Chaotic Inflation and No-Scale Gravity

Alberto Salvio

Università di Roma

7 May 2019

Hot topics in Modern Cosmology, Spontaneous Workshop XIII IESC

Main questions

Can a viable field theory of fundamental interactions hold up to infinite energy?

If so, what are its experimental signatures?

Main questions

Can a viable field theory of fundamental interactions hold up to infinite energy?
If so, what are its experimental signatures?

Quadratic-in-curvature terms in the action

$$
S_{\text {quad }}=\int d^{4} x \sqrt{-g} \mathscr{L}_{\text {quad }}, \quad \mathscr{L}_{\text {quad }}=\alpha R^{2}+\beta R_{\mu \nu} R^{\mu \nu}
$$

are unavoidably generated by matter loops, such as

$$
\begin{aligned}
(4 \pi)^{2} \frac{d \alpha}{d \ln \bar{\mu}} & =\frac{N_{V}}{15}+\frac{N_{f}}{60}+\frac{N_{s}}{180}-\frac{\left(\delta_{a b}+6 \xi_{a b}\right)\left(\delta_{a b}+6 \xi_{a b}\right)}{72} \\
(4 \pi)^{2} \frac{d \beta}{d \ln \bar{\mu}} & =-\frac{N_{V}}{5}-\frac{N_{f}}{20}-\frac{N_{s}}{60}
\end{aligned}
$$

N_{V}, N_{f}, N_{s} are the numbers of vectors, Weyl fermions and real scalars ϕ_{a} with non-minimal couplings $\xi_{a b}$ (that is $\mathscr{L} \supset-\xi_{a b} \phi_{a} \phi_{b} R / 2$)

Quadratic gravity scenario

Adding the quadratic terms makes gravity (and all other interactions) renormalizable [Stelle (1977)]

Intuitive reason: in the UV the theory is the most general dimensionless one
The general quadratic gravity (QG) Lagrangian:

$$
\mathscr{L}=\frac{R^{2}}{6 f_{0}^{2}}-\frac{W^{2}}{2 f_{2}^{2}}+\mathscr{L}_{\mathrm{EH}}+\mathscr{L}_{\mathrm{SM}}+\mathscr{L}_{\mathrm{BSM}}
$$

where

- $W^{2} \equiv W_{\mu \nu \rho \sigma} W^{\mu \nu \rho \sigma}$
- $\mathscr{L}_{\text {EH }}$ is the Einstein-Hilbert piece plus a cosmological constant
- $\mathscr{L}_{\text {SM }}$ is the SM \mathscr{L} (plus $-\xi_{H}|H|^{2} R$):
- $\mathscr{L}_{\text {BSM }}$ describes BSM physics.

Quadratic gravity scenario

Adding the quadratic terms makes gravity (and all other interactions) renormalizable [Stelle (1977)]

Intuitive reason: in the UV the theory is the most general dimensionless one
The general quadratic gravity (QG) Lagrangian:

$$
\mathscr{L}=\frac{R^{2}}{6 f_{0}^{2}}-\frac{W^{2}}{2 f_{2}^{2}}+\mathscr{L}_{\mathrm{EH}}+\mathscr{L}_{\mathrm{SM}}+\mathscr{L}_{\mathrm{BSM}}
$$

where

- $W^{2} \equiv W_{\mu \nu \rho \sigma} W^{\mu \nu \rho \sigma}$
- $\mathscr{L}_{\text {EH }}$ is the Einstein-Hilbert piece plus a cosmological constant
- $\mathscr{L}_{\text {SM }}$ is the $\mathrm{SM} \mathscr{L}$ (plus $-\xi_{H}|H|^{2} R$):
- $\mathscr{L}_{\text {BSM }}$ describes BSM physics.

It is also possible to generate scales dynamically
The dimensionful terms (the Planck mass, the electroweak scale and the cosmological constant) can all be dynamically generated through dimensional transmutation (Agravity) [Salvio, Strumia (2014)]

The Ostrogradsky theorem

Classical Lagrangians that depend non-degenerately on the second derivatives have Hamiltonians unbounded from below [Ostrogradsky (1848)]

Indeed, looking at the spectrum (around the flat spacetime) :
(i) massless graviton
(ii) scalar ω with squared mass $M_{0}^{2} \sim \frac{1}{2} f_{0}^{2} \bar{M}_{\mathrm{Pl}}^{2}$
(iii) massive spin-2 ghost with squared mass $M_{2}^{2}=\frac{1}{2} f_{2}^{2} \bar{M}_{\mathrm{Pl}}^{2}$ (a manifestation of the Ostrogradsky theorem) It is associated with $\frac{W^{2}}{2 f_{2}^{2}}$

By linearizing the theory one finds the spin-2 Hamiltonians [Salvio (2017)]

$$
\begin{aligned}
H_{\text {graviton }} & =\sum_{\lambda= \pm 2} \int d^{3} q\left[\left(P_{\lambda}^{(1)}\right)^{2}+q^{2}\left(Q_{\lambda}^{(1)}\right)^{2}\right] \\
H_{\text {ghost }} & =-\sum_{\lambda= \pm 2, \pm 1,0} \int d^{3} q\left[\left(\tilde{P}_{\lambda}^{(1)}\right)^{2}+\left(q^{2}+M_{2}^{2}\right)\left(\tilde{Q}_{\lambda}^{(1)}\right)^{2}\right]
\end{aligned}
$$

Proceeding perturbatively

Let us split the metric $g_{\mu \nu}$ as follows:

$$
g_{\mu \nu}=g_{\mu \nu}^{\mathrm{cl}}+\hat{h}_{\mu \nu}
$$

- $g_{\mu \nu}^{\mathrm{cl}}$ is a classical background that solves the classical EOMs
- $\hat{h}_{\mu \nu}$ is a quantum deviation

Can a different quantization help?

Can a different quantization help?

Recall that the classical Dirac theory of fermions has arbitrarily negative energies and the problem is solved by a different quantization

Can a different quantization help?

Recall that the classical Dirac theory of fermions has arbitrarily negative energies and the problem is solved by a different quantization

Can we hope that something similar happens for gravitons?

Can a different quantization help?

Recall that the classical Dirac theory of fermions has arbitrarily negative energies and the problem is solved by a different quantization

Can we hope that something similar happens for gravitons?

Yes, renormalizability implies that the quantum Hamiltonian governing $\hat{h}_{\mu \nu}$ is bounded from below [Stelle (1977)]

However, the space of states must be endowed with an indefinite metric (with respect to which the "position" q and momentum p operators are self-adjoint)

Probability

The presence of an indefinite metric leads to the question:

How can we define probabilities consistently?

A derivation of probability

- Define observable any operator A with complete eigenstates $\{|a\rangle\}$ [Salvio (2018)]: for any state $|\psi\rangle$ there is a decomposition

$$
|\psi\rangle=\sum_{a} c_{a}|a\rangle
$$

One can show that the basic operators q, p and H have complete eigenstates at any order in perturbation theory

- Interpret $|a\rangle$ as the state where A assumes certainly the value a (call it the deterministic Born rule)

A derivation of probability

- Define observable any operator A with complete eigenstates $\{|a\rangle\}$ [Salvio (2018)]: for any state $|\psi\rangle$ there is a decomposition

$$
|\psi\rangle=\sum_{a} c_{a}|a\rangle
$$

One can show that the basic operators q, p and H have complete eigenstates at any order in perturbation theory

- Interpret $|a\rangle$ as the state where A assumes certainly the value a (call it the deterministic Born rule)

Experimentalists prepare a large number N of times the same state, so consider

$$
\left|\Psi_{N}\right\rangle \equiv \underbrace{|\psi\rangle \ldots|\psi\rangle}_{N \text { times }}=\sum_{a_{1} \ldots a_{N}} c_{a_{1}} \ldots c_{a_{N}}\left|a_{1}\right\rangle \ldots\left|a_{N}\right\rangle
$$

Define a frequency operator F_{a} which counts the number N_{a} of times there is the value a in the state $\left|a_{1}\right\rangle \ldots\left|a_{N}\right\rangle$:

$$
F_{a}\left|a_{1}\right\rangle \ldots\left|a_{N}\right\rangle=N_{a}\left|a_{1}\right\rangle \ldots\left|a_{N}\right\rangle
$$

A derivation of probability

- Define observable any operator A with complete eigenstates $\{|a\rangle\}$ [Salvio (2018)]: for any state $|\psi\rangle$ there is a decomposition

$$
|\psi\rangle=\sum_{a} c_{a}|a\rangle
$$

One can show that the basic operators q, p and H have complete eigenstates at any order in perturbation theory

- Interpret $|a\rangle$ as the state where A assumes certainly the value a (call it the deterministic Born rule)

Experimentalists prepare a large number N of times the same state, so consider

$$
\left|\Psi_{N}\right\rangle \equiv \underbrace{|\psi\rangle \ldots|\psi\rangle}_{N \text { times }}=\sum_{a_{1} \ldots a_{N}} c_{a_{1}} \ldots c_{a_{N}}\left|a_{1}\right\rangle \ldots\left|a_{N}\right\rangle
$$

Define a frequency operator F_{a} which counts the number N_{a} of times there is the value a in the state $\left|a_{1}\right\rangle \ldots\left|a_{N}\right\rangle$:

$$
F_{a}\left|a_{1}\right\rangle \ldots\left|a_{N}\right\rangle=N_{a}\left|a_{1}\right\rangle \ldots\left|a_{N}\right\rangle
$$

Strumia (2017) showed that

$$
\lim _{N \rightarrow \infty} F_{a}\left|\Psi_{N}\right\rangle=B_{a}\left|\Psi_{N}\right\rangle, \quad B_{a} \equiv \frac{\left|c_{a}^{2}\right|}{\sum_{b}\left|c_{b}^{2}\right|}
$$

(all coefficients in the basis $\left|a_{1}\right\rangle \ldots\left|a_{N}\right\rangle$ converge to the same quantities)

The emergent norms to compute probabilities

$\{|a\rangle\}$ is complete so we can define a "norm" operator P_{A} :

$$
\left\langle a^{\prime}\right| P_{A}|a\rangle \equiv \delta_{a a^{\prime}}
$$

where for any pair of states $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$, we denote the indefinite metric with $\left\langle\psi_{2} \mid \psi_{1}\right\rangle$. The definition above provides a positive metric (a norm):

$$
\left\langle\psi_{2} \mid \psi_{1}\right\rangle_{A} \equiv\left\langle\psi_{2}\right| P_{A}\left|\psi_{1}\right\rangle_{A}=\sum_{a} c_{a 2}^{*} c_{a 1}
$$

(which is positive for $\left|\psi_{1}\right\rangle=\left|\psi_{2}\right\rangle$)

$$
B_{a} \equiv \frac{\left|c_{a}^{2}\right|}{\sum_{b}\left|c_{b}^{2}\right|}=\frac{\left|\langle a \mid \psi\rangle_{A}\right|^{2}}{\langle\psi \mid \psi\rangle_{A}}
$$

We recover the full probabilistic Born rule, but expressed in terms of the positive norm not in terms of the indefinite one

- All probabilities are positive
- The probabilities sum up to one at any time (the theory is unitary)

Higgs hierarchy problem

Condition to solve the Higgs hierarchy problem

The theory is renormalizable
\Longrightarrow one can absorb the loop divergences and compute δM_{h} :

$$
\delta M_{h}^{2} \sim \frac{\bar{M}_{\mathrm{Pl}}^{2} f^{4}}{(4 \pi)^{2}}, \quad \text { naturalness } \rightarrow f_{2} \sim \sqrt{\frac{4 \pi M_{h}}{\bar{M}_{\mathrm{Pl}}}} \sim 10^{-8}
$$

Condition to solve the Higgs hierarchy problem

The theory is renormalizable
\Longrightarrow one can absorb the loop divergences and compute δM_{h} :

$$
\delta M_{h}^{2} \sim \frac{\bar{M}_{\mathrm{Pl}}^{2} f^{4}}{(4 \pi)^{2}}, \quad \text { naturalness } \rightarrow f_{2} \sim \sqrt{\frac{4 \pi M_{h}}{\bar{M}_{\mathrm{Pl}}}} \sim 10^{-8}
$$

(for such tiny couplings the Higgs field acquires a shift symmetry that protects M_{h})

Condition to solve the Higgs hierarchy problem

The theory is renormalizable
\Longrightarrow one can absorb the loop divergences and compute δM_{h} :

$$
\delta M_{h}^{2} \sim \frac{\bar{M}_{\mathrm{Pl}}^{2} f^{4}}{(4 \pi)^{2}}, \quad \text { naturalness } \rightarrow f_{2} \sim \sqrt{\frac{4 \pi M_{h}}{\bar{M}_{\mathrm{Pl}}}} \sim 10^{-8}
$$

(for such tiny couplings the Higgs field acquires a shift symmetry that protects M_{h})

$$
M_{2}=\frac{1}{\sqrt{2}} f_{2} \bar{M}_{\mathrm{Pl}} \sim 10^{10} \mathrm{GeV}
$$

[Salvio, Strumia (2014)]

The quantization proposed in Anselmi's talk leads to the same result

Let us go back to the the following metric splitting

$$
g_{\mu \nu}=g_{\mu \nu}^{\mathrm{cl}}+\hat{h}_{\mu \nu}
$$

- $\hat{h}_{\mu \nu}$ is a quantum deviation
- $g_{\mu \nu}^{\mathrm{cl}}$ is a classical background that solves the classical EOMs.

Do the Ostrogradsky theorem lead to runaway solutions?

Classical theory

Can we avoid the possible Ostrogradsky instabilities?

Classical theory

Can we avoid the possible Ostrogradsky instabilities?

- Recall that in the free-field limit

$$
H_{\text {ghost }}=-\sum_{\lambda= \pm 2, \pm 1,0} \int d^{3} q\left[\left(P_{\lambda}^{(1)}\right)^{2}+\left(q^{2}+M_{2}^{2}\right)\left(Q_{\lambda}^{(1)}\right)^{2}\right]
$$

Despite the minus sign a decoupled ghost does not suffer from instabilities (that sign cancels in the EOM)

Classical theory

Can we avoid the possible Ostrogradsky instabilities?

- Recall that in the free-field limit

$$
H_{\text {ghost }}=-\sum_{\lambda= \pm 2, \pm 1,0} \int d^{3} q\left[\left(P_{\lambda}^{(1)}\right)^{2}+\left(q^{2}+M_{2}^{2}\right)\left(Q_{\lambda}^{(1)}\right)^{2}\right]
$$

Despite the minus sign a decoupled ghost does not suffer from instabilities (that sign cancels in the EOM)

- The EFT tells us that at energies below M_{2} we should not find runaways even if the ghost has an order one coupling $f_{2} \sim 1$

Classical theory

Can we avoid the possible Ostrogradsky instabilities?

- Recall that in the free-field limit

$$
H_{\text {ghost }}=-\sum_{\lambda= \pm 2, \pm 1,0} \int d^{3} q\left[\left(P_{\lambda}^{(1)}\right)^{2}+\left(q^{2}+M_{2}^{2}\right)\left(Q_{\lambda}^{(1)}\right)^{2}\right]
$$

Despite the minus sign a decoupled ghost does not suffer from instabilities (that sign cancels in the EOM)

- The EFT tells us that at energies below M_{2} we should not find runaways even if the ghost has an order one coupling $f_{2} \sim 1$
- The intermediate case $0<f_{2}<1$ must have intermediate energy thresholds (above which the runaways are activated)
- The weak coupling case $f_{2} \ll 1$ (compatible with Higgs naturalness) must have an energy threshold much larger than M_{2} :
we could see the effect of the ghost without runaways

Classical theory

Can we avoid the possible Ostrogradsky instabilities?

- Recall that in the free-field limit

$$
H_{\text {ghost }}=-\sum_{\lambda= \pm 2, \pm 1,0} \int d^{3} q\left[\left(P_{\lambda}^{(1)}\right)^{2}+\left(q^{2}+M_{2}^{2}\right)\left(Q_{\lambda}^{(1)}\right)^{2}\right]
$$

Despite the minus sign a decoupled ghost does not suffer from instabilities (that sign cancels in the EOM)

- The EFT tells us that at energies below M_{2} we should not find runaways even if the ghost has an order one coupling $f_{2} \sim 1$
- The intermediate case $0<f_{2}<1$ must have intermediate energy thresholds (above which the runaways are activated)
- The weak coupling case $f_{2} \ll 1$ (compatible with Higgs naturalness) must have an energy threshold much larger than M_{2} :
we could see the effect of the ghost without runaways

This argument can be made precise in quadratic gravity. The whole cosmology can only involve energies below this threshold and avoid runaways

$$
\rightarrow \text { "ghost metastability" }
$$

Two-derivative formulation

To show this it is useful to separate the two-derivative d.o.f.: graviton, ω and ghost

Two-derivative formulation

To show this it is useful to separate the two-derivative d.o.f.: graviton, ω and ghost
First perform the field redefinition $\quad g_{\mu \nu} \rightarrow \frac{\bar{M}_{\mathrm{Pl}}^{2}}{f} g_{\mu \nu}, \quad f \equiv \bar{M}_{\mathrm{Pl}}^{2}-\frac{2 R}{3 f_{0}^{2}}>0$,
(where the Ricci scalar above is computed in the Jordan frame metric) that gives

$$
S=\int d^{4} x \sqrt{-g}\left(-\frac{W^{2}}{2 f_{2}^{2}}-\frac{\bar{M}_{\mathrm{Pl}}^{2}}{2} R+\mathscr{L}_{m}^{E}\right) \quad \text { "Einstein frame action" }
$$

The Einstein-frame matter Lagrangian, \mathscr{L}_{m}^{E}, also contains an effective scalar ω, which corresponds to the R^{2} term in the Jordan frame: the part of the Lagrangian that depends only on ω is given by

$$
\mathscr{L}_{m}^{\omega}=\frac{(\partial \omega)^{2}}{2}-U(\omega), \quad U(\omega)=\frac{3 f_{0}^{2} \bar{M}_{\mathrm{Pl}}^{4}}{8}\left(1-e^{-2 \omega / \sqrt{6} \bar{M}_{\mathrm{P} 1}}\right)^{2}
$$

Two-derivative formulation

To show this it is useful to separate the two-derivative d.o.f.: graviton, ω and ghost
First perform the field redefinition $\quad g_{\mu \nu} \rightarrow \frac{\bar{M}_{\mathrm{Pl}}^{2}}{f} g_{\mu \nu}, \quad f \equiv \bar{M}_{\mathrm{Pl}}^{2}-\frac{2 R}{3 f_{0}^{2}}>0$,
(where the Ricci scalar above is computed in the Jordan frame metric) that gives

$$
S=\int d^{4} x \sqrt{-g}\left(-\frac{W^{2}}{2 f_{2}^{2}}-\frac{\bar{M}_{\mathrm{Pl}}^{2}}{2} R+\mathscr{L}_{m}^{E}\right) \quad \text { "Einstein frame action" }
$$

The Einstein-frame matter Lagrangian, \mathscr{L}_{m}^{E}, also contains an effective scalar ω, which corresponds to the R^{2} term in the Jordan frame: the part of the Lagrangian that depends only on ω is given by

$$
\mathscr{L}_{m}^{\omega}=\frac{(\partial \omega)^{2}}{2}-U(\omega), \quad U(\omega)=\frac{3 f_{0}^{2} \bar{M}_{\mathrm{Pl}}^{4}}{8}\left(1-e^{-2 \omega / \sqrt{6} \bar{M}_{\mathrm{P} 1}}\right)^{2}
$$

To make the ghost explicit consider an auxiliary field $\gamma_{\mu \nu}$ [Hindawi, Ovrut, Waldram (1996)] :

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M_{2}^{2} \bar{M}_{\mathrm{Pl}}^{2}}{8}\left(\gamma_{\mu \nu} \gamma^{\mu \nu}-\gamma^{2}\right)-\frac{\bar{M}_{\mathrm{Pl}}^{2}}{2} G_{\mu \nu} \gamma^{\mu \nu}-\frac{\bar{M}_{\mathrm{Pl}}^{2}}{2} R+\mathscr{L}_{m}^{E}\right]
$$

where $G_{\mu \nu}$ is the Einstein tensor and $\gamma \equiv \gamma_{\mu \nu} g^{\mu \nu}$. Expanding around $\eta_{\mu \nu}$ gives a mixing between $h_{\mu \nu} \equiv g_{\mu \nu}-\eta_{\mu \nu}$ and $\gamma_{\mu \nu}$ that can be removed by expressing $h_{\mu \nu}=\bar{h}_{\mu \nu}-\gamma_{\mu \nu}$. The tensors $\bar{h}_{\mu \nu}$ and $\gamma_{\mu \nu}$ represent the graviton and the ghost

Interactions of the ghost and energy thresholds

The two-derivative formulation is good to understand the ghost interactions
First, one can show that the ghost interactions are suppressed by f_{2}

Interactions of the ghost and energy thresholds

The two-derivative formulation is good to understand the ghost interactions
First, one can show that the ghost interactions are suppressed by f_{2}
Next, $\frac{M_{2}^{2}}{8}\left(\gamma_{\mu \nu} \gamma^{\mu \nu}-\gamma^{2}\right)$ leads to mass and interaction terms of the schematic form

$$
\frac{M_{2}^{2}}{2}\left(\phi_{2}^{2}+\frac{\phi_{2}^{3}}{\bar{M}_{\mathrm{Pl}}}+\frac{\phi_{2}^{4}}{\bar{M}_{\mathrm{Pl}}^{2}}+\ldots\right)
$$

(ϕ_{2} represents the canonically normalized spin-2 fields: graviton and ghost)
The mass term has the same order of magnitude of the interactions for $\phi_{2} \sim \bar{M}_{\mathrm{Pl}}$, which gives $M_{2}^{2} \phi_{2}^{2} / 2=M_{2}^{4} / f_{2}^{2} \equiv E_{2}^{4}$, where

$$
E_{2} \equiv \frac{M_{2}}{\sqrt{f_{2}}}=\sqrt{\frac{f_{2}}{2}} \bar{M}_{\mathrm{Pl}}
$$

$$
\text { For energies } E \ll E_{2} \text { the Ostrogradsky instabilities are avoided }
$$

This bound applies to the derivatives of the spin-2 fields.

Interactions of the ghost and energy thresholds

The two-derivative formulation is good to understand the ghost interactions
First, one can show that the ghost interactions are suppressed by f_{2}
Next, $\frac{M_{2}^{2}}{8}\left(\gamma_{\mu \nu} \gamma^{\mu \nu}-\gamma^{2}\right)$ leads to mass and interaction terms of the schematic form

$$
\frac{M_{2}^{2}}{2}\left(\phi_{2}^{2}+\frac{\phi_{2}^{3}}{\bar{M}_{\mathrm{Pl}}}+\frac{\phi_{2}^{4}}{\bar{M}_{\mathrm{Pl}}^{2}}+\ldots\right)
$$

(ϕ_{2} represents the canonically normalized spin-2 fields: graviton and ghost)
The mass term has the same order of magnitude of the interactions for $\phi_{2} \sim \bar{M}_{\mathrm{Pl}}$, which gives $M_{2}^{2} \phi_{2}^{2} / 2=M_{2}^{4} / f_{2}^{2} \equiv E_{2}^{4}$, where

$$
E_{2} \equiv \frac{M_{2}}{\sqrt{f_{2}}}=\sqrt{\frac{f_{2}}{2}} \bar{M}_{\mathrm{Pl}}
$$

$$
\text { For energies } E \ll E_{2} \text { the Ostrogradsky instabilities are avoided }
$$

This bound applies to the derivatives of the spin-2 fields.
Analogously, one can show that the energy E in the matter sector must satisfy

$$
E \ll E_{m} \quad E_{m} \equiv \sqrt[4]{f_{2}} \bar{M}_{\mathrm{Pl}} \quad \text { (matter sector) }
$$

(Possible to illustrate the argument in simple models

Relations with chaotic inflation [Linde (1983)]

For a natural Higgs mass ($f_{2} \sim 10^{-8}, M_{2} \sim 10^{10} \mathrm{GeV}$)

$$
E_{2} \sim 10^{-4} \bar{M}_{\mathrm{Pl}}, \quad E_{m} \sim 10^{-2} \bar{M}_{\mathrm{Pl}}
$$

It is clear that inflation (and the preceding epoch) is the only stage of the universe that can provide us information about such high scales.

Relations with chaotic inflation [Linde (1983)]

For a natural Higgs mass ($f_{2} \sim 10^{-8}, M_{2} \sim 10^{10} \mathrm{GeV}$)

$$
E_{2} \sim 10^{-4} \bar{M}_{\mathrm{Pl}}, \quad E_{m} \sim 10^{-2} \bar{M}_{\mathrm{Pl}}
$$

It is clear that inflation (and the preceding epoch) is the only stage of the universe that can provide us information about such high scales.

Note that the ghost is completely inactive in an FRW metric \Downarrow
only perturbations that break homogeneity/isotropy may destabilize the universe

Relations with chaotic inflation [Linde (1983)]

For a natural Higgs mass ($f_{2} \sim 10^{-8}, M_{2} \sim 10^{10} \mathrm{GeV}$)

$$
E_{2} \sim 10^{-4} \bar{M}_{\mathrm{Pl}}, \quad E_{m} \sim 10^{-2} \bar{M}_{\mathrm{Pl}}
$$

It is clear that inflation (and the preceding epoch) is the only stage of the universe that can provide us information about such high scales.

Note that the ghost is completely inactive in an FRW metric
only perturbations that break homogeneity/isotropy may destabilize the universe
But we live in one of those patches where the energy scales of inhomogeneities $(1 / L)$ and anisotropies (A) were small enough:

$$
\frac{1}{L} \ll\left|U^{\prime}(\phi) / \phi\right|^{1 / 2}, \quad A \ll H
$$

these conditions justify the use of homogeneous and isotropic solutions to describe the classical part of inflation (Linde's idea)

The chaotic theory automatically ensures that the conditions to avoid runaway solutions are satisfied (verified for Starobinsky inflation, hilltop inflation and other models).

Relations with chaotic inflation [Linde (1983)]

For a natural Higgs mass ($f_{2} \sim 10^{-8}, M_{2} \sim 10^{10} \mathrm{GeV}$)

$$
E_{2} \sim 10^{-4} \bar{M}_{\mathrm{Pl}}, \quad E_{m} \sim 10^{-2} \bar{M}_{\mathrm{Pl}}
$$

It is clear that inflation (and the preceding epoch) is the only stage of the universe that can provide us information about such high scales.

Note that the ghost is completely inactive in an FRW metric
only perturbations that break homogeneity/isotropy may destabilize the universe
But we live in one of those patches where the energy scales of inhomogeneities $(1 / L)$ and anisotropies (A) were small enough:

$$
\frac{1}{L} \ll\left|U^{\prime}(\phi) / \phi\right|^{1 / 2}, \quad A \ll H
$$

these conditions justify the use of homogeneous and isotropic solutions to describe the classical part of inflation (Linde's idea)

The chaotic theory automatically ensures that the conditions to avoid runaway solutions are satisfied (verified for Starobinsky inflation, hilltop inflation and other models). The runaways above the energy thresholds give a rational for a homogeneous and isotropic universe

Explicit nonlinear calculations (assuming the built in Starobinsky's inflation)

$$
\begin{gathered}
d s^{2}=d t^{2}-a(t)^{2} \sum_{i=1}^{3} e^{2 \alpha_{i}(t)} d x^{i} d x^{i} \\
\alpha_{1} \equiv \beta_{+}+\sqrt{3} \beta_{-}, \quad \alpha_{2} \equiv \beta_{+}-\sqrt{3} \beta_{-}, \quad \alpha_{3}=-2 \beta_{+} .
\end{gathered}
$$

One can reduce the system to first-order equations through the definitions

$$
\gamma_{ \pm}=\dot{\beta}_{ \pm}, \quad \delta_{ \pm}=\dot{\gamma}_{ \pm}, \quad \epsilon_{ \pm}=\dot{\delta}_{ \pm}
$$

Explicit nonlinear calculations (assuming the built in Starobinsky's inflation)

$$
\begin{gathered}
d s^{2}=d t^{2}-a(t)^{2} \sum_{i=1}^{3} e^{2 \alpha_{i}(t)} d x^{i} d x^{i} \\
\alpha_{1} \equiv \beta_{+}+\sqrt{3} \beta_{-}, \quad \alpha_{2} \equiv \beta_{+}-\sqrt{3} \beta_{-}, \quad \alpha_{3}=-2 \beta_{+} .
\end{gathered}
$$

One can reduce the system to first-order equations through the definitions

$$
\gamma_{ \pm}=\dot{\beta}_{ \pm}, \quad \delta_{ \pm}=\dot{\gamma}_{ \pm}, \quad \epsilon_{ \pm}=\dot{\delta}_{ \pm}
$$

Small initial values for the anisotropy
$\left(\left|\gamma_{ \pm}(0)\right| \ll E_{2}, \sqrt{\left|\delta_{ \pm}(0)\right|} \ll E_{2}\right.$, $\sqrt[3]{\left|\epsilon_{ \pm}(0)\right|} \ll E_{2}$ and $\left.\sqrt{\bar{M}_{\mathrm{Pl}} H} \ll E_{m}\right)$
do not create problems: the anisotropy quickly goes to zero and one recovers the GR behavior

Example in the figure: $f_{2}=10^{-8}$, $f_{0} \approx 1.6 \cdot 10^{-5}, \phi(0) \approx 5.5 \bar{M}_{\mathrm{Pl}}$ and $\sqrt{\pi_{\phi}(0)} \approx 7.1 \cdot 10^{-6} \bar{M}_{\mathrm{Pl}}$

Explicit nonlinear calculations (assuming the built in Starobinsky's inflation)

$$
\begin{gathered}
d s^{2}=d t^{2}-a(t)^{2} \sum_{i=1}^{3} e^{2 \alpha_{i}(t)} d x^{i} d x^{i} \\
\alpha_{1} \equiv \beta_{+}+\sqrt{3} \beta_{-}, \quad \alpha_{2} \equiv \beta_{+}-\sqrt{3} \beta_{-}, \quad \alpha_{3}=-2 \beta_{+} .
\end{gathered}
$$

One can reduce the system to first-order equations through the definitions

$$
\gamma_{ \pm}=\dot{\beta}_{ \pm}, \quad \delta_{ \pm}=\dot{\gamma}_{ \pm}, \quad \epsilon_{ \pm}=\dot{\delta}_{ \pm}
$$

The patches where those conditions are not satisfied quickly collapse:

The scale factor in the Jordan frame shrinks as shown in the figure \rightarrow

Example in the figure: $\gamma_{-}(0)=10^{-1} E_{2}$, $\delta_{ \pm}(0)=0, \epsilon_{ \pm}(0)=0, f_{2}=10^{-8}$, $f_{0} \approx 1.6 \cdot 10^{-5}, R(0) \approx 1.3 \cdot 10^{2} f_{0}^{2} \bar{M}_{\mathrm{Pl}}^{2}$ and $H(0)=1.2 E_{2}$.

General check of the ghost metastability: linear analysis

Check that all linear modes around dS are bounded (for a fixed initial condition) for any wave number q

General check of the ghost metastability: linear analysis

Check that all linear modes around dS are bounded (for a fixed initial condition) for any wave number q

Scalar modes: they are like in GR plus an gravity-isocurvature mode:

$$
g_{B}(\eta, q) \equiv \frac{H}{\sqrt{2 q}}\left(\frac{3}{q^{2}}+\frac{3 i \eta}{q}-\eta^{2}\right) e^{-i q \eta}+\mathcal{R}-\text { term }
$$

where η is the conformal time $\left(a^{2} d \eta^{2}=d t^{2}, \eta<0\right)$

General check of the ghost metastability: linear analysis

Check that all linear modes around dS are bounded (for a fixed initial condition) for any wave number q

Scalar modes: they are like in GR plus an gravity-isocurvature mode:

$$
g_{B}(\eta, q) \equiv \frac{H}{\sqrt{2 q}}\left(\frac{3}{q^{2}}+\frac{3 i \eta}{q}-\eta^{2}\right) e^{-i q \eta}+\mathcal{R}-\text { term }
$$

where η is the conformal time $\left(a^{2} d \eta^{2}=d t^{2}, \eta<0\right)$

Vector and tensor modes:

Observational consequences

Observational consequences: $M_{2}>H$

No differences compared to GR

Observational consequences: $M_{2}<H$

The modifications:

- r gets suppressed

$$
r \rightarrow \frac{r}{1+\frac{2 H^{2}}{M_{2}^{2}}}
$$

models that are excluded for a large r (e.g. quadratic inflation) become viable

- There is an isocurvature mode (which fullfils the observational bounds) corresponding to the scalar component of the spin-2 ghost (the vector components and the other tensor component decay with time)

Indeed,

- $P_{\mathcal{R}}$ is not changed by the ghost (so n_{s} is not changed either)
- while the tensor power spectrum is modified:

$$
P_{t} \rightarrow \frac{P_{t}}{1+\frac{2 H^{2}}{M_{2}^{2}}}
$$

- The isocurvature power spectrum P_{B} is the same as the tensor power spectrum in Einstein's gravity, except that it is smaller by a factor of $3 / 16 \approx 1 / 5$:

$$
P_{B}=\frac{3}{2 \bar{M}_{\mathrm{Pl}}^{2}}\left(\frac{H}{2 \pi}\right)^{2}
$$

and the correlation $P_{\mathcal{R} B}$ is highly suppressed
[Ivanov, Tokareva (2016)], [Salvio (2017)]

Ghost-isocurvature power spectrum ($M_{2}<H$)

$q_{1}=0.002 \mathrm{Mpc}^{-1}$ and $q_{2}=0.1 \mathrm{Mpc}^{-1}$.
The strongest constraints from Planck (2018) have been taken
[Salvio (2017)], [Salvio (2019)]

Conclusions

- QG is renormalizable and solves the hierachy problem
- The price to pay: a ghost.
- We have provided a possible way of quantizing the theory
- The runaway solutions can be avoided even at energies exceeding the ghost mass
- Quadratic gravity (combined with Higgs mass naturalness) leads to testable predictions for the inflationary observables

Thank you very much for your attention!

Weinberg (2018): " try crazy ideas ... something will come up"

Extra slides

Trading negative energies with negative norm

Diagonalization of the Hamiltonian

For $V=0$ the Hamiltonian is

$$
H=\omega_{1}\left(-\tilde{a}_{1}^{\dagger} \tilde{a}_{1}+\frac{1}{2}\right)+\omega_{2}\left(\tilde{a}_{2}^{\dagger} \tilde{a}_{2}+\frac{1}{2}\right)
$$

We have $\quad\left[\tilde{a}_{1}, \tilde{a}_{1}^{\dagger}\right]=-1, \quad\left[\tilde{a}_{2}, \tilde{a}_{2}^{\dagger}\right]=1, \quad$ (all other commutators vanish)

Trading negative energies with negative norm

Diagonalization of the Hamiltonian

For $V=0$ the Hamiltonian is

$$
H=\omega_{1}\left(-\tilde{a}_{1}^{\dagger} \tilde{a}_{1}+\frac{1}{2}\right)+\omega_{2}\left(\tilde{a}_{2}^{\dagger} \tilde{a}_{2}+\frac{1}{2}\right)
$$

We have $\quad\left[\tilde{a}_{1}, \tilde{a}_{1}^{\dagger}\right]=-1, \quad\left[\tilde{a}_{2}, \tilde{a}_{2}^{\dagger}\right]=1, \quad$ (all other commutators vanish)
Onset of "negative norms"
As usual $\left[a_{1}, N_{1}\right]=a_{1}$ and $\left[a_{2}, N_{2}\right]=a_{2}$ by defining $N_{1} \equiv-\tilde{a}_{1}^{\dagger} \tilde{a}_{1}$ and $N_{2} \equiv \tilde{a}_{2}^{\dagger} \tilde{a}_{2}$ The spectrum of N_{1} is bounded from below if you introduce an indefinite metric:

$$
-\nu_{n} n=\langle n| a_{1}^{\dagger} a_{1}|n\rangle
$$

Trading negative energies with negative norm

Diagonalization of the Hamiltonian

For $V=0$ the Hamiltonian is

$$
H=\omega_{1}\left(-\tilde{a}_{1}^{\dagger} \tilde{a}_{1}+\frac{1}{2}\right)+\omega_{2}\left(\tilde{a}_{2}^{\dagger} \tilde{a}_{2}+\frac{1}{2}\right)
$$

We have $\quad\left[\tilde{a}_{1}, \tilde{a}_{1}^{\dagger}\right]=-1, \quad\left[\tilde{a}_{2}, \tilde{a}_{2}^{\dagger}\right]=1, \quad$ (all other commutators vanish)
Onset of "negative norms"
As usual $\left[a_{1}, N_{1}\right]=a_{1}$ and $\left[a_{2}, N_{2}\right]=a_{2}$ by defining $N_{1} \equiv-\tilde{a}_{1}^{\dagger} \tilde{a}_{1}$ and $N_{2} \equiv \tilde{a}_{2}^{\dagger} \tilde{a}_{2}$ The spectrum of N_{1} is bounded from below if you introduce an indefinite metric:

$$
-\nu_{n} n=\langle n| a_{1}^{\dagger} a_{1}|n\rangle=|c|^{2}\langle n-1 \mid n-1\rangle=|c|^{2} \nu_{n-1}
$$

Quadratic gravity is a realization of "softened gravity"

(Einstein) gravitational interactions increase with energy

Idea (softened gravity):
consider theories where the increase of the gravitational coupling \rightarrow stops at some $\Lambda_{G} \ll M_{\mathrm{Pl}}$.

Quadratic gravity is a realization of "softened gravity"

(Einstein) gravitational interactions increase with energy

Idea (softened gravity):
consider theories where the increase of the gravitational coupling \rightarrow stops at some $\Lambda_{G} \ll M_{\mathrm{Pl}}$.

One can then have the gravitational contribution to the Higgs mass under control:

$$
\delta M_{h}^{2} \approx \frac{G_{N} \Lambda_{G}^{4}}{(4 \pi)^{2}}
$$

Requiring naturalness $\rightarrow \Lambda_{G} \lesssim 10^{11} \mathrm{GeV}$ [Giudice, Isidori, Salvio, Strumia (2014)]

In quadratic gravity $\Lambda_{G} \sim M_{2}$

Classical dynamics: a simple scalar field example

To simplify consider

$$
\mathscr{L}=-\frac{1}{2} \phi \square \phi-\frac{c_{4}}{2} \phi \square^{2} \phi-V(\phi)
$$

It is a toy version of out theory:

- $-\frac{1}{2} \phi \square \phi$ represents the Einstein-Hilbert part
- $-\frac{c_{4}}{2} \phi \square^{2} \phi$ represents the quadratic terms
- V is some interaction

Classical dynamics: a simple scalar field example

To simplify consider

$$
\mathscr{L}=-\frac{1}{2} \phi \square \phi-\frac{c_{4}}{2} \phi \square^{2} \phi-V(\phi)
$$

It is a toy version of out theory:

- $-\frac{1}{2} \phi \square \phi$ represents the Einstein-Hilbert part
- $-\frac{c_{4}}{2} \phi \square^{2} \phi$ represents the quadratic terms
- V is some interaction

Two-derivative form
Add $\frac{c_{4}}{2}\left(\square \phi-\frac{A-\phi / 2}{c_{4}}\right)^{2}$ (vanishes when the EOM of the auxiliary field A are used)

$$
\Longrightarrow \mathscr{L}=-\frac{1}{2} \phi_{+} \square \phi_{+}+\frac{1}{2} \phi_{-} \square \phi_{-}+\frac{m^{2}}{2} \phi_{-}^{2}-V\left(\phi_{+}+\phi_{-}\right)
$$

where $m^{2} \equiv 1 / c_{4}$ has to be taken positive to avoid tachyonics.

Classical dynamics: a simple scalar field example

The EOMs are

$$
\square \phi_{+}=-V^{\prime}\left(\phi_{+}+\phi_{-}\right), \quad \square \phi_{-}=-m^{2} \phi_{-}^{2}+V^{\prime}\left(\phi_{+}+\phi_{-}\right) .
$$

For definiteness take $V(\phi)=\lambda \phi^{4} / 4$, where $\lambda>0$, which stabilizes ϕ_{+}, while ϕ_{-}feels

$$
v(\varphi)=\frac{m^{2}}{2} \varphi^{2}-\frac{\lambda}{4} \varphi^{4}, \quad \varphi=\text { typical order of magnitude of field values }
$$

Classical dynamics: a simple scalar field example

The EOMs are

$$
\square \phi_{+}=-V^{\prime}\left(\phi_{+}+\phi_{-}\right), \quad \square \phi_{-}=-m^{2} \phi_{-}^{2}+V^{\prime}\left(\phi_{+}+\phi_{-}\right) .
$$

For definiteness take $V(\phi)=\lambda \phi^{4} / 4$, where $\lambda>0$, which stabilizes ϕ_{+}, while ϕ_{-}feels

$$
v(\varphi)=\frac{m^{2}}{2} \varphi^{2}-\frac{\lambda}{4} \varphi^{4}, \quad \varphi=\text { typical order of magnitude of field values }
$$

Ghost metastability

For

$$
\varphi \ll E_{f} \equiv \frac{m}{\sqrt{\lambda / 2}}
$$

and

$$
E \ll E_{d} \equiv \frac{m}{(4 \lambda)^{1 / 4}}
$$

(where E is the energy associated with the field derivatives)
the runaway solutions are avoided

Classical dynamics: a simple scalar field example

The EOMs are

$$
\square \phi_{+}=-V^{\prime}\left(\phi_{+}+\phi_{-}\right), \quad \square \phi_{-}=-m^{2} \phi_{-}^{2}+V^{\prime}\left(\phi_{+}+\phi_{-}\right) .
$$

For definiteness take $V(\phi)=\lambda \phi^{4} / 4(\lambda>0)$, which stabilizes ϕ_{+}, while ϕ_{-}feels

$$
v(\varphi)=\frac{m^{2}}{2} \varphi^{2}-\frac{\lambda}{4} \varphi^{4}, \quad \varphi=\text { typical order of magnitude of field values }
$$

Ghost metastability

For

$$
\varphi \ll E_{f} \equiv \frac{m}{\sqrt{\lambda / 2}}
$$

and

$$
E \ll E_{d} \equiv \frac{m}{(4 \lambda)^{1 / 4}}
$$

(where E is the energy associated with the field derivatives)
the runaway solutions are avoided
Example in the figure: $\lambda=10^{-2}$,

$$
\phi_{+}(0)=10^{-2} E_{f}, \phi_{-}(0)=10^{-2} E_{f},
$$

$\dot{\phi}_{+}(0)=\left(1.5 \cdot 10^{-1} E_{d}\right)^{2}$ and
$\dot{\phi}_{-}(0)=-\left(10^{-2} E_{d}\right)^{2}$.

