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Introduction and Motivations

I The cosmological principle lying in the basis of the
Friedmann-Lemâıtre models and defined as the
assumption that the Universe is homogeneous and
isotropic on sufficiently large scales, is one of the pillars of
the cosmological standard model ΛCDM.

I On the other hand, anisotropies and inhomogeneities are
of the utmost importance when we focus our attention on
smaller scales.

I The inhomogeneities, born in the very early universe as a
result of quantum fluctuations, are responsible for the
formation of the large-scale structure of the universe.

I The description of the gravitational collapse of these
matter inhomogeneities with analytical methods becomes
difficult once we enter in the nonlinear regime.

I One can obtain some analytical results using simplifying
symmetry assumptions.



Introduction and Motivations

I One such an example is the Top Hat Spherical Collapse
(THSC) model, which describes the collapse of an initially
slightly overdense spherical shell of nonrelativistic matter.

I The hypothesis of a perfectly spherical symmetric collapse
may be unrealistic, and it is sensible to ask what happens
when this assumption is relaxed.

I An interesting description of anisotropic collapse is given
by the Zeldovich solution, which describes the
gravitational collapse triggered by a 1-dimensional
overdense perturbation of a flat Friedmann universe.

I The Zeldovich solution predicts the formation of
2-dimensional structures called pancakes.



Introduction and Motivations

I It is known that most of the cosmic web is composed by
filaments, i.e. 1-dimensional structures which must have
generated from 2-dimensional anisotropic collapse.

I This motivates us to explore more general forms of
gravitational collapse.

I Our goal is to describe an inhomogeneity which is initially
expanding with the background, and then detaches from
it and begin to collapse.

I It is reasonable to demand that the geometry of such an
inhomogeneity is spatially closed.

I There are eleven different homogeneous but anisotropic
three-dimensional spaces, classified by L. Bianchi.



Introduction and Motivations

I The only closed Bianchi space is the Bianchi IX.
I The intensive study of the Bianchi IX cosmology has led

to the discovery of the oscillatory approach to the
cosmological singularity by Belinsky, Khalatnikov and
Lifshitz.

I We use the Bianchi IX geometry as a toy model to
describe the anisotropic collapse of a matter
inhomogeneity.

I The Bianchi IX model contains as limiting cases both the
spherical collapse and the Zeldovich solution.

I It may describe within the same framework the evolution
of filaments, pancakes and spherical objects composing
the cosmic web.

I In this work we assess the impact of small anisotropies,
constrained by the Bianchi IX potential, on the THSC
model and the Zeldovich solutions.



The model. Bianchi IX field equations

We consider spacetime with the following metric

ds2 = −dt2 + a2(t)ω1 ⊗ ω1 + b2(t)ω2 ⊗ ω2 + c2(t)ω3 ⊗ ω3 ,

where a, b and c are scale factors and ω1, ω2 and ω3 are the
Maurer-Cartan basis 1-forms for the Bianchi IX space:

ω1 = − sin x3dx1 + sin x1 cos x3dx2 ,

ω2 = cos x3dx1 + sin x1 sin x3dx2 ,

ω3 = cos x1dx2 + dx3 .



The non-vanishing component of the four-dimensional Ricci
tensor are
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We consider a dust perfect fluid with an energy-momentum
tensor:

T µ
ν = ρuµuν ,

where uµ is the four-velocity satisfying uµuµ = −1.
It is convenient to express the scale factors with the Misner
parametrization:
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where Ω is related to the volume (abc = e3Ω), and β±
parametrize deviations from isotropy.



The field equations become:
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Noticing that

Kβ± =
2

3
e−2ΩdK/dβ± ,

we can arrive to the continuity equation for the dust fluid

ρ̇ + 3Ω̇ρ = 0 ,

which shows that the density correctly dilute with the volume.



It is possible to map the Bianchi IX field equations in those for
a closed FLRW Universe filled with two, non-minimally
coupled and interacting scalar fields. When β± � 1 the two
scalar fields decouple and this results in two independent
Klein-Gordon equations.



Relation with other analytical models of gravitational collapse

The equations for the Bianchi IX model contain as limiting
cases both the Top Hat Spherical Collapse and the Zeldovich
solution.
Choosing β± = 0 we obtain the equations for the closed
Friedmann universe, which therefore describe THSC.

The Zeldovich solution gives the evolution of a 1-dimensional
perturbation of a flat FLRW spacetime with line element:

ds2 = −dt2 + a2(t) (1− λ(t))2 dx2 + a2(t)
(
dy 2 + dz2

)
.



The field equations for the latter are

Ḣ + H2 = −ρhom
6

,

λ̈ + 2Hλ̇− 4πGρhomλ = 0 ,

where ρ = ρhom (1− λ)−1 and ρhom = ρ0a
−3.

The equations for the Bianchi IX universe are reduced to the
above equations when we set β− = 0 and define the new
variables α = eΩ+β+/2, H = α̇/α = Ω̇ + β̇+/2 and
λ = 1− e−3β+/2.



Zeldovich solution and Heckmann-Schucking solution

For the Bianchi I universe with the metric

ds2 = −dt2 + a2(t)dx2 + b2(t)dy 2 + c2(t)dz2,

filled with dust, exists the general solution of the Einstein
equations discovered by
Heckmann and Schucking:
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where the Kasner indicesp1, p2 and p3 satisfy the relations
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One can easily check that the Heckmann-Schucking solution
coincides with the Zeldovich solution if the following triplet of
the Kasner indices is chosen:
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Impact of small anisotropies on the spherical collapse

Let us define:

Ω ≡ logR , Ω̇ =
Ṙ

R
≡ H .

In this definition, R is some sort of average scale factor. If we
assume the β’s to be small, we can write the following Taylor
expansions for K,Kβ± :
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One can see that these terms are additive and can be treated
as two non-interacting potentials for two scalar fields.
We then have:
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We can treat the problem as a spherical collapse for the
system including dust and two perfect fluids.



Let us define:
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then the first Friedmann equation becomes:
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hence, the pressures are:
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The equation of state parameters for the β± effective fluids
are:

wβ± =
3
4
β̇2
± −

β2
±

2R2

3
4
β̇2
± + 3

2

β2
±

R2

,

they are never phantom wβ < −1 or super-stiff wβ > 1.



Linear growth and “String gas”

We suppose that that initially the volume of the almost
spherical Bianchi IX spacetime follows the background matter
dominated FLRW evolution, than H ≈ 2/3t. Inserting this in
the Klein-Gordon Equation for β± we obtain:
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The general solution is a combination of Bessel functions of
order 1/2, which we can write as:

β̄(t) =
β̄0

t
cos
(
ωt

1
3 + ψ0

)
+
β̄1

t
2
3

cos
(
ωt

1
3 + ψ1

)
.

It shows that small anisotropies generated during the linear
evolution of the inhomogeneity oscillate and are smoothed out
by the cosmological expansion.



Neglecting the β̄0 mode, which decays faster, we are left with

β̄(t) ≈ β̄1 cos
(
ωt1/3 + ψ

)
a−1.

Since in this regime the kinetic energy of the scalar field
decays as

β̇2 ∝ t−3,

while the potential energy goes as

β2/R2 ∝ a−4 ∝ t−8/3,

we conclude that the scalar fields become potential
dominated.
As a result, in this approximation, the Eos parameter of the
anisotropic fluid is

wβ± ≈ −1/3.



This fluid is called String gas.
Then

ρβ± ∝ R−2 .

It shows that, during the linear stage of the evolution, the
effects of the anisotropic fluids on the averaged spherical
collapse is to effectively shift the value of the spatial curvature
term.



Turnaround

If initially the inhomogeneity follows the background evolution,
it will eventually slow down and cease its expansion.
The turnaround point is reached when the volume of the
inhomogeneity e3Ω reaches its maximum value, and therefore
H = 0.
The Klein-Gordon equations in this regime become:
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i.e. the equation for a harmonic oscillator whose solution is:
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Taking into account the dilution of the energy density of dust
one understand that the presence of the anisotropy fluids
postopone the turnaround and makes it happen at higher
value of the average scale factor of the universe.



Contraction and virialization

When the inhomogeneity evolves from the turnaround point to
the contracting phase, i.e. when H < 0, the Klein-Gordon
equations for the β’s possess an anti-damping term, which will
eventually lead to the instability of the anisotropies.
However, one can hope that there is some virialization
mechanism which prevents an unlimited growth of the
instabilities.
Furthermore, the geometry of the vacuum Bianchi IX model
prevents the anisotropy to grow indefinitely because of the
triangular potential wells, against which the system would
eventually bounce off.
Some simple considerations permit to estimate the pressure of
our effective fluids in the virialized halos:

pβ±(Rvir ) = e
3 M
Rvir .

Here Rvir is the mean radius of the virialized halo and M is its
total mass.



Impact on statistical large scale structures observables

To understand how our model modifies the statistical
distribution of LSS we will make use of the Press-Schechter
formalism for the description of the formation of the galaxies
and clusters.
For a scale invariant power spectrum of primordial scalar
fluctuations (ns = 1), their model predicts that the number
density n of haloes with mass between M and M + ∆M is
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where ρ̄ is the background matter density and it was defined
ν = δc/σM , in which σM is the mass variance and
δc = 1.686D(t), with D(t) the linear growth factor normalized
to unity.



Within our approximations the effect of small anisotropies of
the spherical collapse is to rescale the function ν as
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Impact of small anisotropies on the Zeldovich solution

The Zeldovich equations under the assumption β− � 1
become:
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Neglecting the term β̇2
−, the solution for λ in the matter

dominated epoch is the same as the density contrast for
nonrelativistic matter, i.e. λ = λ0t

2/3 ∝ α.
Thus, we obtain:(
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where k = 2/α2
0 and β̄− is an integration constant.

This solution is unstable and implies that the growing β− will
at some point spoil the validity of the perturbative approach.



To see qualitatively what happens, note that for |λ| � 1:
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As soon as 3β̇2
− becomes bigger than ρhom, an effective force

appears working against the growth of λ.
The growth of β− triggers the appearance of a dynamical force
working against the original perturbation λ.
This qualitative picture is in agreement with what would we
expect for a Bianchi IX model.
Anisotropy along one direction cannot grow arbitrarily because
of the triangular shape of the potential V (β+, β−), so that the
system will eventually bounce from one of the potential wells
and change the direction of anisotropic contraction.



This result suggests that, within the Bianchi IX model of
gravitational collapse for structure formation, the so called
pancakes of the Zeldovich solution are deformed by the
switching of the direction of contraction and expansion, and
undergo oscillatory behavior.



Conclusions

I The BIX geometry contains as limiting cases both the
THSC model (in the trivial case of vanishing anisotropy)
and the Zeldovich solution for a 1-dimensional
perturbation. This provides a common framework to
describe spherical DM haloes and Zeldovich pancakes.

I For almost spherical inhomogeneities, before the collapse,
our qualitative analysis shows that the anisotropies
effectively change the value of the FLRW spatial
curvature. The reason is that the anisotropic fields in this
regime, curiously, mimic a fluid with an EoS parameter
w ≈ −1/3, whose energy density coincides with the one
of the spatial curvature.

I We studied how the anisotropies affect the number
density of collapsed objects. They result in a rescaling of
the Gaussian peak of the distribution and of the total
number of objects, while the mass dependence is
unchanged.



I We studied anisotropic deviations from the Zeldovich
solution. These turn out to be unstable, and work against
the growth of the original 1-dimensional perturbation.

I Our qualitative understanding is that the final stage of
the evolution are not the pancakes, but more complex
objects evolved from a series of subsequent Zeldovich-like
epochs before virialization. These, to us, seem a
promising tool to mimic the rich variety of filaments
weaving the cosmic web.

I The Bianchi IX geometry is a promising tool towards a
better understanding of the physics of structure
formation, and deserves further investigations.


