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of the physical field, namely the refractive index in this case. Quite a large number of

articles following these references have, since then, been published in this rapidly evolving

subject in optics; see, e.g., [?] for an up-to-date overview. At this stage, it should be

emphasized that the SHEL, originally studied from a theoretical perspective, has lately

been observed experimentally using techniques of Weak Quantum Measurement [?, ?]

that are well adapted to wavelengths in the nanometer range. Hence the subject rests on

strong theoretical and also experimental bases.
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Figure 1: The Fedorov-Imbert e↵ect for reflection: A plane glass surface (repre-
sented by the rectangle) reflects an incoming, circularly polarized light beam. The
dashed lines indicate the orthogonal projections of incoming and reflected light
beams onto the glass surface. The dotted line (between the blobs) is the o↵set
between the reflected beam and a hypothetical reflected beam of spinless photons
(not shown in the figure). The o↵set is of the order of the wavelength of the light
beam.

It is noteworthy that the SHEL was shown to admit, rather unexpectedly, a full-

fledged description [?, ?] in terms of symplectic geometry based on the generic coadjoint

orbits of the Euclidean group E(3) with “built-in” Berry connection. This formalism was

then used to derive the equations of motion of photons in arbitrary inhomogeneous [?],

anisotropic [?] optical media, as well as polarized classical light rays in inhomogeneous

media [?]. The crux of the theory was the occurrence, via plain gravitational minimal

coupling, of a spin-curvature coupling term responsible for an anomalous velocity. It is

this specific geometrical standpoint, conveniently adapted to general relativity (GR), that

we will espouse in the present work.

With the advantage of our previous experience with SHEL, our purpose will therefore

be two-fold. We will first set up a purely geometric (and classical) formalism to describe

the motion of spinning massless particles in GR. They are governed by highly non-linear

ordinary di↵erential equations presented in Section ?? and specialized to the setting of
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Figure: The Fedorov (1955) Imbert (1972) effect for reflection: A plane
glass surface reflects an incoming, circularly polarized light beam. The
dashed lines indicate the orthogonal projections of incoming and
reflected light beams onto the glass surface. The dotted line (between
the blobs) is the offset between incoming and reflected beams. It is of the
order of the wavelength of the light beam.
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Generalizing the geodesic equation

Let Xµ(τ) be the trajectory of a massless spinless particle with
4-velocity dXµ/dτ and 4-momentum Pµ. Its equations of motion,
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have one conserved quantity, PµPµ = 0. Souriau 1974 & Saturnini
1976 add spin using the antisymmetric spin tensor Sµν.



Now there are three more conserved quantities:

Pµ
d
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Xµ = 0 ,

the Tulczyjew condition 1959,

Sµ
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and the “scalar spin” s,
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Photons have
s = ±~.



Figure: The trajectory of photons, x(t), in a flat Robertson-Walker
universe in comoving coordinates is the helix. The dashed line is the null
geodesic. The transverse spin s⊥e at emission time te is indicated by the
short arrow at the left.



The spin 3-vector s precesses in lockstep around the null geodesic
and the norm of its transverse part is almost conserved:

|s⊥|
√

a′2 + K = constant , with K := 1
6

(3)R .

Denote by ∼ linearization in |s⊥e | λe/(2π ~ ae), λe being the wave-
length at emission.
Then the instantaneous period of the helix is
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The radius of the helix is
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2π
,

implying |dx/dt | ∼
√

2 c.



An exotic definition of redshift
The conventional definition of redshift z is in terms of the atomic
period Te of light emitted by an excited atom and the same period
T0 at reception today:

z + 1 =
T0

Te
=

a(t0)

a(te)
.

In order to address the dark matter problem, we imagine that the
photon on its trajectory from a supernova to us counts the number
of its precessions:

z + 1 =
Thelix(t0)

Thelix(te)
=

a(t0)

a(te)

1 + Q(te)

1 + Q(t0)
.

Fitting this exotic formula to the Hubble diagram of the 740 type Ia
supernovae of the Joint Light curve Analysis yields indeed a much
lower mass density of our universe (1σ errors) and at the same
time solves the cosmological constant problem (if you believe that
there is one):

Ωm0 = −0.15 ± 0.07, ΩΛ0 = (−3 ± 2) 10−4.



Conclusions and questions

• The gravitational field of an expanding universe produces
birefringence of light.

• This birefringence carries information on the acceleration of the
universe.

• Can this birefringence be measured?


