Parallax in general relativity

Center for Theoretical Physics, Polish Academy of Sciences, Warsaw

Hot topics in Modern Cosmology
Spontaneous Workshop XIV
May 8th - 14th, 2022, IESC Cargèse, France

Motivation

Motivation

Geometric optics in GR beyond the Sachs formalism, beyond a single emission and observation point

Motivation

Geometric optics in GR beyond the Sachs formalism, beyond a single emission and observation point

Motivation: drift effects in cosmology, i.e. secular variations of redshift and position of distant sources

Motivation

Geometric optics in GR beyond the Sachs formalism, beyond a single emission and observation point

Motivation: drift effects in cosmology, i.e. secular variations of redshift and position of distant sources

Beyond the standard lensing/weak lensing formalism - exact formulas

Motivation

Geometric optics in GR beyond the Sachs formalism, beyond a single emission and observation point

Motivation: drift effects in cosmology, i.e. secular variations of redshift and position of distant sources

Beyond the standard lensing/weak lensing formalism - exact formulas

As a side result: theory of trigonometric parallax measurements and distance measurements in GR

Motivation

Geometric optics in GR beyond the Sachs formalism, beyond a single emission and observation point

Motivation: drift effects in cosmology, i.e. secular variations of redshift and position of distant sources

Beyond the standard lensing/weak lensing formalism - exact formulas

As a side result: theory of trigonometric parallax measurements and distance measurements in GR

Potential new observable in astrometry with surprising properties

Motivation

Geometric optics in GR beyond the Sachs formalism, beyond a single emission and observation point

Motivation: drift effects in cosmology, i.e. secular variations of redshift and position of distant sources

Beyond the standard lensing/weak lensing formalism - exact formulas

As a side result: theory of trigonometric parallax measurements and distance measurements in GR

Potential new observable in astrometry with surprising properties

Based on papers:
M. Grasso, MK, J. Serbenta, Geometric optics in general relativity using bilocal operators, Phys. Rev. D 99, 064038 (2019)

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101, 063506 (2020)

MK, J. Serbenta, Testing the null energy condition with precise distant measurements, Phys. Rev. D 105, 084017 (2022)

Distance measures in GR

Distance measure along a null geodesic

$$
D \equiv D\left(\mathscr{E}, \mathcal{O}, \gamma_{0}, u_{\mathscr{O}}, u_{\mathscr{C}}\right)
$$

Distance measures in GR

Distance measure along a null geodesic

$$
D \equiv D\left(\mathscr{E}, \mathcal{O}, \gamma_{0}, u_{\mathscr{O}}, u_{\mathscr{E}}\right)
$$

Angular diameter distance
flat spacetime

$$
\delta \theta=\frac{\delta x_{\mathscr{E}}}{D}
$$

Distance measures in GR

Distance measure along a null geodesic

$$
D \equiv D\left(\mathscr{E}, \mathcal{O}, \gamma_{0}, u_{\mathscr{O}}, u_{\mathscr{E}}\right)
$$

Angular diameter distance
flat spacetime

$$
\delta \theta=\frac{\delta x_{\mathscr{E}}}{D}
$$

general spacetime

$$
\begin{aligned}
& \delta \theta^{A}=M_{B}^{A} \delta x_{\mathscr{E}}^{B} \\
& D_{\text {ang }}=\left|\operatorname{det} M_{B}^{A}\right|^{-1 / 2}=\left|\frac{A_{\mathscr{E}}}{\Omega_{\mathscr{O}}}\right|^{1 / 2} \quad D_{\text {ang }} \equiv D_{a n g}\left(\mathscr{E}, \mathcal{O}, \gamma_{0}, u_{\mathscr{O}}\right)
\end{aligned}
$$

Distance measures in GR

Luminosity distance
flat spacetime, no relative motion

$$
F=\frac{I}{4 \pi D^{2}}
$$

Distance measures in GR

Luminosity distance
flat spacetime, no relative motion

$$
F=\frac{I}{4 \pi D^{2}}
$$

general spacetime

$$
D_{l u m}=\sqrt{\frac{I}{4 \pi F}} \quad D_{\text {lum }} \equiv D_{\text {lum }}\left(\mathscr{E}, \mathcal{O}, \gamma_{0}, u_{\mathscr{O}}, u_{\mathscr{E}}\right)
$$

Distance measures in GR

Luminosity distance
flat spacetime, no relative motion

$$
F=\frac{I}{4 \pi D^{2}}
$$

general spacetime

$$
D_{l u m}=\sqrt{\frac{I}{4 \pi F}} \quad D_{\text {lum }} \equiv D_{\text {lum }}\left(\mathscr{E}, \mathcal{O}, \gamma_{0}, u_{\mathscr{O}}, u_{\mathscr{E}}\right)
$$

Related to the angular diameter distance via the Etherington's reciprocity relation

$$
D_{\text {lum }}=(1+z)^{2} D_{\text {ang }}
$$

[Etherington 1933, Penrose 1966, ... Uzun 2019]

Angular diameter distance

Expressing the distance measures using curvature
Main tool: geodesic deviation equation around a null geodesic

$$
\begin{aligned}
M_{B}^{A}=\left(l_{\mathscr{O} \mu} u_{\mathscr{O}}^{u}\right) \mathscr{D}^{-1^{A}}{ }_{B} & \ddot{\mathscr{D}}_{B}^{A}-R_{l l C}^{A} \mathscr{D}_{B}^{C}=0 \\
& \mathscr{D}_{B}^{A}\left(\lambda_{\mathscr{O}}\right)=0 \\
& \dot{\mathscr{D}}_{B}{ }_{B}(\mathcal{O})=\delta_{B}^{A}
\end{aligned}
$$

Angular diameter distance

$$
D_{\text {ang }}=\left(l_{\mathscr{O} \mu} u_{\mathscr{O}}^{\mu}\right)^{-1}\left|\operatorname{det} \mathscr{D}_{B}^{A}\right|^{1 / 2}
$$

Parallax in GR

Parallax effect - difference in apparent position of a light source between two nearby observers [Grasso, Korzyński, Serbenta 2019]

Parallax in GR

Parallax effect - difference in apparent position of a light source between two nearby observers [Grasso, Korzyński, Serbenta 2019]

- The same 4-velocity u_{Θ} (in the sense of parallel transport)

Parallax in GR

Parallax effect - difference in apparent position of a light source between two nearby observers [Grasso, Korzyński, Serbenta 2019]

- The same 4-velocity u_{Θ} (in the sense of parallel transport)
- Direction comparison wrt parallel transported directions

Parallax in GR

Parallax effect - difference in apparent position of a light source between two nearby observers [Grasso, Korzyński, Serbenta 2019]

- The same 4-velocity u_{Θ} (in the sense of parallel transport)
- Direction comparison wrt parallel transported directions
- Timing of observations: comparing light emitted by the source at the same moment \mathcal{E}

Parallax in GR

Parallax effect - difference in apparent position of a light source between two nearby observers [Grasso, Korzyński, Serbenta 2019]

- The same 4-velocity u_{Θ} (in the sense of parallel transport)
- Direction comparison wrt parallel transported directions
- Timing of observations: comparing light emitted by the source at the same moment \mathcal{E}

Flat spacetime: $\quad \delta \theta=-\frac{\delta x_{\overparen{O}}}{D}$

Parallax in GR

Parallax effect - difference in apparent position of a light source between two nearby observers [Grasso, Korzyński, Serbenta 2019]

- The same 4-velocity u_{Θ} (in the sense of parallel transport)
- Direction comparison wrt parallel transported directions
- Timing of observations: comparing light emitted by the source at the same moment \mathcal{E}

Flat spacetime: $\quad \delta \theta=-\frac{\delta x_{\overparen{O}}}{D}$

General spacetime: $\quad \delta \theta^{A}=-\Pi_{B}^{A} \delta x_{\mathscr{O}}^{B}$

Parallax in GR

Parallax effect - difference in apparent position of a light source between two nearby observers [Grasso, Korzyński, Serbenta 2019]

- The same 4-velocity u_{Θ} (in the sense of parallel transport)
- Direction comparison wrt parallel transported directions
- Timing of observations: comparing light emitted by the source at the same moment \mathcal{E}

Flat spacetime: $\quad \delta \theta=-\frac{\delta x_{\overparen{O}}}{D}$

General spacetime: $\quad \delta \theta^{A}=-\Pi_{B}^{A} \delta x_{\mathscr{O}}^{B}$

$$
\Pi_{A B}=\Pi_{B A}
$$

$$
D_{p a r}=\left|\operatorname{det} \Pi_{B}^{A}\right|^{-1 / 2} \quad D_{p a r} \equiv D_{p a r}\left(\mathscr{E}, \mathcal{O}, \gamma_{0}, u_{\overparen{O}}\right)
$$

Parallax distance

Expressing the distance measures using curvature

$$
\begin{aligned}
\Pi_{B}^{A}=\left(l_{\mathscr{O} \mu} u_{\mathscr{O}}^{\mu}\right) \mathscr{D}^{-1}{ }_{C}^{A}\left(\delta_{B}^{C}+m_{B}^{C}\right) & \ddot{m}_{B}^{A}-R^{A}{ }_{l l C} m_{B}^{C}=R_{l l B}^{A} \\
& m_{B}^{A}(\mathcal{O})=0 \\
& \dot{m}_{B}^{A}(\mathcal{O})=0
\end{aligned}
$$

Parallax distance

Expressing the distance measures using curvature

$$
\begin{array}{cl}
\Pi_{B}^{A}=\left(l_{\mathscr{O} \mu} u_{\mathscr{O}}^{\mu}\right) \mathscr{D}^{-1^{A}}{ }_{C}\left(\delta_{B}^{C}+m_{B}^{C}\right) & \ddot{m}_{B}^{A}-R_{l l C}^{A} m_{B}^{C}=R_{l l B}^{A} \\
& m^{A}{ }_{B}(\mathcal{O})=0 \\
M_{C}^{A} & \dot{m}_{B}^{A}(\mathcal{O})=0
\end{array}
$$

Parallax distance

Expressing the distance measures using curvature

$$
\begin{array}{cl}
\Pi_{B}^{A}=\left(l_{\mathscr{O} \mu} u_{\mathscr{O}}^{\mu}\right) \mathscr{D}^{-1^{A}}{ }_{C}\left(\delta_{B}^{C}+m_{B}^{C}\right) & \ddot{m}_{B}^{A}-R_{l l C}^{A} m_{B}^{C}=R_{l l B}^{A} \\
M^{A}{ }_{C} & m_{B}^{A}(\mathcal{O})=0 \\
\text { curvature } \\
\text { correction }
\end{array} \quad \dot{m}_{B}^{A}(\mathcal{O})=0
$$

Parallax distance

Expressing the distance measures using curvature

$$
\begin{array}{cl}
\Pi_{B}^{A}=\left(l_{\mathscr{O} \mu} u_{\mathscr{O}}^{\mu}\right) \mathscr{D}^{-1^{A}}{ }_{C}\left(\delta_{B}^{C}+m_{B}^{C}\right) & \ddot{m}_{B}^{A}-R_{l l C}^{A} m_{B}^{C}=R_{l l B}^{A} \\
M_{C}^{A} & m_{B}^{A}(\mathcal{O})=0 \\
\text { corvature } \\
\text { correction }
\end{array} \quad \dot{m}_{B}^{A}(\mathcal{O})=0
$$

Parallax distance

$$
D_{p a r}=\left(l_{\mathscr{O} \mu} u_{\mathscr{O}}^{\mu}\right)^{-1}\left|\operatorname{det} \mathscr{D}_{B}{ }_{B}\right|^{1 / 2}\left|\operatorname{det}\left(\delta_{B}^{A}+m^{A}{ }_{B}\right)\right|^{-1 / 2} \quad D_{p a r} \equiv D_{p a r}\left(\mathscr{E}, \mathcal{O}, \gamma_{0}, u_{\mathscr{O}}\right)
$$

Distance slip

Define a scalar, dimensionless quantity $\quad \mu=1-\frac{\operatorname{det} \Pi_{B}^{A}}{\operatorname{det} M_{B}^{A}}$

Distance slip

Define a scalar, dimensionless quantity $\quad \mu=1-\frac{\operatorname{det} \Pi_{B}^{A}}{\operatorname{det} M_{B}^{A}}$

Expressed via distance measures

Distance slip

Define a scalar, dimensionless quantity $\quad \mu=1-\frac{\operatorname{det} \Pi_{B}^{A}}{\operatorname{det} M_{B}^{A}}$

Expressed via distance measures

$$
\mu=1-(1+z)^{-4} \frac{D_{\text {lum }}^{2}}{D_{\text {par }}^{2}}
$$

$$
\mu=1-\sigma \frac{D_{a n g}^{2}}{D_{\text {par }}^{2}}
$$

± 1, but usually 1

Distance slip

Define a scalar, dimensionless quantity $\quad \mu=1-\frac{\operatorname{det} \Pi_{B}^{A}}{\operatorname{det} M_{B}^{A}}$

Expressed via distance measures

$$
\mu=1-\sigma \frac{D_{a n g}^{2}}{D_{p a r}^{2}}
$$

$$
\mu=1-(1+z)^{-4} \frac{D_{\text {lum }}^{2}}{D_{\text {par }}^{2}}
$$

Vanishes in a flat spacetime

$$
\mu=1-\operatorname{det}\left(\delta^{A}{ }_{B}+m_{B}^{A}\right)
$$

Distance slip

Define a scalar, dimensionless quantity $\quad \mu=1-\frac{\operatorname{det} \Pi_{B}^{A}}{\operatorname{det} M_{B}^{A}}$

Expressed via distance measures

$$
\mu=1-(1+z)^{-4} \frac{D_{\text {lum }}^{2}}{D_{\text {par }}^{2}}
$$

$$
\mu=1-\sigma \frac{D_{a n g}^{2}}{D_{\text {par }}^{2}}
$$

Vanishes in a flat spacetime

$$
\mu=1-\operatorname{det}\left(\delta^{A}{ }_{B}+m_{B}^{A}\right)
$$

Frames-independent $\quad \mu \equiv \mu\left(\mathscr{E}, \mathcal{O}, \gamma_{0}\right)$

Distance slip

Define a scalar, dimensionless quantity $\quad \mu=1-\frac{\operatorname{det} \Pi_{B}^{A}}{\operatorname{det} M_{B}^{A}}$

Expressed via distance measures

$$
\mu=1-(1+z)^{-4} \frac{D_{\text {lum }}^{2}}{D_{\text {par }}^{2}}
$$

$$
\mu=1-\sigma \frac{D_{\text {ang }}^{2}}{D_{\text {par }}^{2}}
$$

Vanishes in a flat spacetime

$$
\mu=1-\operatorname{det}\left(\delta^{A}{ }_{B}+m_{B}^{A}\right)
$$

Frames-independent $\quad \mu \equiv \mu\left(\mathscr{E}, \mathcal{O}, \gamma_{0}\right)$

$$
\text { no } C^{\mu}{ }_{\nu \alpha \beta} \text { or } \Lambda
$$

Short distance approximation:

$$
\mu=\frac{8 \pi G}{c^{4}} \int_{\mathscr{O}}^{\mathscr{E}} T_{l l}(\lambda)\left(\lambda_{\mathscr{E}}-\lambda\right) d \lambda+O\left(\mathrm{R}^{2}\right)
$$

Distance slip

Magnitude of the effect locally:
negligible pressure (dust)

$$
T^{\mu \nu}=\rho U^{\mu} U^{\nu}
$$

Distance slip

Magnitude of the effect locally:
negligible pressure (dust)

$$
T^{\mu \nu}=\rho U^{\mu} U^{\nu}
$$

$$
\mu=\frac{8 \pi G}{c^{2}} \int_{0}^{r} \rho\left(r^{\prime}\right)\left(r-r^{\prime}\right) d r^{\prime}
$$

Distance slip

Magnitude of the effect locally:
negligible pressure (dust)

$$
T^{\mu \nu}=\rho U^{\mu} U^{\nu}
$$

$$
\mu=\frac{8 \pi G}{c^{2}} \int_{0}^{r} \rho\left(r^{\prime}\right)\left(r-r^{\prime}\right) d r^{\prime}=\frac{4 \pi G \rho(0)}{c^{2}} r^{2}+O\left(r^{3}\right)
$$

Distance slip

Magnitude of the effect locally:

$$
\begin{aligned}
& \text { negligible pressure (dust) } \quad T^{\mu \nu}=\rho U^{\mu} U^{\nu} \\
& \qquad \mu=\frac{8 \pi G}{c^{2}} \int_{0}^{r} \rho\left(r^{\prime}\right)\left(r-r^{\prime}\right) d r^{\prime}=\frac{4 \pi G \rho(0)}{c^{2}} r^{2}+O\left(r^{3}\right)
\end{aligned}
$$

Galactic scales
mass density of the thin disc of the Milky Way $\quad \rho \approx 1 M_{\odot} \mathrm{pc}^{-3}$
most distant trigonometric parallax measured $\quad r \approx 20 \mathrm{kpc}$

Distance slip

Magnitude of the effect locally:

$$
\begin{aligned}
& \text { negligible pressure (dust) } \quad T^{\mu \nu}=\rho U^{\mu} U^{\nu} \\
& \qquad \mu=\frac{8 \pi G}{c^{2}} \int_{0}^{r} \rho\left(r^{\prime}\right)\left(r-r^{\prime}\right) d r^{\prime}=\frac{4 \pi G \rho(0)}{c^{2}} r^{2}+O\left(r^{3}\right)
\end{aligned}
$$

Galactic scales
mass density of the thin disc of the Milky Way $\quad \rho \approx 1 M_{\odot} \mathrm{pc}^{-3}$
most distant trigonometric parallax measured $\quad r \approx 20 \mathrm{kpc}$

$$
\mu \approx 2 \cdot 10^{-4}
$$

μ in cosmology

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101, 063506 (2020)

μ in cosmology

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101, 063506 (2020)

Measurements of the annual parallax on cosmological scales impossible today

μ in cosmology

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101, 063506 (2020)

Measurements of the annual parallax on cosmological scales impossible today
...but we may use the motion of the Solar System wrt CMB frame in the future [Kardashev 1986, Rosquist 1988, Kasai 1988, Räsänen 2014, Quercellini et al 2012, Novikov 1977, Marcori et al 2018], 78AU/year

μ in cosmology

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101, 063506 (2020)

Measurements of the annual parallax on cosmological scales impossible today
...but we may use the motion of the Solar System wrt CMB frame in the future [Kardashev 1986, Rosquist 1988, Kasai 1988, Räsänen 2014, Quercellini et al 2012, Novikov 1977, Marcori et al 2018], 78AU/year

Need sources for which two methods of distance determination are possible (+ big sample)

μ in cosmology

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101, 063506 (2020)

Measurements of the annual parallax on cosmological scales impossible today
...but we may use the motion of the Solar System wrt CMB frame in the future [Kardashev 1986, Rosquist 1988, Kasai 1988, Räsänen 2014, Quercellini et al 2012, Novikov 1977, Marcori et al 2018], 78AU/year

Need sources for which two methods of distance determination are possible (+ big sample)

$$
\text { SN1a + host galaxy identification } \quad D_{l u m}, z, D_{p a r}
$$

μ in cosmology

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101, 063506 (2020)

Measurements of the annual parallax on cosmological scales impossible today
...but we may use the motion of the Solar System wrt CMB frame in the future [Kardashev 1986, Rosquist 1988, Kasai 1988, Räsänen 2014, Quercellini et al 2012, Novikov 1977, Marcori et al 2018], 78AU/year

Need sources for which two methods of distance determination are possible (+ big sample)

$$
\text { SN1a + host galaxy identification } \quad D_{l u m}, z, D_{p a r}
$$

quasars as standard candles [Panda et al 2018; Risalti \& Lusso 2018]

$$
D_{l u m}, z, D_{p a r}
$$

μ in cosmology

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101, 063506 (2020)

Measurements of the annual parallax on cosmological scales impossible today
...but we may use the motion of the Solar System wrt CMB frame in the future [Kardashev 1986, Rosquist 1988, Kasai 1988, Räsänen 2014, Quercellini et al 2012, Novikov 1977, Marcori et al 2018], 78AU/year

Need sources for which two methods of distance determination are possible (+ big sample)

$$
\text { SN1a + host galaxy identification } \quad D_{l u m}, z, D_{p a r}
$$

quasars as standard candles [Panda et al 2018; Risalti \& Lusso 2018]

$$
D_{l u m}, z, D_{p a r}
$$

quasars as standard rulers (reverberation mapping + interferometry) [Sturm et al (GRAVITY collab.) 2018, Elvis \& Karovska 2002, Panda et al 2019]

$$
D_{a n g}, D_{p a r}
$$

μ in cosmology

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101, 063506 (2020)

Measurements of the annual parallax on cosmological scales impossible today
...but we may use the motion of the Solar System wrt CMB frame in the future [Kardashev 1986, Rosquist 1988, Kasai 1988, Räsänen 2014, Quercellini et al 2012, Novikov 1977, Marcori et al 2018], 78AU/year

Need sources for which two methods of distance determination are possible (+ big sample)

$$
\text { SN1a + host galaxy identification } \quad D_{l u m}, z, D_{p a r}
$$

quasars as standard candles [Panda et al 2018; Risalti \& Lusso 2018]

$$
D_{l u m}, z, D_{p a r}
$$

quasars as standard rulers (reverberation mapping + interferometry) [Sturm et al (GRAVITY collab.) 2018, Elvis \& Karovska 2002, Panda et al 2019]

$$
D_{a n g}, D_{p a r}
$$

Assume this measurement is possible. Signal? What can we learn?

μ in FLRW spacetime

μ in FLRW spacetime

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(d \chi^{2}+S_{k}(\chi)^{2} d \Omega^{2}\right) \quad S_{k}(\chi)= \begin{cases}\frac{1}{\sqrt{k}} \sin (\sqrt{k} \chi) & \text { if } k>0 \\ \chi & \text { if } k=0 \\ \frac{1}{\sqrt{|k|}} \sinh (\sqrt{|k|} \chi) & \text { if } k<0\end{cases}
$$

μ in FLRW spacetime

$$
\begin{array}{ll}
d s^{2}=-d t^{2}+a(t)^{2}\left(d \chi^{2}+S_{k}(\chi)^{2} d \Omega^{2}\right) & S_{k}(\chi)= \begin{cases}\frac{1}{\sqrt{\sqrt{k}} \sin (\sqrt{k} \chi)} & \text { if } k>0 \\
\chi & \text { if } k=0 \\
\frac{1}{\sqrt{|k|}} \sinh (\sqrt{|k|}) & \text { if } k<0\end{cases} \\
\mu=1-\left(\frac{1}{1+z}\left(C_{k}(\chi)+H_{0} S_{k}(\chi)\right)^{2}\right. & C_{k}(\chi) \equiv \frac{\mathrm{d} S_{k}}{\mathrm{~d} \chi}= \begin{cases}\cos (\sqrt{k} \chi) & \text { if } k>0 \\
1 & \text { if } k=0 \\
\cosh (\sqrt{|k|} \chi) & \text { if } k<0 .\end{cases} \\
\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}
\end{array}
$$

μ in FLRW spacetime

$$
\begin{array}{ll}
d s^{2}=-d t^{2}+a(t)^{2}\left(d \chi^{2}+S_{k}(\chi)^{2} d \Omega^{2}\right) & S_{k}(\chi)= \begin{cases}\frac{1}{\sqrt{k}} \sin (\sqrt{k} \chi) & \text { if } k>0 \\
\chi & \text { if } k=0 \\
\frac{1}{\sqrt{|k|}} \sinh (\sqrt{|k|}) & \text { if } k<0\end{cases} \\
\mu=1-\left(\frac{1}{1+z}\left(C_{k}(\chi)+H_{0} S_{k}(\chi)\right)\right)^{2} & C_{k}(\chi) \equiv \frac{\mathrm{d} S_{k}}{\mathrm{~d} \chi}= \begin{cases}\cos (\sqrt{k} \chi) & \text { if } k>0 \\
1 & \text { if } k=0 \\
\cosh (\sqrt{|k|} \chi) & \text { if } k<0 .\end{cases} \\
\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}
\end{array}
$$

^CDM, Planck values
$H_{0}=67.4$
$\Omega_{m 0}=0.266018$
$\Omega_{k 0}=0$
$\Omega_{\Lambda 0}=0.732982$

μ in cosmology

Low redshift expansion

$$
\mu(z)=\frac{3}{2} \Omega_{m 0} z^{2}+\left(-\frac{1}{2} \Omega_{m 0}-\frac{3}{2} \Omega_{m 0} \Omega_{k 0}-\frac{9}{4} \Omega_{m 0}^{2}\right) z^{3}+O\left(z^{4}\right)
$$

μ in cosmology

Low redshift expansion

$$
\mu(z)=\frac{3}{2} \Omega_{m 0} z^{2}+\left(-\frac{1}{2} \Omega_{m 0}-\frac{3}{2} \Omega_{m 0} \Omega_{k 0}-\frac{9}{4} \Omega_{m 0}^{2}\right) z^{3}+O\left(z^{4}\right)
$$

μ in cosmology

Low redshift expansion

$$
\mu(z)=\frac{3}{2} \Omega_{m 0} z^{2}+\left(-\frac{1}{2} \Omega_{m 0}-\frac{3}{2} \Omega_{m 0} \Omega_{k 0}-\frac{9}{4} \Omega_{m 0}^{2}\right) z^{3}+O\left(z^{4}\right)
$$

dimensionless μ vs dimensionless $z \Longrightarrow$ no H_{0}

μ in cosmology

Low redshift expansion

$$
\mu(z)=\frac{3}{2} \Omega_{m 0} z^{2}+\left(-\frac{1}{2} \Omega_{m 0}-\frac{3}{2} \Omega_{m 0} \Omega_{k 0}-\frac{9}{4} \Omega_{m 0}^{2}\right) z^{3}+O\left(z^{4}\right)
$$

dimensionless μ vs dimensionless $z \Longrightarrow$ no H_{0}
leading order term gives a measurement of $\Omega_{m 0}$

μ in cosmology

Low redshift expansion

$$
\mu(z)=\frac{3}{2} \Omega_{m 0} z^{2}+\left(-\frac{1}{2} \Omega_{m 0}-\frac{3}{2} \Omega_{m 0} \Omega_{k 0}-\frac{9}{4} \Omega_{m 0}^{2}\right) z^{3}+O\left(z^{4}\right)
$$

dimensionless μ vs dimensionless $z \Longrightarrow$ no H_{0}
leading order term gives a measurement of $\Omega_{m 0}$

μ in cosmology

μ vs $D_{\text {ang }}$ diagram

$$
\mu\left(D_{\text {ang }}\right)=\frac{3}{2} \Omega_{m 0} H_{0}^{2} D_{\text {ang }}^{2}+\frac{5}{2} \Omega_{m 0} H_{0}^{3} D_{\text {ang }}^{3}+O\left(D_{\text {ang }}^{4}\right)
$$

μ in cosmology

μ vs $D_{\text {ang }}$ diagram

$$
\mu\left(D_{\text {ang }}\right)=\frac{3}{2} \Omega_{m 0} H_{0}^{2} D_{\text {ang }}^{2}+\frac{5}{2} \Omega_{m 0} H_{0}^{3} D_{\text {ang }}^{3}+O\left(D_{\text {ang }}^{4}\right)
$$

bypassing z as observable

μ in cosmology

μ vs $D_{\text {ang }}$ diagram

$$
\begin{gathered}
\mu\left(D_{\text {ang }}\right)=\frac{3}{2} \Omega_{m 0} H_{0}^{2} D_{\text {ang }}^{2}+\frac{5}{2} \Omega_{m 0} H_{0}^{3} D_{\text {ang }}^{3}+O\left(D_{\text {ang }}^{4}\right) \\
4 \pi G \rho_{0}
\end{gathered}
$$

bypassing z as observable
leading order term gives a measurement of ρ_{0}

μ in cosmology

μ vs $D_{\text {ang }}$ diagram

$$
\begin{gathered}
\mu\left(D_{\text {ang }}\right)=\frac{3}{2} \Omega_{m 0} H_{0}^{2} D_{\text {ang }}^{2}+\frac{5}{2} \Omega_{m 0} H_{0}^{3} D_{\text {ang }}^{3}+O\left(D_{\text {ang }}^{4}\right) \\
4 \pi G \rho_{0}
\end{gathered}
$$

bypassing z as observable
leading order term gives a measurement of ρ_{0}
both quantities independent of u_{\S} !

μ in cosmology

μ vs $D_{\text {ang }}$ diagram

$$
\begin{gathered}
\mu\left(D_{\text {ang }}\right)=\frac{3}{2} \Omega_{m 0} H_{0}^{2} D_{\text {ang }}^{2}+\frac{5}{2} \Omega_{m 0} H_{0}^{3} D_{\text {ang }}^{3}+O\left(D_{\text {ang }}^{4}\right) \\
4 \pi G \rho_{0}
\end{gathered}
$$

bypassing z as observable
leading order term gives a measurement of ρ_{0}
both quantities independent of u_{\S} !
diagram insensitive to the peculiar motions of the sources! No redshift space distortions.

μ in cosmology

μ vs $D_{\text {ang }}$ diagram

$$
\begin{gathered}
\mu\left(D_{\text {ang }}\right)=\frac{3}{2} \Omega_{m 0} H_{0}^{2} D_{\text {ang }}^{2}+\frac{5}{2} \Omega_{m 0} H_{0}^{3} D_{\text {ang }}^{3}+O\left(D_{\text {ang }}^{4}\right) \\
4 \pi G \rho_{0}
\end{gathered}
$$

bypassing z as observable
leading order term gives a measurement of ρ_{0}
both quantities independent of u_{\S} !
diagram insensitive to the peculiar motions of the sources! No redshift space distortions.
potentially very robust measurement, independent from others

Distance inequality

MK, J. Serbenta 2022:

Theorem:

- Null energy condition (NEC) holds, i.e. $R_{\mu \nu} l^{\mu} l^{\nu} \geq 0$
- No optical „singular points" between $\mathcal{\Theta}$ and \mathcal{E} (such as focal points) then
- $D_{p a r} \geq D_{\text {ang }} \quad(\mu \geq 0)$
- moreover, $D_{p a r}=D_{\text {ang }}(\mu=0)$ if and only if $R_{l l B}^{A}=0$ along γ_{0}

Distance inequality

MK, J. Serbenta 2022:

Theorem:

- Null energy condition (NEC) holds, i.e. $R_{\mu \nu} l^{\mu} l^{\nu} \geq 0$
- No optical „singular points" between \mathcal{G} and \mathscr{E} (such as focal points) then
- $D_{p a r} \geq D_{\text {ang }}(\mu \geq 0)$
- moreover, $D_{\text {par }}=D_{\text {ang }}(\mu=0)$ if and only if $R_{l l B}^{A}=0$ along γ_{0}

Rephrasing:

If the NEC holds then
both focusing of light by matter and tidal distortion of light rays makes $D_{\text {par }}$ larger than $D_{\text {ang }}$ at least up to the first focal point

Distance inequality

Sketch of the proof

Geometry of the null congruence parallel at \mathcal{O}

$$
\mu(\lambda)=1-\frac{\mathscr{A}(\lambda)}{\mathscr{A}(O)}
$$

$$
\mathscr{A}(\lambda)=\mathscr{A}(\mathcal{O}) \exp \left(\int_{\mathscr{O}}^{\lambda} \theta\left(\lambda^{\prime}\right) d \lambda^{\prime}\right)
$$

$$
\frac{d \theta}{d \lambda}=-\frac{1}{2} \theta^{2}-\sigma^{2}-R_{\mu \nu} l^{\mu} l^{\nu}
$$

$$
\theta(\mathcal{O})=0
$$

Distance inequality

Possible applications

- S. Räsänen 2014 - consistency test of FLRW metric using $D_{\text {ang }} / D_{\text {lum }}, z$ and $D_{p a r}$
- Distance inequality \Longrightarrow sign of difference between $D_{\text {ang }}$ and $D_{p a r}$ carries information about the NEC. Observational test of NEC (+ GR + light propagation)

Distance inequality

Possible applications

- S. Räsänen 2014 - consistency test of FLRW metric using $D_{a n g} / D_{\text {lum }}, z$ and $D_{p a r}$
- Distance inequality \Longrightarrow sign of difference between $D_{a n g}$ and $D_{p a r}$ carries information about the NEC. Observational test of NEC (+ GR + light propagation)

If we observe $D_{p a r}<D_{\text {ang }}$ then either the NEC does not hold, or modified GR or light propagation

Violation of NEC

$$
R_{\mu \nu} l^{\mu} l^{\nu}<0 \Longleftrightarrow T_{\mu \nu} l^{\mu} l^{\nu}<0
$$

equation of state

$$
p=w \rho \quad w<-1
$$

Summary and take-home message

- By comparing $D_{\text {ang }}$ and $D_{p a r}$ measured to a single source we get the distance slip μ - new (potential) observable
- Interesting properties: frame-invariance, measures curvature and matter along the line of sight
- μ very small on short distances, too difficult to measure nowadays, but...
- It can provide independent matter density measurements
- $\mu \geq 0$ if the null energy condition holds

Thank you!

Parallax

Parallax

$$
\delta \theta^{A} \approx \delta r^{A}=-\frac{1}{u_{\mathscr{O}}^{\sigma} l_{\mathcal{O} \sigma}} \mathscr{D}^{-1^{A}}{ }_{C}\left(\delta^{C}{ }_{B}+m_{\perp}{ }^{C}{ }_{B}\right) \delta x_{\mathscr{O}}^{B}
$$

Parallax

$$
\delta \theta^{A} \approx \delta r^{A}=-\frac{1}{u_{\mathscr{O}}^{\sigma} l_{\mathscr{O} \sigma}} \mathscr{D}^{-1^{A}}{ }_{C}\left(\delta^{C}{ }_{B}+m_{\perp}{ }^{C}{ }_{B}\right) \delta x_{\mathscr{O}}^{B}
$$

parallax matrix $\quad \Pi_{B}^{A}$

Parallax

$$
\delta \theta^{A} \approx \delta r^{A}=-\frac{1}{u_{\mathscr{O}}^{\sigma} l_{\mathcal{O} \sigma}} \mathscr{D}^{-1^{A}}{ }_{C}\left(\delta^{C}{ }_{B}+m_{\perp}{ }^{C}{ }_{B}\right) \delta x_{\mathscr{O}}^{B}
$$

parallax matrix $\quad \Pi_{B}^{A}$

Parallax

$\delta \theta^{A} \approx \delta r^{A}=-\frac{1}{u_{\mathscr{O}}^{\sigma} l_{\mathscr{O}}} \mathscr{D}^{-1^{A}}{ }_{C}\left(\delta^{C}{ }_{B}+m_{\perp}{ }^{C}{ }_{B}\right) \delta x_{\mathscr{O}}^{B}$
parallax matrix
Π_{B}^{A}

$$
\Pi_{A B}=\Pi_{B A}
$$

Parallax

$$
\delta \theta^{A} \approx \delta r^{A}=-\frac{1}{u_{\mathscr{O}}^{\sigma} l_{\mathscr{O}}} \mathscr{D}^{-1^{A}}{ }_{C}\left(\delta^{C}{ }_{B}+m_{\perp}{ }^{C}{ }_{B}\right) \delta x_{\mathscr{O}}^{B}
$$

parallax matrix $\quad \Pi_{B}^{A}$

$$
\Pi_{A B}=\Pi_{B A}
$$

parallax distance

$$
D_{p a r}=u_{\mathscr{O}}^{\sigma} l_{\mathscr{O} \sigma}\left|\operatorname{det} \mathscr{D}_{B}{ }_{B}\right|^{1 / 2}\left|\operatorname{det}\left(\delta_{B}^{A}+m_{\perp}{ }^{A}{ }_{B}\right)\right|^{-1 / 2}
$$

Parallax

$$
\delta \theta^{A} \approx \delta r^{A}=-\frac{1}{u_{O}^{\sigma} l_{\sigma \sigma}} \mathscr{D}^{-1^{A}}{ }_{C}\left(\delta^{C}{ }_{B}+m_{\perp}{ }^{C}{ }_{B}\right) \delta x_{\sigma}^{B}
$$

parallax matrix $\quad \Pi_{B}^{A}$

$$
\Pi_{A B}=\Pi_{B A}
$$

parallax distance

$$
D_{p a r}=u_{\mathscr{O}}^{\sigma} l_{\mathscr{O} \sigma}\left|\operatorname{det} \mathscr{D}_{B}^{A}\right|^{1 / 2}\left|\operatorname{det}\left(\delta_{B}^{A}+m_{\perp}{ }_{B}{ }_{B}\right)\right|^{-1 / 2}
$$

$$
\Pi_{B}^{A} \equiv \Pi_{B}^{A}\left(\left.R^{\mu}{ }_{\nu \alpha \beta}\right|_{\gamma_{0}}, u_{\theta}^{\mu}\right)
$$

$$
D_{p a r} \equiv D_{p a r}\left(\left.R_{\nu \alpha \beta}^{\mu}\right|_{\gamma_{0}}, u_{\Theta}^{\mu}\right)
$$

Parallax in a general situation

Parallax in a general situation

Both observer and emitter in bound systems

Parallax in a general situation

Both observer and emitter in bound systems

Barycenters in free fall

Parallax in a general situation

Both observer and emitter in bound systems

Barycenters in free fall

Question: parallax without the local aberration and light bending effects

Parallax in a general situation

Parallax in a general situation

Parallax in a general situation

$$
\delta \theta^{A}=\delta_{\mathscr{O}} r^{A} t_{\mathscr{O}}+M_{B}^{A}{ }_{B}^{B}\left((1+z)^{-1} t_{\mathscr{O}}\right)-\Pi_{B}^{A} \sigma^{B}\left(t_{\mathscr{O}}\right)
$$

Parallax in a general situation

Both observer and emitter in bound systems
Barycenters in free fall
Question: parallax without the local aberration and light bending effects

$$
\begin{array}{ll}
\delta x_{\mathscr{O}}^{\mu}=U_{\mathscr{O}}^{\mu} t_{\mathscr{O}}+\sigma^{\mu}\left(t_{\mathscr{O}}\right) & \sigma^{\mu} l_{\mathscr{O} \mu}=0 \\
\delta x_{\mathscr{C}}^{\mu}=U_{\mathscr{E}}^{\mu} t_{\mathscr{C}}+\rho^{\mu}\left(t_{\mathscr{C}}\right) & \rho^{\mu} l_{\mathscr{C} \mu}=0
\end{array}
$$

$$
\delta \theta^{A}=\delta_{\mathscr{O}} r^{A} t_{\mathscr{O}}+M_{B}^{A} \rho^{B}\left((1+z)^{-1} t_{\mathscr{O}}\right)-\Pi_{B}^{A} \sigma^{B}\left(t_{\mathcal{O}}\right)
$$

barycenter drift

(linear)

Parallax in a general situation

