# SM Dark Matter? Colored Dark Matter 3) Supercool Dark Matter

Alessandro Strumia Cargese, 2019



Horizon 2020 European Union funding for Research & Innovation



European Council

Research

# 1) DM within the SM?

Jaffe: the spin 0 iso-singlet di-baryon S = uuddss could have a large binding:



Farrar: if huge binding  $E_B \gtrsim 2m_s$  such that  $M_S < 2(M_p + M_e)$ , S is (co)stable with p, n due to conservation of baryon number. Maybe S could be small enough to be a marginally acceptable DM candidate.

# **Thermal relic abundance**

Interactions with strange hadrons (e.g.  $\Lambda \Lambda \leftrightarrow SX$ ) keep S in thermal equilibrium until  $\Lambda = uds$  get Boltzmann suppressed at  $T_{dec} \sim M_{\Lambda} - M_p$  and S decouples.

Relic S abundance  $\approx$  thermal S abundance at decoupling.

DM abundance  $\Omega_S \sim 5\Omega_b$  reproduced for  $M_S \approx 1.3 \text{ GeV}$  at the observed  $Y_b$ 



(Possible production at  $T \sim \Lambda_{QCD}$  made irrelevant by later thermalisation).

# **Nuclear decay**

A too light S makes nuclei unstable. Excluded by SuperKamiokande

 $\tau(O \rightarrow SX) > 10^{26-29} \,\mathrm{yr}$ 

where  $X = \{\pi\pi, \pi, e, \gamma\}$ . The decay dominantly proceeds trough double  $\beta$  production of virtual  $\Lambda^*$ . Recent fits of nucleon potentials and O wave-function imply a too fast decay.



 $M_{S} \approx 1.84 \,\text{GeV}$  co-stable but QCD interactions keep it thermal: small  $\Omega_{\text{DM}}$ .

Conclusion: lattice indicates that  $\mathcal{S}$  is a loosely bound state similar to deuteron.

# 2) Colored DM??

# Theory

As everybody knows DM must be WIMP, colored DM is obviously excluded. Writing a DM review I failed to proof the obvious: colored DM is allowed.

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \bar{\mathcal{Q}}(i\not\!\!D - M_{\mathcal{Q}})\mathcal{Q}.$$

Q is a new colored particle. We assume a Dirac fermion octet with no weak interactions, no asymmetry: 'quorn'. (Alternatives: a  $(3,1)_0$ , a (3,2), a scalar...). Could be a Dirac gluino; could be a fermion of natural KSVZ axion models.

Relic density:  $\Omega_Q h^2 \sim 0.1 M_Q/8$  TeV before confinement. Later hadrons form...

# The DM candidate

• DM can be the Q-onlyum hadron QQ in its ground state: big binding  $E_B \sim \alpha_3^2 M_Q \sim 200 \text{ GeV}$  and small radius  $a \sim 1/\alpha_3 M_Q$ , so small interactions.



Hybrids Qg and/or Qqq' have large σ ~ 1/Λ<sup>2</sup><sub>QCD</sub> and small E<sub>B</sub> ~ Λ<sub>QCD</sub>. Excluded by DM bounds, unless their relic abundance is small enough.
Hybrids have zero relic abundance, if cosmology has infinite time to thermalise.
A hybrid recombines M<sub>Pl</sub>/Λ<sub>QCD</sub> ~ 10<sup>19</sup> times in a Hubble time.
Meeting q, g is more likely, n<sub>q,q</sub> ~ 10<sup>14</sup>n<sub>Q</sub>. Result: n<sub>hybrid</sub> ~ 10<sup>-5</sup>n<sub>DM</sub>.

# **Cosmological evolution**



1) Usual decoupling at  $T \sim M_Q/25$ , Sommerfeld and bound states included.

- 2) Recoupling at  $T \gtrsim \Lambda_{QCD}$  because  $\sigma_{bound} \sim 1/T^2$ .
- 3) Hadronization at  $T \sim \Lambda_{QCD}$  and 'fall': half QQ, half  $Q\bar{Q} \rightarrow gg, q\bar{q}$ .
- 4) Redecoupling at  $T \sim \Lambda_{QCD}/40$  determines  $\Omega_{QQ} \approx \Omega_Q/2$ ,  $\Omega_{hybrid} \sim 10^{-5} \Omega_{QQ}$ .

## Fall

QQ form and break with initial distance  $b \sim 1/\Lambda_{QCD}$ , initial  $E_B \sim \Lambda_{QCD}$ , big  $\sigma \sim 1/\Lambda_{QCD}^2$  thanks to big  $\ell \sim M_Q bv$ .



 $\sigma_{fall}$ : formation of QQ and falling to an unbreakable (deep enough) level.

### Fall cross section: abelian approx

 $M_Q = 12.5 \text{ TeV}$ 

 $\mathcal{Q}\mathcal{Q}$  unbreakable if it radiates

 $\Delta E \gtrsim T$ 

before the next collision after

 $\Delta t \sim \frac{1}{n_\pi v_\pi \sigma_{\rm QCD}}$ 

Guaranteed at  $T \ll M_{\pi}$ . The radiated energy is classical for  $n, \ell \gg 1$  and minimal for circular orbits. Abelian computation:



$$\frac{\Delta E}{\Delta t} = \langle W_{\text{Larmor}} \rangle \simeq \frac{2\alpha^7 \mu^2}{\underbrace{3n^8}_{\text{circular}}} \times \underbrace{\frac{3 - (\ell/n)^2}{2(\ell/n)^5}}_{\text{elliptic enhancement}}$$

## Fall cross section: non abelian

By radiatiating a colored gluon the bound state changes  $1 \leftrightarrow 8_{A,S}$ . Classical limit for large  $n, \ell$ : unknown. We did a brute-force quantum computation

$$\begin{split} \sigma_\ell &= 4\pi \frac{2\ell+1}{M_Q^2 v_{\text{rel}}^2} \underbrace{\sin^2 \delta_\ell}_{1/2} & \text{up to large} & \ell_{\text{max}} \sim \frac{M_Q v_{\text{re}}}{\Lambda_{\text{QCD}}} \\ \sigma_{\text{QCD}} &= \sum_{\ell=0}^{\ell_{\text{max}}} \sigma_\ell \sim \frac{1}{\Lambda_{\text{QCD}}^2}, & \sigma_{\text{fall}} = \sum_{\ell=0}^{\ell_{\text{max}}} \sigma_\ell \wp_\ell. \end{split}$$

Compute  $\wp_{\ell}$ : brute-force sum over all quantum partial widths. We are in the worst QCD region: unclear if octet bound states exist down to  $E_B \sim \Lambda_{\text{QCD}}$ :

- If yes,  $8_A \rightarrow 1g$  decays are fast:  $\wp_\ell$  cut by kinematics, simple analytic result.
- If not,  $1 \rightarrow 1gg$  decays are slower: computed numerically.

Non perturbative  $\alpha_3$ : could emit 100g with  $E \sim \text{GeV}$  in one shot.

### **Relic abundances**



DM abundance for  $M_Q \approx 12.5 \text{ TeV}$ . Hybrids suppressed by  $10^{3-5}$ .

# **Direct detection of DM**

Interaction QQ/gluon analogous to Rayleigh interaction hydrogen/light:

$$\mathscr{L}_{\mathsf{eff}} = c_E M_{\mathsf{DM}} \bar{B} B \bar{E}^{a2}.$$

Polarizability coefficient estimated as  $c_E \sim 4\pi a^3$  in terms of the Bohr-like radius  $a = 2/(3\alpha_3 M_Q)$ . Actual computation gives a bit smaller

$$c_E = \pi \alpha_3 \langle B | \vec{r} \frac{1}{H_8 - E_{10}} \vec{r} | B \rangle = (0.36_{\text{bound}} + 1.17_{\text{free}}) \pi a^3$$

so that the spin-independent cross section is below bounds

$$\sigma_{\rm SI} \approx 2.3 \ 10^{-45} \, {\rm cm}^2 \times \left(\frac{20 \, {\rm TeV}}{M_{\rm DM}}\right)^6 \left(\frac{0.1}{\alpha_3}\right)^8 \left(\frac{c_E}{1.5\pi a^3}\right)^2$$



# Indirect detection of DM

Analogous to hydrogen:

$$\sigma_{H\bar{H}} v_{\rm rel} \sim \frac{1}{\alpha m_e^2} \gg \frac{\alpha^2}{m_e^2}$$

Atomic size, because enhanced and dominated by recombination

$$(ep) + (\bar{e}\bar{p}) \rightarrow (e\bar{e}) + (p\bar{p}) \rightarrow \cdots$$

 $m_p \gg m_e$ : simple and exothermic. DM annihilation dominated by

$$(\mathcal{Q}\mathcal{Q}) + (\bar{\mathcal{Q}}\bar{\mathcal{Q}}) \to (\mathcal{Q}\bar{\mathcal{Q}}) + (\mathcal{Q}\bar{\mathcal{Q}}).$$

Not exothermic, no  $v_{rel}$ :

$$\sigma_{\rm ann} \sim rac{1}{lpha_3 M_Q^2}$$

Enhanced by dipole Sommerfeld:

$$\sigma_{\rm ann} v_{\rm rel} \sim \frac{v_{\rm rel}^{3/7}}{M_{\mathcal{Q}}^2 \alpha_3^{12/7}} \sim 3 \ 10^{-25} \frac{\rm cm^3}{\rm sec} \times \left(\frac{20 \, {\rm TeV}}{M_{\rm DM}}\right)^2.$$



# Collider detection of ${\mathcal Q}$

QCD pair production,  $pp \rightarrow Q\bar{Q}$ , two stable hadron tracks, possibly charged.

Discovering  $M_Q \sim 12.5 \text{ TeV}$  needs a pp collider at  $\sqrt{s} \gtrsim 85 \text{ TeV}$ .

LHC:  $M_{Q} \gtrsim 2 \text{ TeV}$ . (Q below 10 TeV excluded by direct detection).

Please don't build a  $\mu$  collider.

# Hybrids Qq, $Qq\bar{q}'$

Strongly Interacting Massive Particles with big  $\sigma \sim \sigma_{QCD}$  don't reach underground detectors. Excluded by balloons and over-heating if  $\Omega_{SIMP} = \Omega_{DM}$ .

 $\Omega_{
m SIMP} \sim 10^{-4} \Omega_{
m DM}$  is allowed

**SIMP searches in nuclei**: best bounds:

 $\frac{N_{\text{SIMP}}}{N_n} < \begin{cases} 3 \ 10^{-14} & \text{Oxygen in Earth} \\ 10^{-16} & \text{Enriched C in Earth} \\ 10^{-12} & \text{Iron in Earth} \\ 4 \ 10^{-14} & \text{Meteorites} \end{cases}$ 

for  $M_{\mathrm{SIMP}} \sim 10 \,\mathrm{TeV}$ 

The predicted **primordial** cosmological average is  $N_{\text{SIMP}}/N_n \sim 10^{-8}$ . Difficult to predict abundance in Earth nuclei. Rough result:

Our SIMPs allowed if don't bind to nuclei, borderline otherwise

Qg presumably lighter than  $Qq\bar{q}'$ , that thereby decay. Similarly for QQg, Qqqq. Qg is iso-spin singlet:  $\pi^a$  cannot mediate long-range nuclear forces. Heavier mesons mediate short-range forces, not computable from 1st principles. If attractive  $\mathcal{Q}_g$  can bind to big nuclei,  $A \gg 1$ . If repulsive  $\mathcal{Q}_g$  remains free.

#### In any case, SIMPs sank in the primordial (fluid) Earth and stars.

# Secondary hybrids

SIMPs that hit the **Earth** get captured and thermalise in the upper atmosphere.

Accumulated mass =  $M = \rho_{\text{SIMP}} v_{\text{rel}} \pi R_E^2 \Delta t \sim 25 \text{ Mton} \sim 10^4 \times \text{(fossile energy)}.$ 

Average density = 
$$\left\langle \frac{N_{\text{SIMP}}}{N_n} \right\rangle_{\text{Earth}} = \frac{M}{M_Q} \frac{m_N}{M_{\text{Earth}}} \approx 10^{-18}$$
, where are SIMPs now?

• If SIMPs do not bind to nuclei: SIMPs sink with  $v_{\rm thermal} \approx 40 \,{\rm m/s}$ ,  $v_{\rm drift} \approx 0.2 \,{\rm km/yr}$  and  $\delta h \sim 25 \,{\rm m}$ . Density in the crust:  $N_{\rm SIMP}/N_n \sim 10^{-23}$ . Rutherford back-scattering?

 If SIMPs bind to nuclei: BBN could make hybrid He; collisions in the Earth atmosphere could make hybrid N, O, He kept in the crust kept by electromagnetic binding.

Meteorites are byproducts of stellar explosions: do not contain primordial SIMPs; accumulate secondary SIMPs only if captured by nuclei

$$\frac{N_{\text{SIMP}}}{N_n}\Big|_{\text{meteorite}} = \frac{\rho_{\text{SIMP}}}{M_Q}\sigma_{\text{capture}}v_{\text{rel}}\Delta t \approx 10^{-14}\frac{\sigma_{\text{capture}}}{0.01/\Lambda_{\text{QCD}}^2}$$

# 3) Super-Cool DM

Usual "WIMP miracle": observed DM density reproduced with TeV-scale particle, that freeze-out at  $T \approx M_{\text{DM}}/\ln \lambda$  with  $\lambda = M_{\text{PI}}M_{\text{DM}}\langle\sigma_{\text{ann}}v_{\text{rel}}\rangle\sqrt{\pi g_{\text{SM}}/45}$ .

A new mechanism achieves the same in theories where the weak scale is dynamically generated trough dimensional transmutation. Coleman-Weinberg used the Higgs, but predicted  $M_h \ll 125 \,\text{GeV}$ . New physics needed, many recent proposals: new strong interactions, warped extra dimensions... a new scalar:

A sample model: weakly coupled SU(2)<sub>X</sub>  $G_{SM} \otimes SU(2)_X$  with one extra scalar S, doublet under SU(2)<sub>X</sub> and potential  $V = \lambda_H |H|^4 - \lambda_{HS} |HS|^2 + \lambda_S |S|^4$ .

# Weakly coupled $SU(2)_X$ model

- 1) Dynamically generates the weak scale and weak scale DM
- 2) **Preserves** the successful automatic features of the SM: B, L...
- 3) Gets DM stability as one extra automatic feature.

1)  $\lambda_S$  runs negative at low energy:

$$\lambda_S \simeq \beta_{\lambda_S} \ln \frac{s}{s_*} \quad \text{with} \qquad \beta_{\lambda_S} \simeq \frac{9g_X^4}{8(4\pi)^2}$$
$$S(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ w+s(x) \end{pmatrix} \qquad w \simeq s_* e^{-1/4}$$
$$H(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h(x) \end{pmatrix} \qquad v \simeq w \sqrt{\frac{\lambda_{HS}}{2\lambda_H}}$$

2) No new Yukawas.

3) SU(2)<sub>X</sub> vectors get mass  $M_X = \frac{1}{2}g_X w$  and are automatically stable.

# DM is usual relic if $g_X \gtrsim 1$

DM abundance reproduced for

$$\sigma v_{\text{ann}} + \frac{1}{2} \sigma v_{\text{semi-ann}} = \frac{11g_X^2}{1728\pi w^2} + \frac{g_X^2}{64\pi w^2} \approx 2.2 \times 10^{26} \frac{\text{cm}^3}{\text{s}}$$

fixes  $g_X = w/2 \text{ TeV}$ , so all is predicted in terms of one parameter e.g.  $g_X$ :



# Smaller $g_X$ gives super-cooling

At large temperature thermal masses  $m^2 + g^2T^2$  restore symmetry: s, h = 0. Any T is large in theories with m = 0: the universe remains trapped at s, h = 0.

• For large  $g_X \sim 1$  quantum tunnelling is fast enough that the Universe exits to  $h, s \neq 0$  trough a first order SM/dark phase transition. Gravity waves:

 $f_{\rm peak} \approx 0.3 \,{\rm mHz}$   $\Omega_{\rm peak} h^2 \approx 2 \,\, 10^{-11}.$ 

• For small  $g_X$  the universe remains trapped in a thermal inflationary phase.

# Super-cool DM

If all masses come from the vev of a 'dilaton' scalar s, it remains trapped at s = 0 because  $V \sim g^2 T^2 s^2 + \lambda_S(s) s^4$ . Thermal inflation starts at  $T_{infl}$ :

$$\frac{g_*\pi^2 T_{\rm infl}^4}{30} = V_{\rm A} = \frac{3H^2 M_{\rm Pl}^2}{8\pi}.$$

DM and everybody is massless so **super-cools** down to some  $T_{end}$  at which vevs develop: the universe reheats up to  $T_{RH} \approx T_{infl} \min(1, \Gamma/H)^{1/2}$ . DM abundance:

$$Y_{\text{DM}} \approx Y_{\text{DM}|\text{super-cool}} + Y_{\text{DM}|\text{sub-thermal}}$$
$$= Y_{\text{DM}}^{\text{eq}} \frac{T_{\text{RH}}}{T_{\text{infl}}} \left(\frac{T_{\text{end}}}{T_{\text{infl}}}\right)^3 + \lambda \frac{2025g_{\text{DM}}^2}{128\pi^7 g_{\text{SM}}^2} e^{-2z_{\text{RH}}} (1+2z_{\text{RH}})$$

Super-cool DM is colder than cold: this has minor implications.

**QCD ends super-cooling**:  $y_t h \langle \bar{t}t \rangle$  induces  $\langle h \rangle_{\text{QCD}} \sim \Lambda_{\text{QCD}}$  so  $M_s^2|_{\text{QCD}} = -\lambda_{HS} \langle h \rangle_{\text{QCD}}^2 / 2$  so s, h roll down when  $M_s^2|_{\text{total}} < 0$ : at  $T_{\text{end}} \sim \Lambda_{\text{QCD}}$  or below.

#### If $T_{end} \sim \Lambda_{QCD}$ the DM abundance is reproduced for $M_{DM} \lesssim \text{TeV}$ .

Like WIMP 'miracle'; but super-cool  $Y_{DM}$  does not depend on DM couplings.

# **Computations in specific models**

 $SU(2)_X$  model

 $U(1)_{B-L}$  model



 $M_{\rm DM}/M_{Z'} = 0.5$ 

GeV-scale s enhances direct detection, is bounded by LEP, tested by SHiP

# Baryogenesis

Super-cooling erases pre-existing  $Y_B$ .

- If  $T_{\text{RH}} < T_{\text{sph}} \approx 132 \,\text{GeV}$  one needs **low scale 'cold' baryogenesis**. Model gives out-of-equilibrium, extra CP violation needed: axions? extra H'?...
- If  $T_{\mathsf{RH}} > T_{\mathsf{sph}}$  one needs **low-scale leptogenesis**. Model with  $U(1)_{B-L}$  and  $(B-L)_S = 2$  such that right-handed neutrinos N get weak-scale mass from  $y_S SNN$ . Quasi-degenerate N can give  $Y_L$ .

# Conclusions

1) The di-baryon uuddss is not an acceptable DM candidate.

2) A new 12.5 TeV quark Q gives acceptable DM, with unusual signals.

3) Supercooling can generate the DM abundance for TeV-scale particles.