A Model of Spinning Massless Particle in the Gravitational Field

Pierre Saturnini

Hot Topics in Modern Cosmology Spontaneus Workshop XIII

IESC Cargèse, May 6-10, 2019

Introduction |

- Particles endowed with mass, spin, charge, magnetic momentum, are usually described using Quantum Mechanics
- The worldlines of point-like particles in General Relativity, are timelike geodesics for massive particles.
- The description of the motion of spinning particles obeys to differential "Universal Equations" (MDP equations). [Mathisson, 1937], [Papapetrou, 1951], [Dixon, 1970]
- However, no equations were provided for massless spinning particles.

Introduction II

- We present an alternative formulation of the principles of GR [JM Souriau, 1974]
- The MPD universal equations for spinning particles follow in a straightforward manner
- It was used to obtain classical equations of motion for spinning massive charged particles with magnetic momentum in GR with the presence of an ElectroMagnetic field [C Duval, 1972]
- It allows us to build a classical model aimed at describing the motion in gavitational fields of massless spinning particles [PS, 1976]

Outline

- The Principle of General Relativity
- Universal Equations for Spinning Particles
- General Conservation Law
- Motion of Massless and Spinning Particles

The Principle of General Relativity - I

\mathcal{U} : Riemannian manifold (C^{∞}, 4-dimensional, open, simply connected, space and time oriented, ...)

The Principle of General Relativity - I

\mathcal{U} : Riemannian manifold (C^{∞}, 4-dimensional, open, simply connected, space and time oriented, ...)
E_{∞} : vector space of all metric tensor fields on \mathcal{U}

The Principle of General Relativity - I

\mathcal{U} : Riemannian manifold (C^{∞}, 4-dimensional, open, simply connected, space and time oriented, ...)
E_{∞} : vector space of all metric tensor fields on \mathcal{U}
G : group of all diffeomorphisms with compact support acting on \mathcal{U}

The Principle of General Relativity - I

\mathcal{U} : Riemannian manifold (C^{∞}, 4-dimensional, open, simply connected, space and time oriented, ...)
E_{∞} : vector space of all metric tensor fields on \mathcal{U}
G : group of all diffeomorphisms with compact support acting on \mathcal{U}
(S) Principle of GR: the action of G is not observable

The Principle of General Relativity - I

\mathcal{U} : Riemannian manifold (C^{∞}, 4-dimensional, open, simply connected, space and time oriented, ...)
E_{∞} : vector space of all metric tensor fields on \mathcal{U}
G : group of all diffeomorphisms with compact support acting on \mathcal{U}
(S) Principle of GR: the action of G is not observable
$C \in S$: subset of metrics with signature $(+--)$

The Principle of General Relativity - I

\mathcal{U} : Riemannian manifold (C^{∞}, 4-dimensional, open, simply connected, space and time oriented, ...)
E_{∞} : vector space of all metric tensor fields on \mathcal{U}
G : group of all diffeomorphisms with compact support acting on \mathcal{U}
(S) Principle of GR: the action of G is not observable
$C \in S$: subset of metrics with signature (+---)
S_{C} : the orbit of C under G

The Principle of General Relativity - I

$$
C: x \mapsto g_{\alpha \beta}(x)
$$

\mathcal{U} : Riemannian manifold (C^{∞}, 4-dimensional, open, simply connected, space and time oriented, ...)
E_{∞} : vector space of all metric tensor fields on \mathcal{U}
G : group of all diffeomorphisms with compact support acting on \mathcal{U}
(S) Principle of GR: the action of G is not observable
$C \in S$: subset of metrics with signature (+---)
S_{C} : the orbit of C under G
Manifold $H=S / G$: "hyperspace"; $\Gamma \in H$ is the class of C

The Principle of General Relativity - II

G is ∞-dimensional \Rightarrow no Lie algebra acting on E_{∞}

The Principle of General Relativity - II

G is ∞-dimensional \Rightarrow no Lie algebra acting on E_{∞}
$V: x \mapsto \delta x=V: C^{\infty}$ vector field with compact support $\Omega_{V} \subset \mathcal{U}$ Lie derivative $L_{V} C=x \mapsto\left[L_{V} g\right]_{\alpha \beta}=\nabla_{\alpha} V_{\beta}+\nabla_{\beta} V_{\alpha}$ where $V_{\mu}=g_{\mu \nu} V^{\nu}$

The Principle of General Relativity - II

G is ∞-dimensional \Rightarrow no Lie algebra acting on E_{∞}
$V: x \mapsto \delta x=V: C^{\infty}$ vector field with compact support $\Omega_{V} \subset \mathcal{U}$
Lie derivative $L_{V} C=x \mapsto\left[L_{V} g\right]_{\alpha \beta}=\nabla_{\alpha} V_{\beta}+\nabla_{\beta} V_{\alpha}$ where $V_{\mu}=g_{\mu \nu} V^{\nu}$
T_{Γ} : tangent space to H at Γ, and $\delta C=x \mapsto \delta g_{\alpha \beta}(x) \in E_{\infty}$

The Principle of General Relativity - II

G is ∞-dimensional \Rightarrow no Lie algebra acting on E_{∞}
$V: x \mapsto \delta x=V: C^{\infty}$ vector field with compact support $\Omega_{V} \subset \mathcal{U}$
Lie derivative $L_{V} C=x \mapsto\left[L_{V} g\right]_{\alpha \beta}=\nabla_{\alpha} V_{\beta}+\nabla_{\beta} V_{\alpha}$ where $V_{\mu}=g_{\mu \nu} V^{\nu}$
T_{Γ} : tangent space to H at Γ, and $\delta C=x \mapsto \delta g_{\alpha \beta}(x) \in E_{\infty}$
Assume that $\delta C \mapsto \delta \Gamma$ is a linear map $E_{\infty} \rightarrow T_{\Gamma}$

The Principle of General Relativity - II

$$
C: x \mapsto g_{\alpha \beta}(x)
$$

G is ∞-dimensional \Rightarrow no Lie algebra acting on E_{∞}
$V: x \mapsto \delta x=V: C^{\infty}$ vector field with compact support $\Omega_{V} \subset \mathcal{U}$
Lie derivative $L_{V} C=x \mapsto\left[L_{V} g\right]_{\alpha \beta}=\nabla_{\alpha} V_{\beta}+\nabla_{\beta} V_{\alpha}$ where $V_{\mu}=g_{\mu \nu} V^{\nu}$
T_{Γ} : tangent space to H at Γ, and $\delta C=x \mapsto \delta g_{\alpha \beta}(x) \in E_{\infty}$
Assume that $\delta C \mapsto \delta \Gamma$ is a linear map $E_{\infty} \rightarrow T_{\Gamma}$ $\delta \Gamma=0$ for any δC tangent to the orbit S_{C} of C under $G: L_{V} C \mapsto \delta \Gamma=0$

The Principle of General Relativity - II

$$
C: x \mapsto g_{\alpha \beta}(x)
$$

G is ∞-dimensional \Rightarrow no Lie algebra acting on E_{∞}
$V: x \mapsto \delta x=V: C^{\infty}$ vector field with compact support $\Omega_{V} \subset \mathcal{U}$
Lie derivative $L_{V} C=x \mapsto\left[L_{V} g\right]_{\alpha \beta}=\nabla_{\alpha} V_{\beta}+\nabla_{\beta} V_{\alpha}$ where $V_{\mu}=g_{\mu \nu} V^{\nu}$
T_{Γ} : tangent space to H at Γ, and $\delta C=x \mapsto \delta g_{\alpha \beta}(x) \in E_{\infty}$
Assume that $\delta C \mapsto \delta \Gamma$ is a linear map $E_{\infty} \rightarrow T_{\Gamma}$
$\delta \Gamma=0$ for any δC tangent to the orbit S_{C} of C under $G: L_{V} C \mapsto \delta \Gamma=0$
T_{Γ} is a vector space as the quotient of two vector spaces
No further assumption needed about the manifold structure of H

The Principle of General Relativity - III

Matter distribution on the universe \mathcal{U}

Definition of the cotangent space $\mu \in T_{\Gamma}^{\star}$:

$$
\begin{gathered}
\mu(\delta \Gamma)=M(\delta C) \Longleftrightarrow\left\{\begin{array}{l}
\forall(x \mapsto V) \text { compactly supported } \\
\delta C: \delta g_{\alpha \beta}=\nabla_{\alpha} V_{\beta}+\nabla_{\beta} V_{\alpha} \\
\mu(\delta \Gamma)=0
\end{array}\right. \\
\langle\mathcal{T} \mid \delta g\rangle=M(\delta C)=\int_{\mathcal{U}} \frac{1}{2} T^{\alpha \beta} \delta g_{\alpha \beta} \text { vol, } \forall \delta C \in E_{\infty} \\
\text { where vol }=\sqrt{|\operatorname{det}(g)|} \mathrm{d} x^{1} \mathrm{~d} x^{2} \mathrm{~d} x^{3} \mathrm{~d} x^{4}
\end{gathered}
$$

$T^{\alpha \beta}$: the stress-energy tensor and $x \mapsto \delta C=\delta g_{\alpha \beta}$: test function
Matter distribution on $\mathcal{U}: \quad\left(x \mapsto T^{\alpha \beta}\right) \leftrightarrow \mu \in T_{\Gamma}^{\star} \leftrightarrow \mathcal{T}: \quad$ tensor distribution

The Principle of General Relativity - IV

Souriau's general covariance condition

(S) $\quad\left\{\begin{array}{l}\forall(x \mapsto V) \text { with compact support } \Omega_{V} \subset \mathcal{U}: \\ \left\langle\mathcal{T} \mid L_{V} g\right\rangle=\int_{\mathcal{U}} \frac{1}{2} T^{\alpha \beta}\left(\nabla_{\alpha} V_{\beta}+\nabla_{\beta} V_{\alpha}\right) \text { vol }=0\end{array}\right.$
T is a symmetric tensor: $\quad T^{\alpha \beta}=T^{\beta \alpha} \Rightarrow$
$\int_{\mathcal{U}} T^{\alpha \beta} \nabla_{\alpha} V_{\beta} \mathrm{vol}=0 \quad \Leftrightarrow \quad \int_{\mathcal{U}} \nabla_{\alpha}\left(T^{\alpha \beta} V_{\beta}\right) \operatorname{vol}-\int_{\mathcal{U}}\left(\nabla_{\alpha} T^{\alpha \beta}\right) V_{\beta} \mathrm{vol}=0 \quad \forall V$

$$
\text { (S) } \Leftrightarrow \quad \nabla_{\alpha} T^{\alpha \beta}=0
$$

Universal Equations for Spinning Particles - I

The distribution \mathcal{T} may be discontinue: it is then supported by a submanifold $\mathcal{M} \subset \mathcal{U}$, e.g., 3, 2 or 1 -dimensional for condensed states of matter

Universal Equations for Spinning Particles - I

The distribution \mathcal{T} may be discontinue: it is then supported by a submanifold $\mathcal{M} \subset \mathcal{U}$, e.g., 3, 2 or 1 -dimensional for condensed states of matter

The worldline Λ of a point-like particle is a one-dimensional submanifold of \mathcal{U}.
$\left\langle\mathcal{T}_{\Lambda} \mid \delta g\right\rangle=\int_{\Lambda} \frac{1}{2} T^{\alpha \beta} \delta g_{\alpha \beta} \mathrm{d} \tau \quad$ where Λ is parametrized by $\tau \in \mathbb{R}$

- $\delta g_{\alpha \beta}$ are test functions for the distribution \mathcal{T}
- $\frac{1}{2} T^{\alpha \beta} \mathrm{d} \tau$ is the tensor density on the curve Λ

Universal Equations for Spinning Particles - I

The distribution \mathcal{T} may be discontinue: it is then supported by a submanifold $\mathcal{M} \subset \mathcal{U}$, e.g., 3, 2 or 1-dimensional for condensed states of matter

The worldline Λ of a point-like particle is a one-dimensional submanifold of \mathcal{U}.
$\left\langle\mathcal{T}_{\Lambda} \mid \delta g\right\rangle=\int_{\Lambda} \frac{1}{2} T^{\alpha \beta} \delta g_{\alpha \beta} \mathrm{d} \tau \quad$ where Λ is parametrized by $\tau \in \mathbb{R}$

- $\delta g_{\alpha \beta}$ are test functions for the distribution \mathcal{T}
- $\frac{1}{2} T^{\alpha \beta} \mathrm{d} \tau$ is the tensor density on the curve Λ

Expanding the distribution \mathcal{T} to first order yields the general form

$$
\left\langle\mathcal{T}_{\Lambda} \mid \delta g\right\rangle=\frac{1}{2} \int_{\Lambda}\left[\Theta^{\alpha \beta} \delta g_{\alpha \beta}+\Psi^{\alpha \beta \gamma} \nabla_{\alpha} \delta g_{\beta \gamma}\right] \mathrm{d} \tau
$$

where $\frac{1}{2} \Theta \mathrm{~d} \tau$ and $\frac{1}{2} \Psi \mathrm{~d} \tau$ are tensor densities on Λ that define \mathcal{T}_{Λ}

Universal Equations for Spinning Particles - II

Souriau's general covariance condition on Λ
(S) $\left\langle\mathcal{T}_{\wedge} \mid L_{V} g\right\rangle=0, \quad \forall(x \mapsto V)$ with compact support $\Omega_{V} \subset \mathcal{U}$ \Downarrow
$\exists P \in T_{x}, S \in T_{x} \otimes T_{x} \mid S$ is skew symmetric: $S^{\alpha \beta}+S^{\beta \alpha}=0$

$$
\begin{gathered}
\left\langle\mathcal{T}_{\Lambda} \mid \delta g\right\rangle=\frac{1}{2} \int_{\Lambda}\left[P^{\mu} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \tau} \delta g_{\mu \nu}+S^{\mu \nu} \frac{\mathrm{d} x^{\rho}}{\mathrm{d} \tau} \nabla_{\mu} \delta g_{\nu \rho}\right] \mathrm{d} \tau \\
P \text { and } S \text { satisfying the }
\end{gathered}
$$

Mathisson-Papapetrou-Dixon "Universal Equations"

$$
(\mathrm{MPD})\left\{\begin{array}{l}
\frac{\hat{\mathrm{d}} P^{\mu}}{\mathrm{d} \tau}=-\frac{1}{2} R_{\rho, \alpha \beta}^{\mu} S^{\alpha \beta} \frac{\mathrm{d} x^{\rho}}{\mathrm{d} \tau} \\
\frac{\hat{\mathrm{~d}} S^{\mu \nu}}{\mathrm{d} \tau}=P^{\mu} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \tau}-P^{\nu} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} \tau}
\end{array}\right.
$$

General Conservation Law

(S) $\Rightarrow\left\langle\mathcal{T} \mid L_{V} g\right\rangle=0 \mid \forall(x \mapsto V)$ with compact support $\Omega_{V} \subset \mathcal{U}$

$$
\left\langle\mathcal{T} \mid L_{V} g\right\rangle=\int_{\mathcal{U}} \nabla_{\alpha}\left(T^{\alpha \beta} V_{\beta}\right) \operatorname{vol}-\int_{\mathcal{U}}\left(\nabla_{\alpha} T^{\alpha \beta}\right) V_{\beta} \mathrm{vol}
$$

If $(x \mapsto W)$ is not compactly supported, we still have $\nabla_{\alpha} T^{\alpha \beta}=0$, but

$$
\left\langle\mathcal{T} \mid L_{W} g\right\rangle=\int_{\mathcal{U}} \nabla_{\alpha}\left(T^{\alpha \beta} W_{\beta}\right) \operatorname{vol} \neq 0
$$

General Conservation Law

(S) $\Rightarrow\left\langle\mathcal{T} \mid L_{V} g\right\rangle=0 \mid \forall(x \mapsto V)$ with compact support $\Omega_{V} \subset \mathcal{U}$

$$
\left\langle\mathcal{T} \mid L_{V} g\right\rangle=\int_{\mathcal{U}} \nabla_{\alpha}\left(T^{\alpha \beta} V_{\beta}\right) \mathrm{vol}-\int_{\mathcal{U}}\left(\nabla_{\alpha} T^{\alpha \beta}\right) V_{\beta} \mathrm{vol}
$$

If $(x \mapsto W)$ is not compactly supported, we still have $\nabla_{\alpha} T^{\alpha \beta}=0$, but

$$
\left\langle\mathcal{T} \mid L_{W} g\right\rangle=\int_{\mathcal{U}} \nabla_{\alpha}\left(T^{\alpha \beta} W_{\beta}\right) \text { vol } \neq 0
$$

For a 1-dimensional manifold Λ, and first order distribution:

$$
\left\langle\mathcal{T} \mid L_{W} g\right\rangle=\int_{\Lambda} \mathrm{d}\left(P^{\alpha} W_{\alpha}+\frac{1}{2} S^{\alpha \beta} \nabla_{\alpha} W_{\beta}\right) \neq 0
$$

General Conservation Law

(S) $\Rightarrow\left\langle\mathcal{T} \mid L_{V} g\right\rangle=0 \mid \forall(x \mapsto V)$ with compact support $\Omega_{V} \subset \mathcal{U}$

$$
\left\langle\mathcal{T} \mid L_{V} g\right\rangle=\int_{\mathcal{U}} \nabla_{\alpha}\left(T^{\alpha \beta} V_{\beta}\right) \operatorname{vol}-\int_{\mathcal{U}}\left(\nabla_{\alpha} T^{\alpha \beta}\right) V_{\beta} \mathrm{vol}
$$

If $(x \mapsto W)$ is not compactly supported, we still have $\nabla_{\alpha} T^{\alpha \beta}=0$, but

$$
\left\langle\mathcal{T} \mid L_{W} g\right\rangle=\int_{\mathcal{U}} \nabla_{\alpha}\left(T^{\alpha \beta} W_{\beta}\right) \text { vol } \neq 0
$$

For a 1-dimensional manifold Λ, and first order distribution:

$$
\left\langle\mathcal{T} \mid L_{W} g\right\rangle=\int_{\Lambda} \mathrm{d}\left(P^{\alpha} W_{\alpha}+\frac{1}{2} S^{\alpha \beta} \nabla_{\alpha} W_{\beta}\right) \neq 0
$$

But if Z is a Killing vector of the metrics (\mathcal{U}, g), i.e., leaves g invariant

$$
L_{z} g=0 \Rightarrow\left\langle\mathcal{T} \mid L_{z} g\right\rangle=0 \quad \Rightarrow \quad P^{\alpha} Z_{\alpha}+\frac{1}{2} S^{\alpha \beta} \nabla_{\alpha} Z_{\beta}=\text { const. }
$$

Noetherian-like first integral, independent from any model of particle

Motion of Massless and Spinning Particles

(MPD) equations are not deterministic: an equation for $\frac{\mathrm{d} x}{\mathrm{~d} \tau}$ is missing

Motion of Massless and Spinning Particles

(MPD) equations are not deterministic: an equation for $\frac{\mathrm{d} x}{\mathrm{~d} \tau}$ is missing
Equations of State for P and S, compatible with (MPD):

$$
\begin{aligned}
& \left\{\begin{array}{l}
P_{\mu} P^{\mu}=0 ; \quad P \text { future-pointing } \\
S^{\alpha \beta} P^{2}
\end{array}\right. \\
& S^{\alpha \beta} P_{\alpha}=0 ; S \neq 0 \forall x \in \Lambda \\
& \Longrightarrow \quad \star(S)^{\alpha \beta} P_{\beta}=\chi s P^{\alpha} \Rightarrow S^{\mu \nu} S_{\nu \mu}=-2 s^{2}=\text { const. }
\end{aligned}
$$

$\chi= \pm 1$: helicity, and $s \geq 0$: (scalar) spin ($s=\hbar$ for a photon)
\star is the Hodge star, $R(S)_{\mu \nu}=R_{\alpha \beta, \mu \nu} S^{\alpha \beta}, \operatorname{pf}(R(S)=\star(R(S)) \cdot R(S)$

Motion of Massless and Spinning Particles

(MPD) equations are not deterministic: an equation for $\frac{\mathrm{d} x}{\mathrm{~d} \tau}$ is missing
Equations of State for P and S, compatible with (MPD):

$$
\begin{aligned}
& \left\{\begin{array}{l}
P_{\mu} P^{\mu}=0 ; \quad P \text { future-pointing } \\
S^{\alpha \beta} P_{\alpha}=0 ; S \neq 0 \forall x \in \Lambda
\end{array}\right. \\
& \Longrightarrow \quad \star(S)^{\alpha \beta} P_{\beta}=\chi s P^{\alpha} \Rightarrow S^{\mu \nu} S_{\nu \mu}=-2 s^{2}=\text { const. }
\end{aligned}
$$

$\chi= \pm 1$: helicity, and $s \geq 0$: (scalar) spin ($s=\hbar$ for a photon)
\star is the Hodge star, $R(S)_{\mu \nu}=R_{\alpha \beta, \mu \nu} S^{\alpha \beta}, \operatorname{pf}(R(S)=\star(R(S)) \cdot R(S)$
Complete system of equations:

$$
\begin{aligned}
& \frac{\mathrm{d} x^{\mu}}{\mathrm{d} \tau}=P^{\mu}+\frac{2}{R_{\lambda \mu, \nu \rho} S^{\lambda \mu} S^{\nu \rho}} S^{\mu \alpha} R_{\alpha \beta, \lambda \rho} S^{\beta \lambda} P^{\rho} \\
& \frac{\hat{\mathrm{d}} P^{\mu}}{\mathrm{d} \tau}=-\chi s \frac{\mathrm{pf}(R(S))}{R_{\lambda \mu, \nu \rho} S^{\lambda \mu} S^{\nu \rho}} P^{\mu} \\
& \frac{\hat{\mathrm{d}} S^{\mu \nu}}{\mathrm{d} \tau}=P^{\mu} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \tau}-\frac{\mathrm{d} x^{\mu}}{\mathrm{d} \tau} P^{\nu}
\end{aligned}
$$

Motion of Spinless Particles

In the present framework, equations for spinless particles are obtained by limiting the distribution \mathcal{T}_{Λ} to the monopole term, i.e., by setting the dipolar term to zero.

This means that the equations of state for these particles are:

$$
\left\{\begin{array}{l}
P_{\mu} P^{\mu}=\text { const. } \geq 0 \\
S=0
\end{array}\right.
$$

Then the (MPD) equations become

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x^{\mu}}{\mathrm{d} \tau}=P^{\mu} \\
\frac{\hat{\mathrm{d}} P^{\nu}}{\mathrm{d} \tau}=0
\end{array}\right.
$$

which is the equation of a time-like or null geodesic: the usual "Principle of Geodesics" is recovered.

Summary

Souriau's formulation of the principles of General Relativity yields
\checkmark the MPD universal equations for the motion of spinning particles;
\checkmark the conservation law associated with a Killing vector;
\checkmark by setting the equation of state

$$
\bar{P} . P=0, \quad S P=0 \Rightarrow\left\{\star(S) P=\chi s P ; \operatorname{Tr}\left(S^{2}\right)=-s^{2}\right\}
$$

it also yields the complete system of equations for a massless spinning particle:

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} \tau}=P+\frac{2}{R(S)(S)} S \cdot R(S) P \\
& \frac{\hat{\mathrm{~d}} P}{\mathrm{~d} \tau}=-\chi s \frac{\operatorname{pf}(R(S))}{R(S)(S)} P \\
& \frac{\hat{\mathrm{~d}} S}{\mathrm{~d} \tau}=P \cdot \frac{\overline{\mathrm{~d} x}}{\mathrm{~d} \tau}-\frac{\mathrm{d} x}{\mathrm{~d} \tau} \cdot \bar{P}
\end{aligned}
$$

References

[1] M. Mathisson, Neue Mechanik materieller Systeme, Acta Phys. Pol. 6, 163 (1937); Das zitternde Elektron und seine Dynamik, Acta Phys. Pol. 6, 218 (1937).
[2] A. Papapetrou, Spinning test-particles in general relativity. I, Proc. R. Soc. A 209, 248 (1951).
[3] W. G. Dixon, Dynamics of extended bodies in general relativity. I. Momentum and angular momentum, Proc. R. Soc. A 314, 499 (1970).
[4] C. Duval, H. H. Fliche, and J.-M. Souriau, Un modèle de particule à spin dans le champ gravitationnel et électro-magnétique, C. R. Seances Acad. Sci., Ser. A 274, 1082 (1972).
[5] C. Duval, Ph.D. thesis, Université de Provence, 1972 (unpublished).
[6] J.-M. Souriau, Modèle de particule à spin dans le champ électromagnétique et gravitationnel, Ann. Inst. Henri Poincaré, A 20, 315 (1974).
[7] P. Saturnini, Ph.D. thesis, Université de Provence, 1976, https://hal.archives-ouvertes.fr/tel-01344863.

Thank you for your attention

BACKUP

Some definitions

- The Hodge star

```
\(\left(e_{1}, e_{2}, e_{3}, e_{4}\right)\)
\(\star\left(e_{\lambda} \wedge e_{\mu}\right)=\varepsilon_{\lambda \mu \nu \rho} e_{\nu} \wedge e_{\rho}\)
\(\varepsilon_{\lambda \mu \nu \rho}\)
```

orthonormal oriented basis of T_{x} *() linear map
Levi-Civita tensor $\left(\varepsilon_{1234}=1\right)$

- Tensors \& linear map
$S^{\lambda \mu} \in T_{x} \otimes T_{x}$: skew symmetric contravariant tensor: $S^{\mu \nu}+S^{\nu \mu}=0$ $S^{\lambda}{ }_{\mu}=g_{\mu \nu} S^{\lambda \nu}$: skew symmetric linear map $S: T_{x} \rightarrow T_{x}$:
$g(S V, W)+g(V, S W)=0 \quad \forall V, W \in T_{x}$
$S_{\mu \nu}=g_{\lambda \mu} S^{\lambda}{ }_{\nu}$: skew symmetric covariant tensor: $S_{\mu \nu}+S_{\nu \mu}=0$
- Pfaffian

$$
\begin{array}{lll}
F & \text { skew linear map: } & F \cdot(\star F)=(\star F) \cdot F=\operatorname{pf}(F) \cdot \mathbb{I} \\
\star F & \text { skew linear map: } & \operatorname{pf}(\star F)=-\operatorname{pf}(F) \\
\operatorname{det} F=-\operatorname{pf}(F)^{2} &
\end{array}
$$

- Coordinate-free notation
$R(S)$: skew symmetric linear map; $R(S)_{\nu}^{\mu}=R_{\nu, \alpha \beta}^{\mu} S^{\alpha \beta}$
$S . R(S)$: linear map
$R(S)(S)=R_{\alpha \beta, \mu \nu} S^{\alpha \beta} S^{\mu \nu} \in \mathbb{R}$

Coordinate-free equations

P is a (contravariant-)vector whose components are P^{μ} \bar{P} is the corresponding (co-)vector whose components are $\bar{P}_{\lambda}=g_{\mu \lambda} P^{\mu}$

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} \tau}=P+\frac{2}{R(S)(S)} S \cdot R(S) P \\
& \frac{\hat{\mathrm{~d}} P}{\mathrm{~d} \tau}=-\chi s \frac{\mathrm{pf}(R(S))}{R(S)(S)} P \\
& \frac{\hat{\mathrm{~d}} S}{\mathrm{~d} \tau}=P \cdot \frac{\overline{\mathrm{~d} x}}{\mathrm{~d} \tau}-\frac{\mathrm{d} x}{\mathrm{~d} \tau} \cdot \bar{P}
\end{aligned}
$$

