (Gyrs)




Solar System tests

* A perfect screening inside the solar system

: 1
O~ —0; vV: — O provides =+ sign

o X=%R<Oforco nology
o X = %R > () for gravitatiemnally bound systems

Setting f(X) =0 for—X >0 makes no change in the sotar_system.
1307.6639 Deser & Woodard

This-elioice amounts to setting to zero f(0) =0 as well as all its derivatives f ”21)(0).

1

=R is negative for both cosmology & gravitationally bound systems

1812.11181 Belgacem, Finke, Frassino & Maggiore

¢ |t turns out

* So, this way of screening does not work any more; the DW model will have
significant deviations in the solar system scales (in which GR works very well),

which means the DV model is ruled out.

* Belgacem et al explicitly showed both the DW & RR are ruled out by LLR.
28




Deser-Woodard Nonlocal Cosmology |

Enonlocal - 16’]/'.('G R[l + f(Y[g])] \/jg |

X[gl= =R, Y[g

5 (¢0.Xlg0.Xlg) ; 0 = —=0.(v=g¢"0.)

Deser & Woodard 1902.08075

Y changes sign from cosmology (Y>0) to gravitationally bound systems (Y<O0);
So setting f(Y) = 0 for Y<O prevents any modifications inside grav. bound systems.

Again, f can be constructed by requiring that the background expansion is exactly
LCDM.

More tests - cosmological perturbations regarding the growth of structures and
stability analysis, etc. should be done...

* This is not the end of the story; “DWV-Il may not work for the LLR test either
because Geff in this model may still depend on time in smaller scales including

the solar system scale” according to Maggiore... need an explicit check!

29



Nonlocal gravity replacing dark matter

* A nonlocal, metric based, generally coordinate invariant model replacing DM

but assuming the existence of the cosmological constant of ACDM.
| 106.4984 Deffayet, Esposito-Farese and Woodard

* It has been shown that:
* Agrees with GR in the solar system region;
* Reproduces the MOND force w/o DM resulting in the Tully-Fisher relation;
* Enough lensing consistent with the data
1405.0393 Deffayet, Esposito-Farese and Woodard
* A nonlocal function (like in the DW nonlocal model) reproducing the ACDM

expansion history without CDM has been constructed.
1608.07858 Kim, Rahat, Sayeb, Tan,Woodard and Yu

* Failed to produce sufficient structure formation, thus the immediate task is

to improve the model in a way to drive more structure formation.
1804.01669 Tan and Woodard
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A hint towards derivation from first principles

e Eventually if a (nonlocal) model passes all the phenomenological tests, it will be necessary to
derive such a model from fundamental theory. Do you have at least a hint towards it?

“A nonlocal quantum effective action might derive from fundamental theory
through the gravitational vacuum polarization of infrared gravitons vastly
produced during primordial inflation.”

* For the case of the de Sitter background, a(t) = et , the nonlocal scalar is:

1
il — 4]
DR‘dS n(a) +

* One loop contributions to the graviton self-energy from a MMC scalar in de Sitter induce
corrections to the Newtonian potential associated with a static point mass:

U(t,r)=—

(ar)? 10w

GM G GH? 1
{1+2O7T [gln(a)—l—Sln(Ha'r)} —|—}

ar
1510.03352 SP, Prokopec and Woodard

* c.f.In flat space, we reproduced the long-known result (Radkowski, 1970, Donoghue 1993)
(done by the scattering amplitude technique) using the in-in formalism.

GM B G 1007.2662 SP and Woodard
‘I’flat=——{1+ +O(G2)}

r 207mes r?



Set-up
e Lagrangian of gravity plus a MMC scalar

1 1
_ g — = T =
e [R 2A] V=g 23“4,06,,909 vV—g

L=

e Define the graviton field h,, as
Guv = Gy + Khpyy Gy = a*nu, K* = 167G, a= _7117;’ H =,/ %A

e Vary the one-particle irreducible (1PI) effective action w.r.t h,, to get
the quantum corrected, linearized Einstein field equation

DUl () — / 42! [V 5 (232 Yy (') = 5T (2)

e DHVPI: Lichnerowicz operator
defined such that D¥"??h,,, is the linearized Einstein tensor, R* — % g"’ (R — 2A)

° —z'[“” 2”"] (z;z'): graviton self-energy = 1PI graviton 2-point function

: quantum correction to the Lichnerowicz operator

sw@va + WN\Q\AMN +  AMAANVIIMNNNNNAN
I £ xIr £



A three-step procedure

1. Compute using dimensional regularization and renormalize the one-loop contribution to the
graviton self-energy from a MMC scalar on de Sitter background by subtracting off the ultra-

violet divergences using the R? and C? counterterms
1101.5804 SP & Woodard
—1 [#VEPU] (z; z’) 1403.0896 Leonard, SP, Prokopec & Woodard

2. Convert the in-out self-energy to the retarded one of the Schwinger-Keldysh formalism
[#EF](z;2") = [MER,] (z; 7))
3. Solve the quantum corrected, linearized Einstein field equation
D hgo(@) — [ 0[5 (5 Yy () = 5T (0)

1510.03352 SP, Prokopec & Woodard



Discussion points

* For the case of the de Sitter background, a(t) = e''! , the nonlocal scalar is:

1
_R‘ _ 41
(1 1ds n(a) *

* One loop contributions to the graviton self-energy from a MMC scalar in de Sitter induce
corrections to the Newtonian potential associated with a static point mass:

(ar)? 107

U(t,r) = —In(a) + 3ln(Har)] I }

3

ar

- GM [+ G GHQ[l
20m

1510.03352 SP, Prokopec and Woodard

* Another example of In(a) correction: One loop corrected conformally coupled scalar

mode functions in de Sitter 1708.01831 Boran, Kahya and SP
1 (1 o[ 42323 530053 3\ In(a) -
ue \/2_k{a +GH [25 T5r @)~ 55 15 (AC“ 4) ] +O(G°H")

* And many more examples

* Even though the loop counting parameter GHA”2 is extremely small, the In(a) will grow and
eventually overcome it, then perturbation theory will break down;Would be necessary to use a

nonperturbative resummation method such as Starobinsky's stochastic technique...

*The C72 counterterm gives a ghost (Ostrogradsky thm)... how can we handle it! Talks by Mazumdar, Salvio, ...



