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Main questions

Can a viable field theory of fundamental interactions hold up to infinite energy?

If so, what are its experimental signatures?

Quadratic-in-curvature terms in the action

Squad = ∫ d4x
√
−gLquad, Lquad = αR2 + βRµνRµν

are unavoidably generated by matter loops, such as

(4π)2 dα

d ln µ̄
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NV , Nf , Ns are the numbers of vectors, Weyl fermions and real scalars φa with
non-minimal couplings ξab (that is L ⊃ − ξabφaφbR/2)
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Quadratic gravity scenario
Adding the quadratic terms makes gravity (and all other interactions) renormalizable
[Stelle (1977)]

Intuitive reason: in the UV the theory is the most general dimensionless one

The general quadratic gravity (QG) Lagrangian:

L =
R2

6f2
0

−
W 2

2f2
2

+LEH +LSM +LBSM

where

▸ W 2 ≡WµνρσWµνρσ

▸ LEH is the Einstein-Hilbert piece plus a cosmological constant

▸ LSM is the SM L (plus −ξH ∣H ∣2R):

▸ LBSM describes BSM physics.

It is also possible to generate scales dynamically

The dimensionful terms (the Planck mass, the
electroweak scale and the cosmological constant) can
all be dynamically generated through dimensional
transmutation (Agravity) [Salvio, Strumia (2014)]
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The Ostrogradsky theorem

Classical Lagrangians that depend
non-degenerately on the second derivatives
have Hamiltonians unbounded from below
[Ostrogradsky (1848)]

Indeed, looking at the spectrum (around the flat spacetime) :

(i) massless graviton

(ii) scalar ω with squared mass M2
0 ∼ 1

2
f2
0 M̄

2
Pl

(iii) massive spin-2 ghost with squared mass M2
2 = 1

2
f2
2 M̄

2
Pl

(a manifestation of the Ostrogradsky theorem)

It is associated with W2

2f2
2

By linearizing the theory one finds the spin-2 Hamiltonians [Salvio (2017)]

Hgraviton = ∑
λ=±2

∫ d3q [(P (1)
λ

)2 + q2(Q(1)
λ

)2]

Hghost = − ∑
λ=±2,±1,0

∫ d3q [(P̃ (1)
λ

)2 + (q2 +M2
2 )(Q̃

(1)
λ

)2]

http://inspirehep.net/record/1468685
http://inspirehep.net/record/1518910


Proceeding perturbatively

Let us split the metric gµν as follows:

gµν = gcl
µν + ĥµν

▸ gcl
µν is a classical background that solves the classical EOMs

▸ ĥµν is a quantum deviation



Can a different quantization help?

Recall that the classical Dirac theory of fermions has arbitrarily negative energies
and the problem is solved by a different quantization

Can we hope that something similar happens for gravitons?

Yes, renormalizability implies that the quantum Hamiltonian governing ĥµν is
bounded from below [Stelle (1977)]

However, the space of states must be endowed with an indefinite metric (with respect
to which the “position” q and momentum p operators are self-adjoint)

https://journals.aps.org/pr/abstract/10.1103/PhysRev.79.145
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Probability

The presence of an indefinite metric leads to the question:

How can we define probabilities consistently?



A derivation of probability

▸ Define observable any operator A with complete eigenstates {∣a⟩} [Salvio
(2018)]: for any state ∣ψ⟩ there is a decomposition

∣ψ⟩ =∑
a

ca∣a⟩

One can show that the basic operators q, p and H have complete eigenstates at
any order in perturbation theory

▸ Interpret ∣a⟩ as the state where A assumes certainly the value a
(call it the deterministic Born rule)

Experimentalists prepare a large number N of times the same state, so consider

∣ΨN ⟩ ≡ ∣ψ⟩...∣ψ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= ∑
a1...aN

ca1 ... caN ∣a1⟩...∣aN ⟩

N times
Define a frequency operator Fa which counts the number Na of times there is the
value a in the state ∣a1⟩...∣aN ⟩:

Fa∣a1⟩...∣aN ⟩ = Na∣a1⟩...∣aN ⟩

Strumia (2017) showed that

lim
N→∞

Fa∣ΨN ⟩ = Ba∣ΨN ⟩, Ba ≡
∣c2a∣
∑b ∣c2b ∣

(all coefficients in the basis ∣a1⟩...∣aN ⟩ converge to the same quantities)

http://inspirehep.net/record/1670205
http://inspirehep.net/record/1670205
http://inspirehep.net/record/1623911
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The emergent norms to compute probabilities

{∣a⟩} is complete so we can define a “norm” operator PA:

⟨a′∣PA∣a⟩ ≡ δaa′

where for any pair of states ∣ψ1⟩, ∣ψ2⟩, we denote the indefinite metric with ⟨ψ2∣ψ1⟩.
The definition above provides a positive metric (a norm):

⟨ψ2∣ψ1⟩A ≡ ⟨ψ2∣PA∣ψ1⟩A =∑
a

c∗a2ca1

(which is positive for ∣ψ1⟩ = ∣ψ2⟩)

Ba ≡
∣c2a∣
∑b ∣c2b ∣

=
∣⟨a∣ψ⟩A∣2

⟨ψ∣ψ⟩A
We recover the full probabilistic Born rule, but expressed in terms of the positive norm
not in terms of the indefinite one

▸ All probabilities are positive

▸ The probabilities sum up to one at any time (the theory is unitary)



Condition to solve the

Higgs hierarchy problem

The theory is renormalizable

Ô⇒ one can absorb the loop divergences and compute δMh:

δM2
h ∼

M̄2
Plf

4

(4π)2

, naturalness → f2 ∼
√

4πMh

M̄Pl

∼ 10−8

(for such tiny couplings the Higgs field acquires a shift symmetry that protects Mh)

M2 =
1

√
2
f2M̄Pl ∼ 1010GeV

[Salvio, Strumia (2014)]

The quantization proposed in Anselmi’s talk leads to the same result

http://inspirehep.net/record/1286134
http://www.cpt.univ-mrs.fr/~cosmo/SW_2019/PPT/Anselmi.pdf
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Let us go back to the the following metric splitting

gµν = gcl
µν + ĥµν

▸ ĥµν is a quantum deviation

▸ gcl
µν is a classical background that solves the classical EOMs.

Do the Ostrogradsky theorem lead to runaway solutions?



Classical theory

Can we avoid the possible Ostrogradsky instabilities?

▸ Recall that in the free-field limit

Hghost = − ∑
λ=±2,±1,0

∫ d3q [(P (1)
λ

)2 + (q2 +M2
2 )(Q

(1)
λ

)2]

Despite the minus sign a decoupled ghost does not suffer from instabilities
(that sign cancels in the EOM)

▸ The EFT tells us that at energies below M2 we should not find runaways even if
the ghost has an order one coupling f2 ∼ 1

▸ The intermediate case 0 < f2 < 1 must have intermediate energy thresholds
(above which the runaways are activated)

▸ The weak coupling case f2 ≪ 1 (compatible with Higgs naturalness) must have
an energy threshold much larger than M2:
we could see the effect of the ghost without runaways

This argument can be made precise in quadratic gravity. The whole cosmology can
only involve energies below this threshold and avoid runaways

→ “ghost metastability”

[Salvio (2019)]

http://inspirehep.net/record/1722053
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Two-derivative formulation
To show this it is useful to separate the two-derivative d.o.f.: graviton, ω and ghost

————————————————————————————————————

First perform the field redefinition gµν →
M̄2

Pl

f
gµν , f ≡ M̄2

Pl −
2R

3f2
0

> 0,

(where the Ricci scalar above is computed in the Jordan frame metric) that gives

S = ∫ d4x
√
−g (−

W 2

2f2
2

−
M̄2

Pl

2
R +LE

m) “Einstein frame action”

The Einstein-frame matter Lagrangian, LE
m , also contains an effective scalar ω, which

corresponds to the R2 term in the Jordan frame: the part of the Lagrangian that
depends only on ω is given by

L ω
m =

(∂ω)2

2
−U(ω), U(ω) =

3f2
0 M̄

4
Pl

8
(1 − e−2ω/

√
6M̄Pl)

2

————————————————————————————————————
To make the ghost explicit consider an auxiliary field γµν [Hindawi, Ovrut, Waldram
(1996)] :

S = ∫ d4x
√
−g [

M2
2 M̄

2
Pl

8
(γµνγµν − γ2) −

M̄2
Pl

2
Gµνγ

µν −
M̄2

Pl

2
R +LE

m]

where Gµν is the Einstein tensor and γ ≡ γµνgµν . Expanding around ηµν gives a
mixing between hµν ≡ gµν − ηµν and γµν that can be removed by expressing
hµν = h̄µν − γµν . The tensors h̄µν and γµν represent the graviton and the ghost

http://inspirehep.net/record/399831
http://inspirehep.net/record/399831
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Interactions of the ghost and energy thresholds

The two-derivative formulation is good to understand the ghost interactions

First, one can show that the ghost interactions are suppressed by f2

Next,
M2

2
8

(γµνγµν − γ2) leads to mass and interaction terms of the schematic form

M2
2

2
(φ2

2 +
φ3

2

M̄Pl

+
φ4

2

M̄2
Pl

+ ...) ,

(φ2 represents the canonically normalized spin-2 fields: graviton and ghost)

The mass term has the same order of magnitude of the interactions for φ2 ∼ M̄Pl,
which gives M2

2φ
2
2/2 =M

4
2 /f

2
2 ≡ E4

2 , where

E2 ≡
M2√
f2

=
√

f2

2
M̄Pl

For energies E ≪ E2 the Ostrogradsky instabilities are avoided

This bound applies to the derivatives of the spin-2 fields.

Analogously, one can show that the energy E in the matter sector must satisfy

E ≪ Em Em ≡ 4
√
f2M̄Pl (matter sector)

Possible to illustrate the argument in simple models
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2 /f
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2 , where
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M̄Pl

For energies E ≪ E2 the Ostrogradsky instabilities are avoided

This bound applies to the derivatives of the spin-2 fields.

Analogously, one can show that the energy E in the matter sector must satisfy

E ≪ Em Em ≡ 4
√
f2M̄Pl (matter sector)

Possible to illustrate the argument in simple models
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Relations with chaotic inflation [Linde (1983)]

For a natural Higgs mass (f2 ∼ 10−8, M2 ∼ 1010 GeV)

E2 ∼ 10−4M̄Pl, Em ∼ 10−2M̄Pl

It is clear that inflation (and the preceding epoch) is the only stage of the universe
that can provide us information about such high scales.

Note that the ghost is completely inactive in an FRW metric
⇓

only perturbations that break homogeneity/isotropy may destabilize the universe

But we live in one of those patches where the energy scales of inhomogeneities (1/L)
and anisotropies (A) were small enough:

1

L
≪ ∣U ′(φ)/φ∣1/2, A≪ H

these conditions justify the use of homogeneous and isotropic solutions to describe the
classical part of inflation (Linde’s idea)

The chaotic theory automatically ensures that the conditions to avoid runaway
solutions are satisfied (verified for Starobinsky inflation, hilltop inflation and other
models).

The runaways above the energy thresholds give a rational for a homogeneous
and isotropic universe

http://inspirehep.net/record/196244
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Explicit nonlinear calculations (assuming the built in Starobinsky’s inflation)

ds2 = dt2 − a(t)2
3

∑
i=1

e2αi(t)dxidxi

α1 ≡ β+ +
√

3β−, α2 ≡ β+ −
√

3β−, α3 = −2β+.

One can reduce the system to first-order equations through the definitions

γ± = β̇±, δ± = γ̇±, ε± = δ̇±

Small initial values for the anisotropy

(∣γ±(0)∣ ≪ E2,
√

∣δ±(0)∣ ≪ E2,
3
√

∣ε±(0)∣ ≪ E2 and
√
M̄PlH ≪ Em)

do not create problems: the anisotropy
quickly goes to zero and one recovers
the GR behavior

Example in the figure: f2 = 10−8,
f0 ≈ 1.6 ⋅ 10−5, φ(0) ≈ 5.5M̄Pl and√
πφ(0) ≈ 7.1 ⋅ 10−6M̄Pl
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Explicit nonlinear calculations (assuming the built in Starobinsky’s inflation)

ds2 = dt2 − a(t)2
3

∑
i=1

e2αi(t)dxidxi

α1 ≡ β+ +
√

3β−, α2 ≡ β+ −
√

3β−, α3 = −2β+.

One can reduce the system to first-order equations through the definitions

γ± = β̇±, δ± = γ̇±, ε± = δ̇±

The patches where those conditions are
not satisfied quickly collapse:

The scale factor in the Jordan frame
shrinks as shown in the figure→

Example in the figure: γ−(0) = 10−1E2,
δ±(0) = 0, ε±(0) = 0, f2 = 10−8,
f0 ≈ 1.6 ⋅ 10−5, R(0) ≈ 1.3 ⋅ 102f2

0 M̄
2
Pl

and H(0) = 1.2E2.



General check of the ghost metastability: linear analysis

Check that all linear modes around dS are bounded (for a fixed initial condition) for
any wave number q

Scalar modes: they are like in GR plus an gravity-isocurvature mode:

gB(η, q) ≡
H

√
2q

(
3

q2
+

3iη

q
− η2) e−iqη +R − term

where η is the conformal time (a2dη2 = dt2, η < 0)

Vector and tensor modes:
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Observational consequences

: M2 >H

No differences compared to GR
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Observational consequences: M2 <H

The modifications:

▸ r gets suppressed

r →
r

1 + 2H2

M2
2

models that are excluded for a large r (e.g. quadratic inflation) become viable

▸ There is an isocurvature mode (which fullfils the observational bounds)
corresponding to the scalar component of the spin-2 ghost (the vector
components and the other tensor component decay with time)

Indeed,
▸ PR is not changed by the ghost (so ns is not changed either)
▸ while the tensor power spectrum is modified:

Pt →
Pt

1 + 2H2

M2
2

▸ The isocurvature power spectrum PB is the same as the tensor power spectrum
in Einstein’s gravity, except that it is smaller by a factor of 3/16 ≈ 1/5:

PB =
3

2M̄2
Pl

(
H

2π
)

2

and the correlation PRB is highly suppressed

[Ivanov, Tokareva (2016)], [Salvio (2017)]

http://inspirehep.net/record/1342926
http://inspirehep.net/record/1342926


Ghost-isocurvature power spectrum (M2 <H)

q1 = 0.002 Mpc−1 and q2 = 0.1 Mpc−1.

The strongest constraints from
Planck (2018) have been taken

[Salvio (2017)], [Salvio (2019)]

http://inspirehep.net/record/1342926
http://inspirehep.net/record/1518910
http://inspirehep.net/record/1722053


Conclusions

▸ QG is renormalizable and solves the hierachy problem

▸ The price to pay: a ghost.

▸ We have provided a possible way of quantizing the theory

▸ The runaway solutions can be avoided even at energies exceeding the ghost mass

▸ Quadratic gravity (combined with Higgs mass naturalness) leads to testable
predictions for the inflationary observables



Thank you very much for your attention!

Weinberg (2018): “ try crazy ideas ... something will come up”

https://physics.aps.org/articles/v11/134


Extra slides



Trading negative energies with negative norm

Diagonalization of the Hamiltonian

For V = 0 the Hamiltonian is

H = ω1 (−ã†
1ã1 +

1

2
) + ω2 (ã†

2ã2 +
1

2
)

We have [ã1, ã
†
1] = −1, [ã2, ã

†
2] = 1, (all other commutators vanish)

Onset of “negative norms”

As usual [a1,N1] = a1 and [a2,N2] = a2 by defining N1 ≡ −ã†
1ã1 and N2 ≡ ã†

2ã2

The spectrum of N1 is bounded from below if you introduce an indefinite metric:

−νnn = ⟨n∣a†
1a1∣n⟩

= ∣c∣2⟨n − 1∣n − 1⟩ = ∣c∣2νn−1
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2ã2 +
1

2
)

We have [ã1, ã
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Quadratic gravity is a realization of “softened gravity”

(Einstein) gravitational interactions increase with energy

Idea (softened gravity):

consider theories where the increase
of the gravitational coupling →
stops at some ΛG ≪MPl.

Λ��� �� Λ� ��� → ∞ ������

�����

���-������������

�������� �������⟶

↙ �������� �������

One can then have the gravitational contribution to the Higgs mass under control:

δM2
h ≈

GNΛ4
G

(4π)2

Requiring naturalness → ΛG ≲ 1011 GeV [Giudice, Isidori, Salvio, Strumia (2014)]

In quadratic gravity ΛG ∼M2

http://arxiv.org/pdf/1412.2769.pdf
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Classical dynamics: a simple scalar field example

To simplify consider

L = −
1

2
φ2φ −

c4

2
φ22φ − V (φ)

It is a toy version of out theory:

▸ − 1
2
φ2φ represents the Einstein-Hilbert part

▸ − c4
2
φ22φ represents the quadratic terms

▸ V is some interaction

Two-derivative form

Add c4
2

(2φ − A−φ/2
c4

)
2

(vanishes when the EOM of the auxiliary field A are used)

Ô⇒ L = −
1

2
φ+2φ+ +

1

2
φ−2φ− +

m2

2
φ2
− − V (φ+ + φ−)

where m2 ≡ 1/c4 has to be taken positive to avoid tachyonics.
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Classical dynamics: a simple scalar field example

The EOMs are

2φ+ = −V ′(φ+ + φ−), 2φ− = −m2φ2
− + V

′(φ+ + φ−).

For definiteness take V (φ) = λφ4/4, where λ > 0, which stabilizes φ+, while φ− feels

v(ϕ) =
m2

2
ϕ2 −

λ

4
ϕ4, ϕ = typical order of magnitude of field values

Ghost metastability

For
ϕ≪ Ef ≡

m
√
λ/2

and
E ≪ Ed ≡

m

(4λ)1/4

(where E is the energy associated with
the field derivatives)
the runaway solutions are avoided
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Classical dynamics: a simple scalar field example
The EOMs are

2φ+ = −V ′(φ+ + φ−), 2φ− = −m2φ2
− + V

′(φ+ + φ−).

For definiteness take V (φ) = λφ4/4 (λ > 0), which stabilizes φ+, while φ− feels

v(ϕ) =
m2

2
ϕ2 −

λ

4
ϕ4, ϕ = typical order of magnitude of field values

Ghost metastability

For
ϕ≪ Ef ≡

m
√
λ/2

and
E ≪ Ed ≡

m

(4λ)1/4

(where E is the energy associated with
the field derivatives)
the runaway solutions are avoided

Example in the figure: λ = 10−2,
φ+(0) = 10−2Ef , φ−(0) = 10−2Ef ,

φ̇+(0) = (1.5 ⋅ 10−1Ed)2 and
φ̇−(0) = −(10−2Ed)2.
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