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Based on papers:

M. Grasso, MK, J. Serbenta, Geometric optics in general relativity using bilocal operators, Phys. Rev. D 99, 064038 (2019)

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101,
063506 (2020)

MK, J. Serbenta, Testing the null energy condition with precise distant measurements, Phys. Rev. D 105, 084017 (2022)
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Distance measures in GR

Luminosity distance

flat spacetime, no relative motion

i
F =
4 D?

general spacetime
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Related to the angular diameter distance via the Etherington’s reciprocity relation

Dy, = (1+2)° D, [Etherington 1933, Penrose 1966, ... Uzun 2019]



Angular diameter distance

Expressing the distance measures using curvature

Main tool: geodesic deviation equation around a null geodesic
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Expressing the distance measures using curvature
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Parallax distance

Expressing the distance measures using curvature
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Parallax distance

Expressing the distance measures using curvature
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Distance slip

det I14,

Define a scalar, dimensionless quantity u=1

det M4,

Expressed via distance measures
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u in FLRW spacetime
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u in FLRW spacetime
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U in cosmology

Low redshift expansion
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Low redshift expansion
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U in cosmology

Low redshift expansion
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u In cosmology

Low redshift expansion

1

()—39 2+ Q
'MZ_Z m0 < 7

dimensionless p vs dimensionless z = no Hy

leading order term gives a measurement of 2,0

independent from any other measurements
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ang

471' Gp()

bypassing z as observable

leading order term gives a measurement of po

both quantities independent of us!

diagram insensitive to the peculiar motions of the sources! No redshift space distortions.

potentially very robust measurement, independent from others
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Distance inequality

MK, J. Serbenta 2022:
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Distance inequality

MK, J. Serbenta 2022:

Theorem:

« Null energy condition (NEC) holds, i.e. R, [ [* > 0

e No optical ,,singular points” between © and & (such as focal points)

then

£
° DparZDan (n20)

8

« moreover, D, = D, (u = 0)if and only if R*,3 = 0 along y, .

Rephrasing:
If the NEC holds then

both focusing of light by matter and tidal distortion of light rays makes Dpar larger than Dang
at least up to the first focal point
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Distance inequality

Sketch of the proof

Geometry of the null congruence parallel at ©
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Distance inequality

Possible applications

« S. Résénen 2014 - consistency test of FLRW metric using D,,,,,/Dy,,,,,, zand D,

« Distance inequality = sign of difference between D, , and D, carries

information about the NEC. Observational test of NEC (+ GR + light propagation)
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Possible applications

« S. Résénen 2014 - consistency test of FLRW metric using D,,,,,/Dy,,,,,, zand D,

« Distance inequality = sign of difference between D, , and D, carries

information about the NEC. Observational test of NEC (+ GR + light propagation)

If we observe D,,. < D,,, then either the NEC does not hold, or modified GR or light propagation

Violation of NEC: R, IVI'<O0=T,IF"<0

equation of state p=wp w<—1
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Summary and take-home message

By comparing Dang and Dpa,, measured to a single source we get the distance slip y - new (potential)
observable

Interesting properties: frame-invariance, measures curvature and matter along the line of sight

u very small on short distances, too difficult to measure nowadays, but...

It can provide independent matter density measurements

u > 0 if the null energy condition holds

Thank you!
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Parallax

DA AIP = — 584 — mA Sxp
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Parallax
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Parallax
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Parallax
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Parallax
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Parallax in a general situation

Both observer and emitter in bound systems

Barycenters in free fall

Question: parallax without the local aberration
and light bending effects

5xg = Ugt@+6ﬂ(t@) ot l@//t =0
5xéi= Ugt%+p'u(tcg) p'ulcg,u=0

59A = 5@]’14 t@ + MAB pB ((1 + Z)_l t@) — HAB O-B(t@)

barycenter drift parallax

(linear) (periodic)




