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CMB: A brief introduction
• Discovered in1965 by 

Penzias and Wilson 

• Temperature 
anisotropies measured 
by COBE in 1992 

• Improved 
measurements by 
WMAP and Planck

2009                                                                                       Planck



The polarization signal

• By rotating the local coordinate system, Q is 
rotated into U and vice-versa.

-

Q

Q → -Q, U → -U 
under 90 degree 
rotation

-

U

Q →  U, U → -Q 
under 45 degree 
rotation

Q U

P±2 (
!n) =Q(!n)± iU(!n)

The linearly polarized CMB is completely 
described by a spin 2 and spin -2 field



E/B decomposition
• The description North-

south and East-West 
(more formally, the stokes 
parameters) depends on 
the arbitrary choices of 
coordinates 

• We then describe the 
polarization by its 
orientation relative to itself: 
E-mode and B-mode B

E

B

E

Cold Spot        Hot Spot



Spherical harmonics 
expansion

P± (
!n) = a±2,lm

lm
∑ ±2Ylm (

!n)

Elm ≡ − 1
2
a2,lm + a−2,lm⎡⎣ ⎤⎦ Blm ≡ − 1

2i
a2,lm − a−2,lm⎡⎣ ⎤⎦

Our target



CMB lensing

Smoothing methods comparison for CMB E- and B-mode separation 11

Fig. 5 The pure B-mode field constructed by SZ method and cos-, sin- and Gaussian-smoothing

window function, from top to bottom, respectively, where δc = 1◦ and β = 10−4. The panels on

the right side have the scaling magnified in order to show the residual leakage.

window functions in Fig.7 is almost the same as Fig.4, which means the smoothed window function with

smaller multipole values in harmonic space will bring smaller numerical error in E- and B-mode separation.

We obtain the results: If δc is small, i.e. the less information loss, sin- and cos-smoothingmethods are better

than Gaussian-smoothingmethod. On the other side, if we need the cleaner map, where δc should be larger

(such as δc = 1◦ or 1.5◦), Gaussian-smoothing method is better. These can be understood by the follow-

ing way: Comparing with the sin- or cos-smoothing functions, the Gaussian-smoothing function is much

more steeper. So when δc is smaller, the Gaussian function becomes close to the top-hat function, which

will follow the larger numerical error. However, when δc is larger (i.e. δc > 1◦), all these three smooth-

E-to-B leakage Gravitational 
waves

But, what can generate B-
mode?



Motivations
• The accuracy of the CMB power spectra measurements is 

limited by several foregrounds 

• Frequency dependence of foreground components is 
poorly known, leading to unwanted foreground residuals in 
the final cleaned map 

• Blind foreground separation algorithms make no prior 
assumption on foregrounds and have been extensively 
addressed in literature 

• However, most of the methods are computationally 
challenging. 



• We use the analytical method of blind separation 
(ABS) presented recently by Zhang et al (2016)  

• The ABS method is based on the measured cross 
band power between different frequency bands and 
do not rely on any assumption about the foreground 
components 

• The method allows a fast numerical reconstruction of 
the CMB power spectra 

• Here, we present our first results for the polarized 
signal using the ABS method of foreground separation.



The ABS method (Zhang, P. et al, 2016)

• The ABS approach blindly and analytically 
subtracts the foregrounds and recover the CMB 
signal in the spherical harmonic domain 

• The measured data can be written as :
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1998). Gold et al. (2009) which reconstruct all compo-
nents based on a Markhov-Chain-Monte-Carlo (MCMC)
approach. A joint component separation and the CMB
power spectra estimation using the Gibbs sampling ap-
proach have been implemented by Jewell et al. (2004);
Wandelt et al. (2004); Eriksen et al. (2004); Larson et al.
(2007); Planck Collaboration et al. (2016). On the other
hand, the frequency dependence of foreground compo-
nents is generally poorly known and its uncertainty may
lead to unwanted foreground residuals in the cleaned
maps. With this motivation, several “blind” approaches
have been proposed, which make no prior assumption
about foregrounds, such as the methods using Indepen-
dent Component Analysis (ICA; Baccigalupi et al. 2004)
and Correlated Component Analysis (CCA; Bonaldi et
al. 2006). The so-called Internal Linear Combination
(ILC) approach and its various variants have been ex-
tensively applied to the CMB signal processing for fore-
ground removal and to the CMB power spectra estima-
tion (Tegmark & Efstathiou 1996; Tegmark et al. 2003;
Bennett et al. 2003; Saha et al. 2006; Delabrouille et al.
2009; Remazeilles et al. 2011). Subsequently, with a pro-
cedure based on internal template fitting, Leach et al.
(2008); Fernández-Cobos et al. (2012) have successfully
applied this method to Planck simulations and toWMAP
polarization data. In addition, with the assumption of
spectral diversity of the various components, Delabrouille
et al. (2003); Mart́ınez-González et al. (2003); Aumont
& Maćıas-Pérez (2007); Cardoso et al. (2008) propose a
blind source separation method, the Spectral Matching
Independent Component Analysis (SMICA), which has
been successfully employed on the Planck data.
Unlike all the above methods which involve heavy com-

putation, Zhang et al. (2016) recently presented an An-
alytical method of Blind Separation of the CMB from
foregrounds (ABS). Based on the measured cross band
power between di↵erent frequency bands, the CMB band
power spectra can be derived analytically, which does
not rely on any assumption about the foreground com-
ponents while avoiding multiple parameter fitting.
Here, we report the first test on the ABS method from

simulated Planck observations. For the purpose of as-
sessing the validity of the ABS estimator, we keep the
simulated foregrounds as realistic as possible. As the
first test, we apply the ABS approach to temperature
maps only, considering various sky cuts. It is important
to point out that the complicated beam e↵ects are not
taken into account in our simulations. Since Zhang et al.
(2016) has already provided a complete description of the
mathematical formalism and numerical techniques that
in principle can be applied to polarization maps and ac-
count for frequency- and position-dependent beams, sky
cuts and other non-ideal e↵ects, we propose to dedicate
a future paper to systematically test the ABS approach
against real-world observations.
The paper is organized as follows. In Sect. 2, we briefly

review the ABS approach. In Sect. 3 we describe our
simulated maps and present the application of the ABS
to the simulated skies and estimate the accuracy of the
CMB temperature power spectrum recovery in Sect. 4.
Finally, we draw our conclusions in Sect. 5.
We will use thermodynamic units throughout this pa-

per, corresponding to a constant CMB power spectrum
across frequencies.

2. THE ABS APPROACH

The ABS approach blindly and analytically subtracts
the foregrounds and recover the CMB signal in the spher-
ical harmonic domain rather than in the pixel domain.
This approach works on the cross band power spectrum
of two frequency maps. The measured data in the mul-
tipole bin ` can be written as

Dobs
ij (`) = fifjDcmb(`) +Dfore

ij (`) + �Dnoise
ij (`) . (1)

Here, Dobs
ij (`) denotes the cross band power spectrum

of measured temperature maps at the i- and j-th fre-
quency channels, where i, j = 1, 2 · · ·Nf and Nf is the
total number of frequency channels. In matrix notation,
Dij(`) also refers to the (i, j)-th entry of the Nf ⇥ Nf

matrix D(`). Dfore
ij is the cross band power matrix of

foregrounds. Here fi = 1 for all channels in the units
of thermodynamic temperature. Therefore, Dcmb repre-
sents the CMB temperature power spectrum that does
not vary with frequency.
The measured cross power spectrum is certainly con-

taminated by instrumental noise, so that we introduce
the noise term, �Dnoise

ij , which represents the fluctuations
of the instrumental noise in the measurements. The en-
semble average of the instrumental noise has been im-
plicitly subtracted out beforehand as it cannot bias the
estimate of the CMB power spectrum. In this study,
we assume that the instrument noise is an uncorrelated
Gaussian distribution, with zero mean and rms levels of
�noise
D,i for the i-th frequency channel, i = 1, 2 · · ·Nf . The

residual noise hence has the following properties,
⌦
�Dnoise

ij

↵
= 0 ,

⌦
(�Dnoise

ij )2
↵
=

1

2
�noise
D,i �noise

D,j (1 + �ij) . (2)

2.1. In the case with no instrumental noise

Let us first consider the ideal case of no instrumental
noise, which motivates the framework of the ABS ap-
proach. Zhang et al. (2016) proves that the CMB power
spectrum, Dcmb, can be analytically derived through

Dcmb =

 
M+1X

µ=1

G2
µ�

�1
µ

!�1

, (3)

as long as M < Nf , where M ⌘ rank(Dfore
ij ) and the

order of Dobs
ij (`) is Nf . Here Gµ = f ·Eµ with the

vector f = (f1, . . . , fNf )
T . Eµ and �µ stand for the

µ-th eigenvector and associated eigenvalue of Dobs
ij (`).

We adopt the normalization condition for eigenvectors,
Eµ · E⌫ = �µ⌫ . In our calculation, all eigenvalues and
the corresponding eigenvectors are ranked in decreasing
order of eigenvalues. Note that the rank M depends on
the number of independent foreground components. Pre-
viously, de Oliveira-Costa et al. (2008) illustrated that
the full sky foreground could be well described to a very
high accuracy using only a small number of principal
foreground components (e.g., M = 3).

2.2. In the case with instrumental noise
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In reality, observations always su↵er from instrumental
noise. To account for noise, the original Eq. 3 can be used
to recover the CMB power spectrum with the following
modifications.

D̂cmb =

0

@
�̃µ��cutX

G̃2
µ�̃

�1
µ

1

A
�1

� S . (4)

Here, we have introduced new variables, defined by

D̃obs
ij ⌘

Dobs
ijq

�noise
D,i �noise

D,j

+ f̃if̃jS ,

f̃i ⌘
fiq
�noise
D,i

, G̃µ ⌘ f̃ · Ẽµ , (5)

where Ẽµ and �̃µ are the µ-th eigenvector and corre-
sponding eigenvalue of D̃obs

ij , respectively. According to
Eq. 2, the dispersion of each diagonal and o↵-diagonal
elements of D̃obs

ij in such normalization is 1 and 1/
p
2,

respectively. The instrumental noise thus can lead to
unphysical (i.e.,noise dominated) eigenmodes with eigen-
values of |�̃µ| . 1 in D̃obs

ij , detailed in Zhang et al. 2016.

For this reason, the threshold �̃cut in Eq. 4 is not arbi-
trary but instead has a value of ⇠ 1, since all unphysical
eigenmodes induced by instrumental noise should be ex-
cluded. According to our intensive tests, we find that the
estimate of the CMB power spectrum is not sensitive to
the threshold in the range of 1/2 . �̃cut . 1 . As indi-
cated by the analysis of our simulations, �̃cut is chosen
to be 1/2 for the best recovery of the CMB.
In Eq. 4, we also have introduced a useful free parame-

ter S, which shifts the amplitude of the input CMB power
spectrum from Dcmb to Dcmb+S. In practice, when solv-
ing for Dcmb numerically, we find that a positive shift
parameter is responsible for stabilizing the computation,
therefore providing better numerical properties. More
importantly, since the ABS method in the absence of S
always returns a positive value (as both G̃2

µ and �̃µ in
Eq. 4 are greater than zero), it should fail the null test.
However, one can avoid such overestimate on the CMB
signal by introducing S. This “shift” strategy performed
successfully when the underlying truth value of Dcmb is
much less than the noise level and when it approaches
zero. Such strategy becomes notably important for an
unbiased determination of the CMB B-mode power spec-
trum which has an unknown but close to zero amplitude.
In practice, our simulations show that the S ⇠ 10�noise

D is
an appropriate value to guarantee a stable computation
and a successful null test result.

3. SIMULATED PLANCK MAPS

In order to test the accuracy of the ABS approach,
we will apply the estimator in Eq. 4 to realistic sim-
ulations. We use full sky Planck simulations provided
by Thorne et al. (2017). The maps are generated at the
seven frequencies of Planck instruments (30GHz, 44GHz,
70GHz, 95GHz, 150GHz, 217GHz and 353GHz) using
HEALPix (Górski et al. 2005) with the resolution of
Nside = 1024, for which the spherical harmonics are com-
puted up to the multipole `max = 2000. For simplicity,

the primary beam pattern in this study is assumed to
be unity for all frequency channels. This will not cap-
ture realistic observations, whereas all maps can be easily
degraded to the same resolution by the beam smooth-
ing process (i.e., a beam convolution). Ideally, if the
beam pattern only depends on frequency, this smooth-
ing process, in principle, would not a↵ect the foreground
removal. But if the beam depends not only on the fre-
quency but also on the sky direction, such anisotropic
beam over the sky might slightly change the source esti-
mations. We will leave this to future works.
Together with the pure CMB signal, four foreground

components and Gaussian white noise at the expected
level of Planck instruments are mixed in the maps. These
state of the art simulations of di↵erent Galactic compo-
nents provide strict tests for the ABS estimator. The
CMB signal is randomly generated by using a tem-
perature power spectrum predicted by the public code
CAMB (Lewis et al. 2000) with the standard cosmologi-
cal parameters (Planck Collaboration et al. 2016).
Synchrotron, free-free, thermal dust and AME contri-

butions have been taken into account in our simulations
and we adopt the nominal PySM model (Thorne et al.
2017) as the fiducial foreground model. In this model,
the synchrotron intensity is a scaling of the degree-
scale-smoothed 408 MHz Haslam map (Haslam et al.
1981, 1982; Remazeilles et al. 2015; Miville-Deschênes
et al. 2008), with the spectral index being a direction-
dependent power-law. For free-free, the nominal model
uses the degree-scale smoothed emission measurement
and e↵ective electron temperature Commander templates
by Bennett et al. (2013); Planck Collaboration et al.
(2016). For thermal dust, the simulations use template
maps at 545 GHz in intensity, which are estimated from
the Planck data using the Commander code (Planck Col-
laboration et al. 2016). The frequency scaling is modeled
as a single component, using the best-fit estimate. For
AME, the nominal model is derived from a parametric
fit to the Planck data and considers the two-component
contributions from the spatially varying and non-varying
emissivities (Ali-Häımoud et al. 2009; Silsbee et al. 2011;
Draine 2011).
In our simulations, we assume a somewhat idealized

noise model that is uncorrelated from pixel to pixel and
from channel to channel. For a given `, the white noise
rms levels in the 7 frequency channels from 30 to 353 GHz
are derived from Leach et al. (2008), with �noise

D (`)/µK =
0.066, 0.065, 0.063, 0.028, 0.015, 0.023, 0.068, respectively.
Since the level of foreground contamination varies sig-

nificantly across the whole sky, we apply the ABS to
simulated maps with di↵erent sky cuts in order to study
how robust our results are to the level of foreground con-
tamination. Complementarily, an additional test is also
performed by varying the amplitude of the synchrotron
emission. In summary, four sets of frequency maps are
taken into account:

(A) maps with a cut of |b| < 10� around the Galactic
plane (“Galactic-plane cut”, in short);

(B) the region within |b| < 10� only (“inside Galactic-
plane”), which has the brightest foreground emis-
sion and can be regarded as the worst case;

(C) full sky maps without any masks (“full sky”);

• We can recover the CMB power spectrum by
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nificantly across the whole sky, we apply the ABS to
simulated maps with di↵erent sky cuts in order to study
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performed by varying the amplitude of the synchrotron
emission. In summary, four sets of frequency maps are
taken into account:

(A) maps with a cut of |b| < 10� around the Galactic
plane (“Galactic-plane cut”, in short);

(B) the region within |b| < 10� only (“inside Galactic-
plane”), which has the brightest foreground emis-
sion and can be regarded as the worst case;

(C) full sky maps without any masks (“full sky”);
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1998). Gold et al. (2009) which reconstruct all compo-
nents based on a Markhov-Chain-Monte-Carlo (MCMC)
approach. A joint component separation and the CMB
power spectra estimation using the Gibbs sampling ap-
proach have been implemented by Jewell et al. (2004);
Wandelt et al. (2004); Eriksen et al. (2004); Larson et al.
(2007); Planck Collaboration et al. (2016). On the other
hand, the frequency dependence of foreground compo-
nents is generally poorly known and its uncertainty may
lead to unwanted foreground residuals in the cleaned
maps. With this motivation, several “blind” approaches
have been proposed, which make no prior assumption
about foregrounds, such as the methods using Indepen-
dent Component Analysis (ICA; Baccigalupi et al. 2004)
and Correlated Component Analysis (CCA; Bonaldi et
al. 2006). The so-called Internal Linear Combination
(ILC) approach and its various variants have been ex-
tensively applied to the CMB signal processing for fore-
ground removal and to the CMB power spectra estima-
tion (Tegmark & Efstathiou 1996; Tegmark et al. 2003;
Bennett et al. 2003; Saha et al. 2006; Delabrouille et al.
2009; Remazeilles et al. 2011). Subsequently, with a pro-
cedure based on internal template fitting, Leach et al.
(2008); Fernández-Cobos et al. (2012) have successfully
applied this method to Planck simulations and toWMAP
polarization data. In addition, with the assumption of
spectral diversity of the various components, Delabrouille
et al. (2003); Mart́ınez-González et al. (2003); Aumont
& Maćıas-Pérez (2007); Cardoso et al. (2008) propose a
blind source separation method, the Spectral Matching
Independent Component Analysis (SMICA), which has
been successfully employed on the Planck data.
Unlike all the above methods which involve heavy com-

putation, Zhang et al. (2016) recently presented an An-
alytical method of Blind Separation of the CMB from
foregrounds (ABS). Based on the measured cross band
power between di↵erent frequency bands, the CMB band
power spectra can be derived analytically, which does
not rely on any assumption about the foreground com-
ponents while avoiding multiple parameter fitting.
Here, we report the first test on the ABS method from

simulated Planck observations. For the purpose of as-
sessing the validity of the ABS estimator, we keep the
simulated foregrounds as realistic as possible. As the
first test, we apply the ABS approach to temperature
maps only, considering various sky cuts. It is important
to point out that the complicated beam e↵ects are not
taken into account in our simulations. Since Zhang et al.
(2016) has already provided a complete description of the
mathematical formalism and numerical techniques that
in principle can be applied to polarization maps and ac-
count for frequency- and position-dependent beams, sky
cuts and other non-ideal e↵ects, we propose to dedicate
a future paper to systematically test the ABS approach
against real-world observations.
The paper is organized as follows. In Sect. 2, we briefly
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simulated maps and present the application of the ABS
to the simulated skies and estimate the accuracy of the
CMB temperature power spectrum recovery in Sect. 4.
Finally, we draw our conclusions in Sect. 5.
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per, corresponding to a constant CMB power spectrum
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order of Dobs
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vector f = (f1, . . . , fNf )
T . Eµ and �µ stand for the
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order of eigenvalues. Note that the rank M depends on
the number of independent foreground components. Pre-
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the full sky foreground could be well described to a very
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and Correlated Component Analysis (CCA; Bonaldi et
al. 2006). The so-called Internal Linear Combination
(ILC) approach and its various variants have been ex-
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tion (Tegmark & Efstathiou 1996; Tegmark et al. 2003;
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2009; Remazeilles et al. 2011). Subsequently, with a pro-
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polarization data. In addition, with the assumption of
spectral diversity of the various components, Delabrouille
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& Maćıas-Pérez (2007); Cardoso et al. (2008) propose a
blind source separation method, the Spectral Matching
Independent Component Analysis (SMICA), which has
been successfully employed on the Planck data.
Unlike all the above methods which involve heavy com-

putation, Zhang et al. (2016) recently presented an An-
alytical method of Blind Separation of the CMB from
foregrounds (ABS). Based on the measured cross band
power between di↵erent frequency bands, the CMB band
power spectra can be derived analytically, which does
not rely on any assumption about the foreground com-
ponents while avoiding multiple parameter fitting.
Here, we report the first test on the ABS method from

simulated Planck observations. For the purpose of as-
sessing the validity of the ABS estimator, we keep the
simulated foregrounds as realistic as possible. As the
first test, we apply the ABS approach to temperature
maps only, considering various sky cuts. It is important
to point out that the complicated beam e↵ects are not
taken into account in our simulations. Since Zhang et al.
(2016) has already provided a complete description of the
mathematical formalism and numerical techniques that
in principle can be applied to polarization maps and ac-
count for frequency- and position-dependent beams, sky
cuts and other non-ideal e↵ects, we propose to dedicate
a future paper to systematically test the ABS approach
against real-world observations.
The paper is organized as follows. In Sect. 2, we briefly

review the ABS approach. In Sect. 3 we describe our
simulated maps and present the application of the ABS
to the simulated skies and estimate the accuracy of the
CMB temperature power spectrum recovery in Sect. 4.
Finally, we draw our conclusions in Sect. 5.
We will use thermodynamic units throughout this pa-
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Fig. 8.— Same as Fig. 1, but for the case “full sky” at the entire frequency channels used for CMB band power estimation to further
test the ABS approach.
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power spectrum

• For temperature we consider 4 different foregrounds 

•  synchrotron, free-free, thermal dust and anomalous 
microwave emission  

• For simplicity, in this case, we do not apply any  primary 
beam pattern for any frequency channel 

•  The Gaussian noise level is assumed to be of the order of 
that of Planck

(Yao, J. et al 2018: arXiv 1807.07016)
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Table 1. Characteristics of Planck one year simulations (upper) andWMAP six year simulations (lower). Planck and WMAP
hit counts correspond to 1.7′ (Healpix nside=2048) and 6.8′ (nside=512) pixels respectively. Nℓ is the white noise level calculated
from the inhomogeneous distribution of hits.

Channel 30 GHz 44 GHz 70 GHz 100 GHz 143 GHz 217 GHz 353 GHz 545 GHz 857 GHz
FWHM [arcmin] 33 24 14 10 7.1 5 5 5 5
σhit [µKRJ] 1030 1430. 2380 1250 754 610 425 155 72
σhit [µKCMB] 1050 1510 2700 1600 1250 1820 5470 24700 1130000

Mean; Median hits per pixel 82; 64 170; 134 579; 455 1010; 790 2260; 1790 2010; 1580 2010; 1580 503; 396 503; 396
N1/2
ℓ
[µKCMB] 0.066 0.065 0.063 0.028 0.015 0.023 0.068 0.62 28.4

Channel 23 GHz (K) 33 GHz (Ka) 41 GHz (Q) 61 GHz (V) 94 GHz (W)
FWHM [arcmin] 52.8 39.6 30.6 21 13.2
σhit [µKRJ] 1420 1420 2100 2840 5210
σhit [µKCMB] 1440 1460 2190 3120 6500

Mean; Median hits per pixel 878; 792 878; 790 2198; 1889 2956; 2577 8873; 7714
N1/2
ℓ
[µKCMB] 0.10 0.10 0.10 0.12 0.14

sky in Zone 1. For comparison, the WMAP point source masks
of Bennett et al. (2003b) excludes a radius of 0.7◦ around almost
700 sources with fluxes greater than 500 mJy, covering a total of
2% of sky.

The SZ mask is constructed by blanking out small circular
regions centered on 1625 SZ clusters detected with the needlet-
ILC +matched filter method (see Section 5.2). For each of them,
the diameter of the cut is equal to the virial radius of the corre-
sponding cluster.

2.3. Comments about the sky emission simulations

A note of caution about these simulations of sky emission is in
order. Although the PSM, as described above, has a consider-
able amount of sophistication, it still makes some simplifying
assumptions – and cannot be expected to describe the full com-
plexity of the real sky. This is a critical issue, as component sep-
aration methods are very sensitive to these details. We mention
four of them.

First, Galactic emission is modelled with only three com-
ponents, with no anomalous emission at low frequencies. This
affects the spectral behaviour of components in the lower fre-
quency bands below 60 GHz where the anomalous emission is
thought to be dominant (Davies et al. 2006; Bonaldi et al. 2007;
Miville-Deschênes et al. 2008).

Second, even though variable spectral emission laws are used
for synchrotron and dust emission, this is still an idealisation: for
the synchrotron, the emission law in each pixel is described by a
single spectral index without any steepening. For dust, the emis-
sion is modelled as a superposition of two populations, with dis-
tinct but fixed temperature and emissivity. These approximations
impact component separation, since almost perfect estimation of
the relevant parameters of a given foreground emission is pos-
sible at frequencies where this foreground dominates, thereby
allowing perfect subtraction in the cosmological channels.

Third, it is worth mentioning that only low resolution (∼ 1◦)
templates are available for synchrotron and free-free emissions.
Hence, addition of small-scale power is critical: if such scales
were absent from the simulations, but actually significant in the
real sky, one might get a false impression that no component
separation is needed on small scales. Also, the detection of point
sources as well as galaxy clusters would be significantly eas-
ier, hence not representative of the actual problem. Here, miss-
ing small scale features are simulated using a non-stationary
coloured Gaussian random field. Although quite sophisticated,

this process can not generate for instance, filamentary or patchy
structures known to exist in the real sky.

Fourth, our simulations are somewhat idealised in the sense
that we use perfect Gaussian beams, assume no systematic ef-
fects, and assume that the noise is uncorrelated from pixel to
pixel and from channel to channel. Also, the effect of the finite
bandpass of the frequency channels is not taken into account, and
we assume that the calibration and zero levels of each channel is
perfectly known.

In spite of these simplifications, component separation re-
mains a difficult task with our simulated data because of pixel-
dependent spectral emission laws for dust and synchrotron, and
of the presence of more than a million point sources with dif-
ferent emission laws, of hundreds of thousands of unresolved or
extended SZ clusters, and of significant emission from a com-
plex IR background. It is fair to say that this simulated sky is far
more complex than anything ever used in similar investigations.

In closing this Section, we show in Figure 3 the angular
power spectra of the basic components for the 70 and 100 GHz
channels, close to the foreground emission minimum. The spec-
tra of CMB, noise and thermal SZ are compared to the spectra
of the total Galactic emission evaluated at high and low Galactic
latitudes, on Zone 1 and 2 respectively. The point source spec-
tra are evaluated in Zone 1, both with and without the bright-
est sources above 200 mJy masked. Figure 3 shows the obvi-
ous impact on CMB studies of masking the most foreground-
contaminated regions. It also indicates that there is a significant
region of sky, Zone 2, for which Galactic emission and CMB
power are comparable. In the following sections, results are eval-
uated independently in both Zones 1 and 2.

3. Outline of the methods
In this section we present a brief overview of the methods that
have been used in this challenge. The section is divided in three
parts, one for diffuse component separation methods, one for
point source extraction, and one for SZ cluster extraction.

3.1. Diffuse component separation

The spirit of each method tested on the challenge data is out-
lined here. A more detailed description, including some details
of their implementations and a discussion of their strengths and
weaknesses is presented in Appendix A.
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Fig. 1.— Upper panels: Example of realistic simulations of the Planck sky for the case “Galactic-plane cut” at the frequencies of 30, 150
and 353 GHz. The Galactic plane in the region of |b| < 10� is masked out. Frequency-dependent foreground components correspond to a
foreground morphology that varies with frequency. Lower panels: the corresponding angular power spectra of the simulated sources at the
masked Planck maps, in which the CMB, noise, synchrotron, free-free, thermal dust and AME have a di↵erent `-dependence. The units
are in µK.

(D) the same as case A, but now with a manually en-
hanced, by a factor of two, synchrotron emission
(“two-times-stronger synchrotron”).

The results of the last two cases are given in the Ap-
pendix to complement the discussion in the main text.
As an example, Fig. 1 shows the one realization of our

simulated Planck maps for the “Galactic-plane cut” case
at 30, 150 and 353 GHz, respectively, with masks created
by Mishra-Sharma et al. (2017). The maps at other fre-
quency channels are shown in Fig. 8 of the Appendix. For
comparison, the power spectra of all simulated sources
including the CMB, noise, synchrotron, free-free, ther-
mal dust and AME are shown in the lower panels. As
seen, the CMB signal in both frequency and angular-
scale dependence behaves significantly di↵erent from all
other signals. Furthermore, as the mask we adopted has
a sharp cuto↵ at the boundary, computing the angular
power spectrum from partial skies causes spurious oscilla-
tions inherent to the spherical harmonic transformation.
However, these oscillations can be corrected by standard
apodization filtering or taking a large bin size �`, which
have nothing to do with foreground removal.

4. TESTS ON SIMULATED SKIES

In this Section, we show the results obtained by ap-
plying the ABS approach to the simulated Planck seven-
frequency maps.
The estimated CMB power spectrum is obtained by

averaging over the results from sky maps with 50 inde-
pendent realizations of instrumental noise. The associ-
ated statistical errors are obtained from its dispersion.
The CMB signal and foreground components are fixed
in di↵erent realizations.

4.1. In the case of “Galactic-plane cut”

Fig. 2.— Eigenvalues of D̃obs
ij (`) for one realization of our simu-

lated seven-frequency Planck maps with the“Galactic-plane cut”,
in which the models of all microwave sources including CMB, 4-
component foreground and the noise levels are described in Sect. 3.
The eigenvalues, �̃µ, are shown in absolute value. Due to the
instrumental noise, D̃obs

ij (`) is not strictly positive, leading to

some small negative eigenvalues (red dots). The fiducial thresh-
old �̃cut = 1/2 is shown by the black-solid line. All eigenmodes
with the eigenvalues smaller than 1/2 are excluded from the signal
estimation.

In Fig. 2, we demonstrate the distribution of the eigen-
values �̃µ and show how �̃µ vary with the multipole `.
For a given `, there obviously are seven eigenvalues as
the order of D̃obs

ij is Nf=7. The complex microwave
sky thus can be decomposed into these eigenmodes com-
pletely. The first three largest eigenvalues are several
orders of magnitude greater than the remaining ones, im-
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Fig. 5.— Same as Fig. 1, but for the case “inside Galactic-plane”, where only the region with |b| < 10� is used for CMB band power
spectrum estimation.

Fig. 6.— Same as Fig. 4, but for the case “inside Galactic-plane”
(shown in Fig. 5), which is an extreme case su↵ering the brightest
foreground emissions.

Range of multipoles hri �r h�Di (µK2) ��D (µK2)
2 - 40 -0.035 0.017 -5.88 2.95

160 - 200 0.0025 0.0044 2.22 3.95
460 - 500 -0.00037 0.0056 -0.13 1.98
960 - 1000 0.0085 0.0031 0.61 1.69
1480 - 1520 0.015 0.016 1.71 1.83
1960 - 2000 0.039 0.021 1.6 0.87

TABLE 2
Same as Tab. 1, but for the case “inside Galactic-plane”.

way to analytically extract the CMB power spectrum
from foreground contaminated maps by using the mea-
sured cross band power between di↵erent frequency chan-
nels. This estimator does not rely on any assumptions
of foreground components and it is only based upon the
fact that the CMB follows a blackbody spectrum.

Fig. 7.— The result for the null test with the ABS method in
the cases of “Galactic-plane cut” and “inside Galactic-plane”. The
ABS-derived power spectrum and the associated 1-� statistical er-
ror are estimated from 50 independent realizations of the instru-
mental noise. The shift parameter is set to be large enough (e.g.,
S ⇠ 10�noise

D ) to stabilize the calculation, yielding in completely
convergent results.

The ABS estimator was applied to simulated muti-
frequency Planck maps at 30, 44, 70, 95, 150, 217 and
353 GHz. We keep the simulated foreground as realistic
as possible. The microwave sources in the simulations
include the CMB, Galactic synchrotron, free-free, ther-
mal dust and anomalous microwave emission together
with instrumental noise. The various components have
significantly di↵erent angular morphology, frequency de-
pendence and amplitudes.
The results are quite promising. By performing 50

independent realizations of a set of simulations and com-
paring with the true simulated map, we find that the
ABS estimator provide an unbiased and e�cient esti-
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Fig. 3.— Absolute values of the first five eigenvectors Eµ for
the maps with Galactic-plane cut as a function of frequency, with
the ` bin centered at ` = 100. The corresponding eigenvalues are
2.5⇥ 106, 5.9⇥ 105, 8.8⇥ 104, 110.2, 29.6 µK2, respectively. The
last two eigenvectors, which are not shown here, have negligibly
small eigenvalues of 7.4 and 0.8 µK2. According to Eq. 3, Eµ rep-
resents eigenmodes of the data set, and each mode qualitatively
corresponds to an underlying physical component or a linear com-
bination of such components. For example, the first eigenvector
at ⌫ > 70 GHz is essentially a contribution from the thermal dust
since its amplitude increases with frequency, which is compatible
with the frequency dependence of the thermal dust in our simula-
tion. When ⌫  70 GHz, as expected, the mode is dominated by
a mixture of the synchrotron, free-free as both of them would de-
crease as frequency increase. The second one is possibly dominated
by the linear combination of the synchrotron, free-free and thermal
dust. The CMB mainly dominates the third one at ⌫ � 150 GHz as
the mode is slowly varying with frequency, which is consistent with
the CMB black body spectrum, and both synchrotron and free-free
dominates at the low frequencies. The remaining eigenvectors show
no specific features, with correspondent small eigenvalues receiving
contributions from all the sky components.

plying that the physical foregrounds have smooth power-
law spectral structures. Physically, the first three largest
eigenvalues are associated with the eigenmodes that are
essentially dominated by the free-free, the synchrotron
and the total dust (including both thermal dust and
AME) emissions, respectively. We also see that these
foreground-dominated eigenvalues fall o↵ rapidly as the
multipole ` increase and this fall-o↵ is approximately ex-
ponential in the very low-` range (` . 80) where the
eigenvalues drop down by an order of magnitude. Since
the observed cross band matrix, according to Eq. 5, has
been normalized by noise, its eigenvalues thus monoton-
ically decrease with increasing `, which can be estimated
from the lower panels of Fig. 2. Furthermore, the fourth
eigenvalues are mainly related with the CMB signal. The
fifth eigenvalues might be related to all foreground resid-
uals, together with the CMB component. In addition,
the eigenmodes associated with the remaining eigenval-
ues are essentially dominated by the instrumental noise.
We also see that the last three eigenvalues can reach

the noise level since these eigenmodes are essentially con-
tributions from the noise. Only the noise fluctuations are
able to produce negative eigenvalues (red dots in Fig. 2)
in D̃obs

ij . This is the reason why we choose a threshold

�̃cut to reject the noise-induced eigenmodes and to opti-

Fig. 4.— The CMB binned power spectrum estimated from the
ABS approach from the simulated seven-frequency Planck maps
in the case of “Galactic-plane cut” where a narrow mask strip
around the Galactic plane (|b| < 10�) has been applied to the
maps (see Fig. 1). The spectrum is binned into bins of width �l
= 40. In comparison with the true power spectrum, the relative
error, D̂cmb

` /Dreal
` � 1, and the associated 1-� statistical error, in

percentage, are shown in the lower panel, based on 50 independent
realizations of the instrumental noise.

mally extract the CMB signal . As expected in 2.2, the
noise-induced eigenvalues have zero mean and a typical
value of |�̃µ| ⇠ 1, which is confirmed by our simulations,
shown in Fig. 2.
According to Eqs. 4&5, the estimate of the CMB sig-

nal depends on the absolute value of eigenvectors, i.e.,
|f̃ · Ẽµ|2. In Fig. 3, we show the frequency dependence
of eigenvectors |Eµ| at the ` bin, centered at `= 100 for
Dobs

ij (`). Qualitatively, the dominated physical sources
for each eigenvector can be inferred from its frequency
dependence and eigenvalue. Based on the foreground
models in our simulations, the synchrotron and free-free
dominate the sky at low frequency (⌫ . 100 GHz) and
the thermal dust at high frequency (⌫ & 100 GHz). The
former two foreground components decrease as frequency
increases and conversely the latter one increases along
with frequency. Such property indicates that the first
eigenvector at the low frequencies is essentially domi-
nated by the synchrotron and free-free and at the high
frequencies by the thermal dust.
More interestingly, since the third eigenvector at ⌫ &

100 GHz has a slowly-varying feature over frequency,
which is roughly consistent with the emission law of
the CMB, we expect it represents the CMB-dominated
mode. As a further check, the contribution from the
third mode to Dobs

ij can then be estimated in terms of

the identity, Dobs
ij =

P
µ �µEµ · ET

µ , which is about

�3E3 · ET
3 ⇠ 8.8 ⇥ 102µK2 where �3 = 8.8 ⇥ 104µK2

and each element of E3 ⇠ 0.1 from Fig. 3. This value is
compatible with the amplitude of the CMB band power
at ` ⇠ 100, Dcmb

ij ' 103µK2 (see Fig. 1). For these rea-
sons, we can conclude that the third mode is essentially
dominated by the CMB signal. In addition, there are no
specific behaviors for the other eigenmodes, suggesting
that they are dominated by a combination of all physical
sources.
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Fig. 5.— Same as Fig. 1, but for the case “inside Galactic-plane”, where only the region with |b| < 10� is used for CMB band power
spectrum estimation.

Fig. 6.— Same as Fig. 4, but for the case “inside Galactic-plane”
(shown in Fig. 5), which is an extreme case su↵ering the brightest
foreground emissions.

Range of multipoles hri �r h�Di (µK2) ��D (µK2)
2 - 40 -0.035 0.017 -5.88 2.95

160 - 200 0.0025 0.0044 2.22 3.95
460 - 500 -0.00037 0.0056 -0.13 1.98
960 - 1000 0.0085 0.0031 0.61 1.69
1480 - 1520 0.015 0.016 1.71 1.83
1960 - 2000 0.039 0.021 1.6 0.87

TABLE 2
Same as Tab. 1, but for the case “inside Galactic-plane”.

way to analytically extract the CMB power spectrum
from foreground contaminated maps by using the mea-
sured cross band power between di↵erent frequency chan-
nels. This estimator does not rely on any assumptions
of foreground components and it is only based upon the
fact that the CMB follows a blackbody spectrum.

Fig. 7.— The result for the null test with the ABS method in
the cases of “Galactic-plane cut” and “inside Galactic-plane”. The
ABS-derived power spectrum and the associated 1-� statistical er-
ror are estimated from 50 independent realizations of the instru-
mental noise. The shift parameter is set to be large enough (e.g.,
S ⇠ 10�noise

D ) to stabilize the calculation, yielding in completely
convergent results.

The ABS estimator was applied to simulated muti-
frequency Planck maps at 30, 44, 70, 95, 150, 217 and
353 GHz. We keep the simulated foreground as realistic
as possible. The microwave sources in the simulations
include the CMB, Galactic synchrotron, free-free, ther-
mal dust and anomalous microwave emission together
with instrumental noise. The various components have
significantly di↵erent angular morphology, frequency de-
pendence and amplitudes.
The results are quite promising. By performing 50

independent realizations of a set of simulations and com-
paring with the true simulated map, we find that the
ABS estimator provide an unbiased and e�cient esti-
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Null test



Conclusions
• The ABS estimator does not rely on any assumptions of 

foreground components, and it was applied to simulated 
multi-frequency Planck maps at 30, 44, 70, 95, 150, 217 
and 353 GHz.  

• The ABS estimator provide an unbiased and efficient 
estimate of underlying the CMB power spectrum well 
within 1-σ error bar at most scales  

• When choosing a Galactic mask excluding the region |b| 
< 10, the CMB power spectrum is recovered with an 
accuracy at the level of less than 0.5% over all scales.



The polarization simulations

• CMB: We used CAMB to generate the lensed CMB 
power spectra 

• Planck best fit parameters for the LCDM model 
for r=0 and r=0.05 

• These power spectra are the input of lenspix/
healpix to produce T, Q and U maps with 
nside=1024

Hypothetical future experiment with10 frequency channels: 30, 43, 75, 90, 
108, 129, 100, 155, 223, 268, 321 GHz



• Foregrounds: Synchrotron and thermal dust  

• Nominal PySM model (Thorne et al. 2017) as the 
fiducial foreground models



• Noise: 50 realizations of uncorrelated Gaussian 
white noise 

• Total: CMB + foregrounds + noise_k = 50 maps for 
each frequency band.

+ +

+ +

Q:

U:



Experimental setup

4

Fig. 1.— Upper panels: Example of realistic simulations of the Planck sky for the case “Galactic-plane cut” at the frequencies of 30, 150
and 353 GHz. The Galactic plane in the region of |b| < 10� is masked out. Frequency-dependent foreground components correspond to a
foreground morphology that varies with frequency. Lower panels: the corresponding angular power spectra of the simulated sources at the
masked Planck maps, in which the CMB, noise, synchrotron, free-free, thermal dust and AME have a di↵erent `-dependence. The units
are in µK.

Band center Beam FWHM noise level
(GHz) (arcmin) (µKCMB- arcmin)
030 28.3 12.4
043 22.2 7.9
075 10.7 4.2
090 9.5 2.8
108 7.9 2.3
129 7.4 2.1
155 6.2 1.8
223 3.6 4.5
268 3.2 3.1
321 2.6 4.2

TABLE 1
The considered experimental setup

by Thorne et al. (2017). The maps are generated at the
seven frequencies of Planck instruments (30GHz, 44GHz,
70GHz, 95GHz, 150GHz, 217GHz and 353GHz) using
HEALPix (Górski et al. 2005) with the resolution of
Nside = 1024, for which the spherical harmonics are com-
puted up to the multipole `max = 2000. For simplicity,
the primary beam pattern in this study is assumed to
be unity for all frequency channels. This will not cap-
ture realistic observations, whereas all maps can be easily
degraded to the same resolution by the beam smooth-
ing process (i.e., a beam convolution). Ideally, if the
beam pattern only depends on frequency, this smooth-
ing process, in principle, would not a↵ect the foreground
removal. But if the beam depends not only on the fre-
quency but also on the sky direction, such anisotropic
beam over the sky might slightly change the source esti-
mations. We will leave this to future works.
Together with the pure CMB signal, four foreground

components and Gaussian white noise at the expected
level of Planck instruments are mixed in the maps. These
state of the art simulations of di↵erent Galactic compo-
nents provide strict tests for the ABS estimator. The

CMB signal is randomly generated by using a tem-
perature power spectrum predicted by the public code
CAMB (Lewis et al. 2000) with the standard cosmologi-
cal parameters (Planck Collaboration et al. 2016b).
Synchrotron, free-free, thermal dust and AME contri-

butions have been taken into account in our simulations
and we adopt the nominal PySM model (Thorne et al.
2017) as the fiducial foreground model. In this model,
the synchrotron intensity is a scaling of the degree-
scale-smoothed 408 MHz Haslam map (Haslam et al.
1981, 1982; Remazeilles et al. 2015; Miville-Deschênes
et al. 2008), with the spectral index being a direction-
dependent power-law. For free-free, the nominal model
uses the degree-scale smoothed emission measurement
and e↵ective electron temperature Commander templates
by Bennett et al. (2013); Planck Collaboration et al.
(2016a). For thermal dust, the simulations use tem-
plate maps at 545 GHz in intensity, which are estimated
from the Planck data using the Commander code (Planck
Collaboration et al. 2016a). The frequency scaling is
modeled as a single component, using the best-fit esti-
mate. For AME, the nominal model is derived from a
parametric fit to the Planck data and considers the two-
component contributions from the spatially varying and
non-varying emissivities (Ali-Häımoud et al. 2009; Sils-
bee et al. 2011; Draine 2011).
In our simulations, we assume a somewhat idealized

noise model that is uncorrelated from pixel to pixel and
from channel to channel. For a given `, the white noise
rms levels in the 7 frequency channels from 30 to 353 GHz
are derived from Leach et al. (2008), with �noise

D (`)/µK =
0.066, 0.065, 0.063, 0.028, 0.015, 0.023, 0.068, respectively.
Since the level of foreground contamination varies sig-

nificantly across the whole sky, we apply the ABS to
simulated maps with di↵erent sky cuts in order to study
how robust our results are to the level of foreground con-



Polarized power spectra 
components contribution in full sky
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Fig. 1.— The B-mode angular power spectra of the simulated full sky maps (without any beam convolution), comparing all the considered
components for three frequency channels: the CMB, noise, synchrotron and thermal dust. From left to right: 030, 129 and 321GHz.

90 < l < 800 the deviation from the “true” spectrum is
less than 25%.

Fig. 2.— Upper panel: The CMB binned B-mode power spec-
trum estimated from the ABS approach from a future experiment
specified in Table 1 for S = 10�noise, considering r = 0. The red
curve corresponds to the CMB B-mode power spectrum from the
sky realization without noise or foregrounds, the “true” spectrum
. The associated 1-� statistical error are also shown as the shadow
region, based on 50 independent realizations of the instrumental
noise. Lowe panel : In comparison with the “true” power spec-
trum, the relative error, Drec

` /Dtrue
` � 1 is shown in the percentage

level for 90 < l < 800. For the other multipole ranges the diver-
gence from the true spectrum reaches ⇡ 2.5⇥ 103 %. The symbol
colors and sizes illustrates deviations from 0%.

In order to test for the robustness of the method,
we used three di↵erent values for the shift parameter,
S = 10�noise, 100�noise, 1000�noise, since it plays a fun-
damental role in the power spectrum estimation, espe-
cially for the B-mode case which has a low signal-to-
noise ratio. As shown previously in (Yao et al. 2018),
the recovered power spectra converge as S increases, be-
ing the results for S = 10�noise, S = 100�noise and
1000�noise almost identical. The biggest di↵erence in
the power spectrum, for these values of S, is of the order
of 10�6µK2.
The same calculations were repeated for r = 0.05 to

demonstrate our present ability to distinguish between
both cases r = 0 and r = 0.05, as it can be seen in
Figure 3. In the latter case, we see that the di↵erence
between the “true” spectrum and the recovered one is
also below 25% for 100 < l < 800. The slight improve-
ment compared to the result for r = 0 is expected due

to the higher CMB signal for low multipoles considering
r = 0.05. However, in this case the relative error from
the true spectrum reaches / 102 %. Even though the
ABS result seems promising for higher multipoles, it is
well-known that resolving the B-mode signal at low `’s
can probe inflation. Improvement of the power spectrum
reconstruction at this low multipole range is then neces-
sary towards a possible detection of the primordial grav-
itational wave imprint in the CMB polarization signal.
It is important to point out that the distinction between
these two cases is still challenging if we consider the ABS
foreground separation method in a full sky approach.

Fig. 3.— The same as Fig 2 for r = 0.05

Finally, in Figure 4 we show the null test, in which
we consider no CMB signal on the Q and U maps,
but only foregrounds and Gaussian noise for S =
10�noise, 100�noise, 1000�noise. As expected, the recov-
ered power spectrum shows a high signal up to l ⇡ 100,
mimicking a possible CMB primordial signal.
In order to avoid the Galactic foreground, responsible

for part of the B-mode contribution to the power spec-
trum, especially for low l’s, we consider masking this sky
region as a next step. Moreover, as it is well-known, the
near future polarization surveys are ground-based exper-
iments which are supposed to measure the polarization
field only in parts of the sky. Therefore, in the next
section, we account for a partial sky analysis.

5.2. The partial sky case

030 GHz 129 GHz

5

Fig. 1.— The B-mode angular power spectra of the simulated full sky maps (without any beam convolution), comparing all the considered
components for three frequency channels: the CMB, noise, synchrotron and thermal dust. From left to right: 030, 129 and 321GHz.

90 < l < 800 the deviation from the “true” spectrum is
less than 25%.

Fig. 2.— Upper panel: The CMB binned B-mode power spec-
trum estimated from the ABS approach from a future experiment
specified in Table 1 for S = 10�noise, considering r = 0. The red
curve corresponds to the CMB B-mode power spectrum from the
sky realization without noise or foregrounds, the “true” spectrum
. The associated 1-� statistical error are also shown as the shadow
region, based on 50 independent realizations of the instrumental
noise. Lowe panel : In comparison with the “true” power spec-
trum, the relative error, Drec

` /Dtrue
` � 1 is shown in the percentage

level for 90 < l < 800. For the other multipole ranges the diver-
gence from the true spectrum reaches ⇡ 2.5⇥ 103 %. The symbol
colors and sizes illustrates deviations from 0%.

In order to test for the robustness of the method,
we used three di↵erent values for the shift parameter,
S = 10�noise, 100�noise, 1000�noise, since it plays a fun-
damental role in the power spectrum estimation, espe-
cially for the B-mode case which has a low signal-to-
noise ratio. As shown previously in (Yao et al. 2018),
the recovered power spectra converge as S increases, be-
ing the results for S = 10�noise, S = 100�noise and
1000�noise almost identical. The biggest di↵erence in
the power spectrum, for these values of S, is of the order
of 10�6µK2.
The same calculations were repeated for r = 0.05 to

demonstrate our present ability to distinguish between
both cases r = 0 and r = 0.05, as it can be seen in
Figure 3. In the latter case, we see that the di↵erence
between the “true” spectrum and the recovered one is
also below 25% for 100 < l < 800. The slight improve-
ment compared to the result for r = 0 is expected due

to the higher CMB signal for low multipoles considering
r = 0.05. However, in this case the relative error from
the true spectrum reaches / 102 %. Even though the
ABS result seems promising for higher multipoles, it is
well-known that resolving the B-mode signal at low `’s
can probe inflation. Improvement of the power spectrum
reconstruction at this low multipole range is then neces-
sary towards a possible detection of the primordial grav-
itational wave imprint in the CMB polarization signal.
It is important to point out that the distinction between
these two cases is still challenging if we consider the ABS
foreground separation method in a full sky approach.

Fig. 3.— The same as Fig 2 for r = 0.05

Finally, in Figure 4 we show the null test, in which
we consider no CMB signal on the Q and U maps,
but only foregrounds and Gaussian noise for S =
10�noise, 100�noise, 1000�noise. As expected, the recov-
ered power spectrum shows a high signal up to l ⇡ 100,
mimicking a possible CMB primordial signal.
In order to avoid the Galactic foreground, responsible

for part of the B-mode contribution to the power spec-
trum, especially for low l’s, we consider masking this sky
region as a next step. Moreover, as it is well-known, the
near future polarization surveys are ground-based exper-
iments which are supposed to measure the polarization
field only in parts of the sky. Therefore, in the next
section, we account for a partial sky analysis.
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The CMB polarization: A 
partial sky approach

• In the ideal case (full sky map), we directly derive E 
and B from Q and U 

• However, even for satellite surveys we will not get a 
full-sky map. Why? 

• We must mask out the unavoidable Galactic 
foreground



E/B decomposition in partial 
sky
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With this alternative method to get the B-mode polarization, now we can deal with the case of partial sky experiments. With
the help of the mask function W , the pseudo multipoles become [40]
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By comparing three different methods developed to extract the E and B signals from Q and U , [41] concluded that the Smith
and Zaldarriaga method (SZ, hereafter) [29] is the most efficient since it significantly reduces the E-to-B leakage, and at the
same time ensures the smallest error bars. Following this result we will use the SZ method throughout this paper, which start by
the definition of pure pseudo multipoles
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It can be proved that Eq. 17 is equivalent to the Eq. 16, but the pure pseudo multipoles can avoid large numerical error with
respect to pseudo multipoles.
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[ḡḡP+(n̂) + ggP�(n̂)], (6)

B(n̂) = � 1

2i
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Fig. 3 A smoothed window function using Gauss-smoothing method with parameters δc = 1◦

and β = 10−4.

where the expression of Bpure
lm is shown in Eq.(22). The Bpure(n̂) is related to B(n̂) in Eq.(9) by

Bpure(n̂) = B(n̂)W (n̂). (33)

The Fig.5 is a visualization of Bpure(n̂). Since we assume CBB
l = 0, all the non-zero value pixels in Fig.5

are attributed to the numerical error.

Interesting enough, the third panel in Fig.5 shows that the numerical errors mostly concentrate on two

bands, due to the program design of HEALPix package. The HEALPix package divides the sky into three

parts, and resembles them after operation, so there will be some residue on the joint. Besides, due to this

kind of residue locates in two narrow bands, we can mask them out to remove most of the contamination

with little information lost. In Fig.6, We mask out two bands centered at 48◦ and 132◦ and the width of each

band is 6◦, then the map looks much cleaner. How to quantify this further reduction on the numerical errors

in the constructed pure B-mode map is another important topic in this area, we leave it as a new work.

In order to quantify the numerical errors of pure B-mode map in harmonic space, we define the pseudo

power spectrum as:
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Figure 13. Full-sky Q (left) and U (right) CMB maps obtained by CCA for the noiseless case.

Here Hs is a noiseless dataset, obtained exactly as described
in § 4 but without adding noise. By combining the noise-
less dataset with the same reconstruction matrix estimated

in the noisy case, we obtain a set of reconstructed compo-
nents having the same component separation errors as be-
fore, but without noise. This allows us to test the quality of
component separation error estimates. The results, shown
in Fig. 12, are very encouraging. Even if component separa-
tion errors are in general highly subdominant, the marginal
distribution error estimation method is able to correctly es-
timate them at low and intermediate Galactic latitudes (at
high Galactic latitudes the component separation errors are
overestimated but are anyway irrelevant compared to errors
due to noise). On the other hand the spatial redundancy er-
ror estimation method is occasionally underestimating the
true errors at low latitude. In Fig. 13 we show, as an exam-
ple, the CMB Q and U reconstructed maps in the noiseless
case. A visual inspection does not reveal the presence of
residual Galactic contamination except for a tiny strip on
the Galactic plane.

8 CMB POWER SPECTRUM ESTIMATION

To assess the quality of the Stokes Q and U CMB maps
obtained with the CCA component separation we compare
their estimated angular power spectra (APS) to the input
model used to generate the simulation. In doing so we prop-
agate to the power spectra the component separation errors
described above. We employ the ROMAster code, a pseudo-
Cℓ estimator based on MASTER approach (Hivon et al.
2002) and extended to cross-power spectra (Polenta et al.
2005) and polarization (see e.g. Kogut et al. 2003, for a
similar formalism). It is well known that the pseudo Cℓ
approach to the CMB power spectrum estimation is sub-
optimal for the lowest multipoles where other techniques are
more appropriate (see, e.g., Gruppuso et al. 2009). However,
a pseudo-Cℓ estimator is enough for our purpose of assessing
the quality of the reconstructed CMB polarization maps in
the presence of noise and component separation errors.

We exclude from the analysis the regions that are most
contaminated by residual foreground contributions as esti-
mated in the previous section. For this purpose we build a
mask based on our reconstruction errors, flagging all pixels
where the sum of the variance errors on the CMB Q and

U maps is greater than the mean value of the same quan-
tity across the whole map. The resulting mask is shown in
Fig. 14 and excludes less than 10% of the sky.

Having only one final map per astrophysical compo-
nent, we do not rely here on a cross spectrum analysis but
on an auto-spectrum approach. This is rather general, and
achieves a lower final noise variance than the cross spectrum
approach (see, e.g., Polenta et al. 2005). The drawback is
that we need to model and subtract a noise bias in the data.
To this extent, we computed the noise bias on the CMB EE
power spectrum by means of 1000 simulated noise maps. To
obtain each of them, we simulated one noise map for each
channel included in the reconstruction of the CMB (70, 100,
143 and 217 GHz), equalized the resolution of all channels to
14′, and combined them with the reconstruction matrix W
as described in the previous section. ROMAster uses these
Monte Carlo data to subtract the noise bias, as well as to
estimate errors on the APS due to noise by computing the
empirical variance of the realization.

To compute the error bars due to residual foreground
contamination, we produced a further set of 100 CMB maps
by perturbing the input spectral index maps as described
in the previous section. For each of them we repeated the
computation of the power spectrum and corrected for the
noise bias, relying for the latter purpose on a smaller (∼ 10)
set of noise-only maps. The noise bias has been estimated
each time with the reconstruction matrix used to obtain
the corresponding CMB map. Even if quite computation-
ally demanding, this procedure is needed because we are in
the noise-dominated regime, and a small error in the noise
bias can substantially affect the estimation of the polarized
power spectrum. Once we got our 100 unbiased CMB power
spectra, we finally computed the errors due to component
separation as the standard deviation of the sample for each
considered multipole bin.

In Fig. 15 we show the noise and the component sep-
aration error bars compared to the EE power spectrum of
the fiducial model. As we can see, the noise contribution is
dominating even on the smallest multipoles over the com-
ponent separation error, which is at most a small correction
to the error budget. In Fig. 16 we show the EE power spec-
trum estimated in a realistic Planck case (diamonds); the
1σ errors are shown by the shaded area. The results for the
noiseless case (squares with the component separation error
bars) show that the accuracy of our estimation of the power

Q-map
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Figure 13. Full-sky Q (left) and U (right) CMB maps obtained by CCA for the noiseless case.

Here Hs is a noiseless dataset, obtained exactly as described
in § 4 but without adding noise. By combining the noise-
less dataset with the same reconstruction matrix estimated

in the noisy case, we obtain a set of reconstructed compo-
nents having the same component separation errors as be-
fore, but without noise. This allows us to test the quality of
component separation error estimates. The results, shown
in Fig. 12, are very encouraging. Even if component separa-
tion errors are in general highly subdominant, the marginal
distribution error estimation method is able to correctly es-
timate them at low and intermediate Galactic latitudes (at
high Galactic latitudes the component separation errors are
overestimated but are anyway irrelevant compared to errors
due to noise). On the other hand the spatial redundancy er-
ror estimation method is occasionally underestimating the
true errors at low latitude. In Fig. 13 we show, as an exam-
ple, the CMB Q and U reconstructed maps in the noiseless
case. A visual inspection does not reveal the presence of
residual Galactic contamination except for a tiny strip on
the Galactic plane.

8 CMB POWER SPECTRUM ESTIMATION

To assess the quality of the Stokes Q and U CMB maps
obtained with the CCA component separation we compare
their estimated angular power spectra (APS) to the input
model used to generate the simulation. In doing so we prop-
agate to the power spectra the component separation errors
described above. We employ the ROMAster code, a pseudo-
Cℓ estimator based on MASTER approach (Hivon et al.
2002) and extended to cross-power spectra (Polenta et al.
2005) and polarization (see e.g. Kogut et al. 2003, for a
similar formalism). It is well known that the pseudo Cℓ
approach to the CMB power spectrum estimation is sub-
optimal for the lowest multipoles where other techniques are
more appropriate (see, e.g., Gruppuso et al. 2009). However,
a pseudo-Cℓ estimator is enough for our purpose of assessing
the quality of the reconstructed CMB polarization maps in
the presence of noise and component separation errors.

We exclude from the analysis the regions that are most
contaminated by residual foreground contributions as esti-
mated in the previous section. For this purpose we build a
mask based on our reconstruction errors, flagging all pixels
where the sum of the variance errors on the CMB Q and

U maps is greater than the mean value of the same quan-
tity across the whole map. The resulting mask is shown in
Fig. 14 and excludes less than 10% of the sky.

Having only one final map per astrophysical compo-
nent, we do not rely here on a cross spectrum analysis but
on an auto-spectrum approach. This is rather general, and
achieves a lower final noise variance than the cross spectrum
approach (see, e.g., Polenta et al. 2005). The drawback is
that we need to model and subtract a noise bias in the data.
To this extent, we computed the noise bias on the CMB EE
power spectrum by means of 1000 simulated noise maps. To
obtain each of them, we simulated one noise map for each
channel included in the reconstruction of the CMB (70, 100,
143 and 217 GHz), equalized the resolution of all channels to
14′, and combined them with the reconstruction matrix W
as described in the previous section. ROMAster uses these
Monte Carlo data to subtract the noise bias, as well as to
estimate errors on the APS due to noise by computing the
empirical variance of the realization.

To compute the error bars due to residual foreground
contamination, we produced a further set of 100 CMB maps
by perturbing the input spectral index maps as described
in the previous section. For each of them we repeated the
computation of the power spectrum and corrected for the
noise bias, relying for the latter purpose on a smaller (∼ 10)
set of noise-only maps. The noise bias has been estimated
each time with the reconstruction matrix used to obtain
the corresponding CMB map. Even if quite computation-
ally demanding, this procedure is needed because we are in
the noise-dominated regime, and a small error in the noise
bias can substantially affect the estimation of the polarized
power spectrum. Once we got our 100 unbiased CMB power
spectra, we finally computed the errors due to component
separation as the standard deviation of the sample for each
considered multipole bin.

In Fig. 15 we show the noise and the component sep-
aration error bars compared to the EE power spectrum of
the fiducial model. As we can see, the noise contribution is
dominating even on the smallest multipoles over the com-
ponent separation error, which is at most a small correction
to the error budget. In Fig. 16 we show the EE power spec-
trum estimated in a realistic Planck case (diamonds); the
1σ errors are shown by the shaded area. The results for the
noiseless case (squares with the component separation error
bars) show that the accuracy of our estimation of the power
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Fig. 3 A smoothed window function using Gauss-smoothing method with parameters δc = 1◦

and β = 10−4.

where the expression of Bpure
lm is shown in Eq.(22). The Bpure(n̂) is related to B(n̂) in Eq.(9) by

Bpure(n̂) = B(n̂)W (n̂). (33)

The Fig.5 is a visualization of Bpure(n̂). Since we assume CBB
l = 0, all the non-zero value pixels in Fig.5

are attributed to the numerical error.

Interesting enough, the third panel in Fig.5 shows that the numerical errors mostly concentrate on two

bands, due to the program design of HEALPix package. The HEALPix package divides the sky into three

parts, and resembles them after operation, so there will be some residue on the joint. Besides, due to this

kind of residue locates in two narrow bands, we can mask them out to remove most of the contamination

with little information lost. In Fig.6, We mask out two bands centered at 48◦ and 132◦ and the width of each

band is 6◦, then the map looks much cleaner. How to quantify this further reduction on the numerical errors

in the constructed pure B-mode map is another important topic in this area, we leave it as a new work.

In order to quantify the numerical errors of pure B-mode map in harmonic space, we define the pseudo

power spectrum as:
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lm . (34)
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E/B decomposition 
numerical method

• SZ approach [Smith, (2006); Smith and Zaldarriaga (2007)]: the most 
efficient method for estimating the CMB B-mode 
power spectrum in partial sky [Fertè et al. (2013)]  

• Step 1: To compute the spin-0, spin-1 and spin-2 
rendition  of the window function

W0 =W W1 = ∂W W2 = ∂∂W
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− i
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sinθ
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sinθ
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• Step 2: Construct 3 apodized maps

P±2 =W0P±2 P±1 =W∓1P±2 P±0 =W∓2P±2

• Step 3: Generating the new Blm and finally the B-map

!Blm = B0,lm + 2Nl ,1B1,lm + Nl ,2B2,lm( )



The Pseudo Cls
The pseudo estimator Dℓ is defined analogous to (31) in terms of the multipole coefficients (34)

as

Dℓ =
1

2ℓ+ 1

∑

m

aℓma∗ℓm. (37)

Using relations (6), (15) and (35), one obtains that the expectation value of this estimator Dℓ is

related to the true power spectrum CBB
ℓ by the following convolution

⟨Dℓ⟩ =
∑

ℓ′

Mℓℓ′B
2
ℓ′C

BB
ℓ′ =

∑

ℓ′

Mℓℓ′N
2
ℓ′B

2
ℓ′C

BB
ℓ′ . (38)

The coupling matrix M in the above expression can be expressed in terms of 3j symbols as

Mℓ1ℓ2 = (2ℓ2 + 1)
∑

ℓ3

(2ℓ3 + 1)

4π
w′
ℓ3

⎛

⎝

ℓ1 ℓ2 ℓ3

0 0 0

⎞

⎠

2

, (39)

where w′
ℓ is the power spectrum of the window function w′(γ̂) defined in an analogous manner to

(31).

It can be shown that the covariance matrix for the pseudo estimator Dℓ has the form

⟨∆Dℓ∆Dℓ′⟩ =
2

(2ℓ+ 1)(2ℓ′ + 1)

∑

mm′

∑

ℓ1m1

∑

ℓ2m2

B2
ℓ1N

2
ℓ1C

BB
ℓ1 B2

ℓ2N
2
ℓ2C

BB
ℓ2 ×

×Kℓmℓ1m1K
∗
ℓ′m′ℓ1m1

K∗
ℓmℓ2m2

Kℓ′m′ℓ2m2 .

(40)

As it stands, this formula is not useful due to the high cost of computation. However, for high

multipoles, this formula simplifies to [54]

⟨∆Dℓ∆Dℓ′⟩ ≈ 2B2
ℓN

2
ℓ C

BB
ℓ B2

ℓ′N
2
ℓ′C

BB
ℓ′ Mℓℓ′/(2ℓ

′ + 1). (41)

In order to implement and verify the above analytical results we have conducted numerical

calculations using simulated data. In the first instance, we generate 1000 random full sky (Q,

U) maps with no contribution from gravitational waves (i.e. r = 0) and no lensing. For each

realization, we reconstruct the magnetic field Brec(γ̂) and evaluate the pseudo estimator Dℓ. The

average over 1000 realizations Dℓ is plotted (green line) in Fig. 8. Note that, here and below we

use the over-line to denote averaging over simulated realizations, as opposed to the angle brackets

which denote ensemble averaging. The average for the uncleaned spectrum DB̃B̃
ℓ (defined in (31))

is plotted (black line) for comparison on the same figure. For next calculations, we simulate 1000

random full sky maps with contribution from gravitational waves characterized by r = 0.1 and
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SZ method is the best from the perspective of 

significantly reducing E to B leakage and ensuring 

the smallest error bars at the same time ,compared

to the ZB method and KN method.
Harmonic domain:

fast

not applicable at low multipole .  

easy to be implemented

Pixel domain:

slow

applicable at low multipole

SZ method

Ferté, A., Grain, J., Tristram, M., & Stompor, R. . Physical Review D, 88(2), 023524(2013)

Ferte et al (2013)

• The performance on the SZ B-mode reconstruction 
method deteriorates rapidly below l=100 for analytically 
apodized windows, especially containing holes.



A recap: step by step
• Qf        CMB + 2fore + noisek =50 Qmaps 

• Uf        CMB + 2fore + noisek =50 Umaps 

• SZ method for reconstructing the 50 Bf   

• Apply the ABS method 50 times using B030, B043, B075, 
B090, B108, B129, B155, B223, B268, B321 

• Compute the pseudo power spectrum  

• Finally, calculate mean and sttdev



Results: full sky
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Fig. 1.— The B-mode angular power spectra of the simulated full sky maps (without any beam convolution), comparing all the considered
components for three frequency channels: the CMB, noise, synchrotron and thermal dust. From left to right: 030, 129 and 321GHz.

90 < l < 800 the deviation from the “true” spectrum is
less than 25%.

Fig. 2.— Upper panel: The CMB binned B-mode power spec-
trum estimated from the ABS approach from a future experiment
specified in Table 1 for S = 10�noise, considering r = 0. The red
curve corresponds to the CMB B-mode power spectrum from the
sky realization without noise or foregrounds, the “true” spectrum
. The associated 1-� statistical error are also shown as the shadow
region, based on 50 independent realizations of the instrumental
noise. Lowe panel : In comparison with the “true” power spec-
trum, the relative error, Drec

` /Dtrue
` � 1 is shown in the percentage

level for 90 < l < 800. For the other multipole ranges the diver-
gence from the true spectrum reaches ⇡ 2.5⇥ 103 %. The symbol
colors and sizes illustrates deviations from 0%.

In order to test for the robustness of the method,
we used three di↵erent values for the shift parameter,
S = 10�noise, 100�noise, 1000�noise, since it plays a fun-
damental role in the power spectrum estimation, espe-
cially for the B-mode case which has a low signal-to-
noise ratio. As shown previously in (Yao et al. 2018),
the recovered power spectra converge as S increases, be-
ing the results for S = 10�noise, S = 100�noise and
1000�noise almost identical. The biggest di↵erence in
the power spectrum, for these values of S, is of the order
of 10�6µK2.
The same calculations were repeated for r = 0.05 to

demonstrate our present ability to distinguish between
both cases r = 0 and r = 0.05, as it can be seen in
Figure 3. In the latter case, we see that the di↵erence
between the “true” spectrum and the recovered one is
also below 25% for 100 < l < 800. The slight improve-
ment compared to the result for r = 0 is expected due

to the higher CMB signal for low multipoles considering
r = 0.05. However, in this case the relative error from
the true spectrum reaches / 102 %. Even though the
ABS result seems promising for higher multipoles, it is
well-known that resolving the B-mode signal at low `’s
can probe inflation. Improvement of the power spectrum
reconstruction at this low multipole range is then neces-
sary towards a possible detection of the primordial grav-
itational wave imprint in the CMB polarization signal.
It is important to point out that the distinction between
these two cases is still challenging if we consider the ABS
foreground separation method in a full sky approach.

Fig. 3.— The same as Fig 2 for r = 0.05

Finally, in Figure 4 we show the null test, in which
we consider no CMB signal on the Q and U maps,
but only foregrounds and Gaussian noise for S =
10�noise, 100�noise, 1000�noise. As expected, the recov-
ered power spectrum shows a high signal up to l ⇡ 100,
mimicking a possible CMB primordial signal.
In order to avoid the Galactic foreground, responsible

for part of the B-mode contribution to the power spec-
trum, especially for low l’s, we consider masking this sky
region as a next step. Moreover, as it is well-known, the
near future polarization surveys are ground-based exper-
iments which are supposed to measure the polarization
field only in parts of the sky. Therefore, in the next
section, we account for a partial sky analysis.

5.2. The partial sky case
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Fig. 4.— The null result for di↵erent values of the shifting pa-
rameter: S = 10�noise, S = 100�noise and S = 2 = 1000�noise.
For comparison, the red curve refers to the “true” spectrum for
r = 0

In this section, we use the same CMB simulation, fore-
grounds and noise realizations as in the previous one,
however now we consider the B-mode decomposition in
partial sky for each analyzed frequency band, using both
the ABS foreground cleaning approach and the pseudo
power spectrum reconstruction. The result for r = 0
can be seen in Fig 5. Once more, we notice that the
performance of the ABS method in recovering the power
spectrum for `  90 gets slightly better in comparison
with the full sky case. The di↵erence between the recov-
ered spectrum and the “true” spectrum is below 15% for
the mentioned multipole range. For smaller multipoles,
especially accounting for the first three bins, a notice-
able divergence occurs. It is important to point out that
the error bars shown here take into account uncertain-
ties originated from both the ABS method and the pseudo
power spectrum recovering. Even though, we work with
one CMB simulation, small di↵erences in the spectrum
recovered by the ABS due to the di↵erent noise realiza-
tions, translate to bigger errors in the final pseudo power
spectrum. It is important to note that the performance
of SZ B-mode reconstruction method deteriorates rapidly
below ` = 100 for analytically apodized windows, espe-
cially for masks containing holes (as for our case) (Ferte
et al. 2013). The SZ method uncertainties at multipoles
smaller than ` = 100 is known to increase rapidly with
increasing angular scale. Since the objective of this pa-
per is to test the ABS method for foreground removal
we will not pursue a more sophisticated approach for B-
mode reconstruction on partial sky here (like variance-
optimized SZ windows in pixel space ) (Ferte et al. 2013;
Smith 2006; Smith & Zaldarriaga 2007). We will post-
pone the low-` optimization of B-mode reconstruction to
a future work. At present we are unable to comment on
the performance of the ABS method at low multipoles
on a partial sky, due to the large uncertainties coming
from the SZ reconstruction.
Again, we used the three di↵erent values for the

shift parameter mentioned in the previous section, S =
10�noise, 100�noise, 1000�noise, to analyze its impact in
the power spectrum reconstruction. As in the full sky
case, the results converge, being the di↵erence between
the the di↵erent values of S negligible.
Finally, we repeat the calculations for r = 0.05, shown

Fig. 5.— Upper panel: The CMB binned B-mode power spec-
trum estimated from the ABS approach from a future experiment
specified in Table 1 for S = 10�noise, considering r = 0. The
red curve corresponds to the CMB B-mode power spectrum from
the sky realization without noise/foregrounds (“true” spectrum).
The associated 1-� statistical error are also shown as the shadow
region, based on 50 independent realizations of the instrumental
noise. Lowe panel : In comparison with the “true” power spec-
trum, the relative error, Drec

` /Dreal
` � 1 is shown in the percentage

level. The symbol colors and sizes illustrates deviations from
0%. Notice that the relative error was not plotted for the first
3 bins in the lower panel, since it can reach approximately 4⇥104%.

in Figure 6. Once more, we find a divergence between the
first two bins in respect to the “true” spectrum”, being
the divergence of first bin indeed more evident. Nev-
ertheless, in this case, excluding the low multipoles (for
`  90), we again find an agreement with the input power
spectrum within 15%. One must carry on a more careful
analysis for low multipoles, as mentioned before, consid-
ering optimized pseudo power spectrum approaches as
an attempt to resolve the primordial B-mode.

Fig. 6.— The same as Fig 2 for r = 0.05. Again, we did not
plot the relative error for the first bin in the lower panel, since it
reaches / 102 %.

Finally, in Figure 7, we see the results for the null test
for in a partial sky analysis. As previously stated in this
section, an excess of signal is present in the low multi-
pole range, with big uncertainties originated from both
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spectrum. It is important to note that the performance
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cially for masks containing holes (as for our case) (Ferte
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the performance of the ABS method at low multipoles
on a partial sky, due to the large uncertainties coming
from the SZ reconstruction.
Again, we used the three di↵erent values for the

shift parameter mentioned in the previous section, S =
10�noise, 100�noise, 1000�noise, to analyze its impact in
the power spectrum reconstruction. As in the full sky
case, the results converge, being the di↵erence between
the the di↵erent values of S negligible.
Finally, we repeat the calculations for r = 0.05, shown

Fig. 5.— Upper panel: The CMB binned B-mode power spec-
trum estimated from the ABS approach from a future experiment
specified in Table 1 for S = 10�noise, considering r = 0. The
red curve corresponds to the CMB B-mode power spectrum from
the sky realization without noise/foregrounds (“true” spectrum).
The associated 1-� statistical error are also shown as the shadow
region, based on 50 independent realizations of the instrumental
noise. Lowe panel : In comparison with the “true” power spec-
trum, the relative error, Drec

` /Dreal
` � 1 is shown in the percentage

level. The symbol colors and sizes illustrates deviations from
0%. Notice that the relative error was not plotted for the first
3 bins in the lower panel, since it can reach approximately 4⇥104%.

in Figure 6. Once more, we find a divergence between the
first two bins in respect to the “true” spectrum”, being
the divergence of first bin indeed more evident. Nev-
ertheless, in this case, excluding the low multipoles (for
`  90), we again find an agreement with the input power
spectrum within 15%. One must carry on a more careful
analysis for low multipoles, as mentioned before, consid-
ering optimized pseudo power spectrum approaches as
an attempt to resolve the primordial B-mode.

Fig. 6.— The same as Fig 2 for r = 0.05. Again, we did not
plot the relative error for the first bin in the lower panel, since it
reaches / 102 %.

Finally, in Figure 7, we see the results for the null test
for in a partial sky analysis. As previously stated in this
section, an excess of signal is present in the low multi-
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pole range, with big uncertainties originated from both
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the ABS and the pseudo power spectrum approaches, re-
sulting in our poor ability to recover the CMB signal for
big angular scales.

Fig. 7.— The null result for di↵erent values of the shifting pa-
rameter: S = 10�noise, S = 100�noise and S = 2 = 1000�noise.
For comparison, the red curve refers to the “true” spectrum for
r = 0.

6. CONCLUSIONS

In this study, we have tested the ability of the ABS
methodology to recover the CMB B-mode power spec-
trum from contaminated maps. The ABS estimator was
applied to simulated maps, considering a future-like ex-
periment with 10 frequency bands raging from 030GHz
to 321GHz. Taking into account 50 independent noise
realizations, one CMB simulated signal, and two fore-
ground contaminants, leaded us to a set of 50 analyzed
maps from which we reconstruct the B-mode power spec-
trum. We find that the ABS method is able to estimate

of the CMB B-mode power spectrum within 1-� error
bar at most scales corresponding to ` > 90.
In the first case, we calculated the ABS estimator in

full sky for both r = 0 and r = 0.05. The power spec-
trum is recovered with an accuracy of less than 25% for
90 < ` < 800. For low `’s, in the considered experimental
configuration, the ABS method is not able to reconstruct
the power spectrum in the low multipole range. Even
though the ABS result seems promising for higher mul-
tipoles, resolving the B-mode signal at low `’s can probe
the existence of primordial gravitational waves, thus in-
flation. The ABS power spectrum estimation, consider-
ing 10 frequency bands in full sky, is not able to distin-
guish between r = 0 and r = 0.05 and must be improved
in order to detect the primordial signal.
In the second case, we repeated the previous calcula-

tions, but now for a partial sky analysis. We found an
improvement in the recovery of the power spectrum for
` � 90 compared to the full sky case, being the accuracy
of about 15%, for both r = 0 and r = 0.05. However, for
low multipoles, again, the ABS results diverge from the
input CMB spectrum, but now, mainly due to the ine�-
cient B-mode reconstruction in partial sky. The recovery
of the pseudo power spectrum using the SZ methodology
faces di�culties, among others, due to the mask shape,
which induces to big uncertainties on `s below 100. The
performance of the ABS method in partial sky for ` < 90
must be studied in the light of an optimized pseudo power
spectrum reconstruction. We leave this analysis for a fu-
ture work.
Finally, the results of the ABS method are promising,

however improvements must be made, both in the fore-
ground removal (as shown in the full sky case) and in the
pseudo power spectrum reconstruction in a partial sky
analysis, in order to be able resolve a possible primordial
B-mode signal.
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Conclusions

• TheABS method is able to estimate the CMB B-mode PS within 1-
sigma error bar at most scales for l>90 

• Full sky: The PS is recovered with an accuracy of less than 25% for 
90 < l < 800 

• Partial sky: The PS in recovered within 15% accuracy for l > 90 

• In both cases, for low multipoles, the ABS results diverge from the 
input CMB spectrum 

• The ABS methodology MUST be improved in order to resolve the 
possible primordial B-mode signal in future CMB polarization data. 


