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INFLATION (BASICS)

m Solves many previous problems of the standard Big Bang
evolution of the universe.
m (aH) " exponentially decreases — negative pressure fluid.
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INHOMOGENEITIES

m There are inhomogeneities both in the scalar field and in the
metric which are important due to the exponential
expansion of the universe.

m How do we study them?
Cosmological perturbation theory.
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Well known
BUT

dangerous when studying perturbations large enough.
(PHB's?)
m Alternatives?




GRADIENT EXPANSION

m The characteristic scale of inhomogeneities is larger that the
Hubble horizon scale L > H™

with o < 1
m Each spatial derivative introduces a O(o).




LEADING ORDER IN GRADIENT EXPANSION
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m Are those patches completely independent at leading order
in gradient expansion?




LINEAR MOMENTUM CONSTRAINT
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Contribution at large scales!
Generically O(e)



DIFFICULTIES OF GRADIENT EXPANSION

m It is no perturbative in terms of the amplitude of the
inhomogeneities so:
> |t mixes scalar, vector and tensor terms.
» The momentum constraint no longer has an overall
derivative.

m Initial conditions for the inhomogeneities are no defined.




STOCHASTIC APPROACH

A. A. Starobinsky, Lect. Notes Phys. 246 (1986), 107-126

[Evolution of the full quantum ﬁeld}

[IR part (R < aaH)} [UV part (R > aaH)}

[Gradient expansion} [Linear perturbation theory}

[Equation of motion] Noises
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USUAL STOCHASTIC FORMALISM

m In the stochastic formalism commonly used in the literature:

» The momentum constraint is ignored.
> Uniform-N gauge is used (N = [ H,dt; = [ HPdt®) — Scalar
perturbations are given in terms only of the field.
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where &, is the noise for the field & is the noise for the
momentum.
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NEW STOCHASTIC FORMALISM

m The absence of the momentum constraint has important
consequences such as the incompatibility of & with the rest of the
system.

Tomislav Prokopec, Gerasimos Rigopoulos Phys. Rev. D 104 (2021) no.8, 083505

DC, C. Germani and T. Prokopec, JCAP 03 (2019), 048

m In order to solve these problems one can simply add a stochastic
equation for the momentum constraint to the system:

DC and C. Germani, Phys. Rev. D 105 (2022) no.2, 023533

m The new stochastic system is:
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IS THIS DIFFERENCE IMPORTANT?

We will compare:
m Real space correlator computed in linear theory

a(N)H
Qe = [ o

m Stochastic real space correlator with Markovian white noises
(linear limit):

(AQL,(N)AQE,(N)) = var (Q(N))




MARKOVIAN CONSTRUCTION

m Problem: noises must be computed in a stochastic
background.
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m Solution: A o
ds? = —(1+ 2A)dt3 + 2a0;Bdx}dt, + a? [(1 +2D)5; — zfﬂ dxi,dx,

1
ds® = —(1+ 2A)dt3; + 2a0;Bdxssdtss + a [(1 +2D)d; — 2E,ﬂ dngdng,
m Price to pay: Y*XY = voXY + (X)) = YR — vb = o(x?")
Linear perturbation theory!




SR-USR-SR TRANSITION V(¢) = Vo (1+ B (¢ — ¢0)*)

Why? Inflection point — PBHSs.

TRANSITION
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CONCLUSIONS

m The stochastic formalism, as it is usually used in the
literature resides in a main approximation

1. Absence of the momentum constraint — makes the model
only trustworthy in Slow-Roll.
m By solving this limitation, we have checked that stochastic
formalism with the Markovian construction is indeed linear
perturbation theory, as expected.



THANK YOU!



DIFFERENT REGIMES OF INFLATION (adr = dt)

m Slow roll inflation (SR)

Vig)
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Ag

m Ultra slow-roll inflation (USR)
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STUDY OF INHOMOGENEITIES (ADM FORMALISM)

ADM (or 3+1) formalism:
RL Arnowitt, S Deser, CW Misner (1959)

3+1 Metric:
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3+1 Action with a single scalar field:
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ADM EQUATIONS

m The lapse function a and the shift vector ; act as Lagrange
multipliers, generating the Hamiltonian and momentum
constraints:
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m The spatial metric 7;; and the extrinsic curvature Kj; are the
dynamical variables so it exists an equation of motion for
each one of the variables (¢, 5, K and A;)



ADM EQUATIONS

m Evolution equations for the spatial metric:
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where S =~*T,



LINEAR PERTURBATION THEORY

Expansion under the assumption that the inhomogeneities are
very small in amplitude — perturbation theory. vemuknanov, Ha Fetdman, ri

Brandenberger (1992)
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Homogeneous equations
+

Perturbative equations for the scalar part.



INHOMOGENEITIES

The correspondence between the homogeneous and perturbed
space-times fixes a coordinate system — gauge choice.

One can construct a gauge invariant quantity that encompasses all the
scalar perturbations: the curvature perturbation R (or the
Mukhanov-Sasaki variable Q)
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The quantity of interest is the power spectrum of R
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What does the power spectrum tell us?

Pr (k) ~ 1070
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SUCCES OF SR INFLATION

comoving scales
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LONG WAVELENGTH LIMIT

We can solve the perturbation equations and apply the limit

R
an — ©.

or

We can see the effect of the long-wavelength perturbation as a
independent FLRW patch that differs perturbatively from the

FLRW background (% = o).
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mR—O0
The equation of motion for the MS variable Q is:
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Its long wavelength limit is obviously
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OTHER REGIMES OF INFLATION

We are actually not accessible to physics before CMB

comoving scales
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During a Ultra-Slow-Roll phase of inflation, the power spectrum
for curvature perturbations is enhanced:

¢+ 3Hp+ W =0 — oL - Pr(k)

0 ~107%° 0 ~107"

R ~ 0(0.1) are reached — PBHs! B.J. Carr and S. W. Hawking, (1974),



FROM UV TO IR

XUV (t,x) :/ 3/2 — oaH)Xy(x, t),
NOISES E.O.M
R > ocaH kR > O‘GH
- /7‘
{(w\/‘-, ] ikf/i—*_ ___\__}4/___33



STOCHASTIC INFLATION

Each patch will follow an stochastic equation with:
1. A deterministic part which is the non-linear equation coming
from gradient expansion.
2. A noise that takes into account the modes entering into the
IR part.

m The evolution of many patches is equivalent to solve many
times the stochastic equation with different random values
in the noise.

m IR correlators — Statistical moments



HAMILTONIAN CONSTRAINT

As an example we are going to derive the stochastic equation for
the Hamiltonian constraint
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in uniform N gauge (N = [ H,dt, = [ HPdtP)
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HAMILTONIAN CONSTRAINT
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HAMILTONIAN CONSTRAINT
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ok I1s computed using stochastic equations!
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Eq (1) represents a non-markovian process — very difficult to solve.
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