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Goal of the talk

@ Develop a Hamiltonian approach to Cosmological Perturbation
Theory (CPT) and its gauge group, gauge-fixing, partial
gauge-fixing, spacetime reconstruction and gauge-invariant phase
space.

@ One of possible applications is to systematically study gauges, for
instance, in universes with anisotropy. An interesting issue: the
representations of gravitational waves (the tensor three-metric &
three-momentum perturbations are not gauge-invariant in
anisotropic universe).

@ The Hamiltonian CPT provides a simple laboratory for quantizations
of gravity. Such issues as quantization prescription, diffeomorphism
invariance and time problem, semiclassical spacetime reconstruction,
etc can be studied within this framework.



ADM formalism for cosmological perturbations

Split the geometric and matter variables in the ADM formalism:
8q; = qij — Gyj, on =70 — 7V Ns N4+ 6N, N N' 45N

Expand the ADM Hamiltonian:
HADI\/I = /(NHO + NiH;) d3X7
)N

where the constraints are first-class:

- — —

{H(F),H(@)} = —H(Lz8), {H(f),Ho(g)} = —Ho(L7g),
{Ho(f),Ho(g)} = —H(h(f. g, az)).
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where the constraints are first-class (up to first order):

{6H;,0H;} =0, {6H;,6Ho} =0,
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Dirac method for cosmological perturbations

Reduction of a constrained system = establishing a reduced phase space
with a true Hamiltonian.

At the background level:
HY =0, t@=¢ {HY @} #0
At the perturbation level:
0H, =0, 6C, =0, [{6H,,0C }|#0
The Dirac bracket:
(o =1{}-{,00,{d, id,} b, }, ¢, c {dH,,...,0Co,...}

The choice of physical variables:

HADM — thys = HI(;(}),Z/S(VPhyS)+/>:H$1)ys(6vphy5)'



Phase space picture
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Dirac method: gauge-invariant description

Dirac observables:
{6D;,6H,} =~ 0 for all p.
Express them in terms the physical variables dvppys

5D/ =+ 575CH + C}uéHlL = 5Vphy5,/,

= {6D) + £'5C,, + CI'6H,,, 6D, + £46C,, + CHoH, o

= {Vphys, 1, OVphys s} D-

{,Yp={,6D;}{6D;,6D,}*{6D,,-}, where {§D;,6C,} =0

Substitute:

(5Vphy5’/) — H(Q)

(2)
H phys

phys (6Dr)



Spacetime reconstruction

The stability of gauge-fixing conditions:

N© SNH
{65C, H} =0 = 57 = —{6C,,6H,}{5C,, HP + HO} = —~ (D))

Reconstruction of the three-surfaces:

(5C,,6H,,,6D;) < (dq;, o))

= 6qU(5Cy = 0, 5H“ = 0, 5D/) = 5(],‘](5[)/)
6m9(6C, = 0,6H,, = 0,6D;) = 57¥(3Dy)
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CAN IT BE IMPROVED?



KuchaF parametrization

In kinematical phase space introduce a canonical parametrization:

oDy
.. —_—
(0gij, 6mY) — (0H,,,0C,,6Qy,0P;)
——
ADM Kuchar

The total Hamiltonian is given by Hx = Hapm + K.

Hic = /v/ HD (5Q1,6P1) + (M110Q" + Na1u8P" + X3juws SH” + Aay, 6C) SH*
pX

phys

physical part weakly vanishing part

1. A1 and A; depend on 6C,,,

oN,
N

_ OHk

- ~ —A0Q" — oy 0P
sc, O0HK a .

5C,,

2. A3 is completely irrelevant and can be disregarded.
3. A4 is implied by the constraint algebra (gauge-invariant).



Gauge transformations

Consider a gauge transformation:
(6H,,,0C,,,8Q;,6P;) — (0H,,,6C,.,6Qs, 6P)).

Hence, _
{6C, —6C,,0H,} =0,

implying
6C,, = 0C, + 6P 4 BudQ" 4 7, 0H”.

= The local gauge group is G = R*", where n = the number of Dirac
observables. The group is abelian. Fix a gauge frame, choose any
gauge-fixing condition with o, and 3, at each moment of time.

1 . ~
Ypv = 5 (aulﬂ#l - a#’ﬂul) y 0Q =0Q + O‘#/(SHMa P =06P — 5/—”5HN’



Lapse and shift transformations

The stability of the new gauge:

M oM
N 6, N lsc,
82 hys 82H hys .
(awam ~ Soqiagpi P = Bt + M Bt | 5Q°
827{(2’7)5 aZH 7 ""phys .

= The transformation is determined by the coefficients o and 3. Makes

use of the physical Hamiltonian Hf)i)ys and the constraint algebra
coefficient A4.



Three-surface transformations

With the preferred gauge you define:

5C,,
(5q,'j SHH
=M
Sl 5Q'
L 6PI -

Then the three-surface in a new gauge reads:
[~ 6P — B,6Q" ]

56 0

I
<

Yl 5Q!

5P



Partial gauge-fixing (e.g., Synchronous Gauge)

Replace all or some of the gauge-fixing conditions with conditions on the
lapse and shift functions.

It is “partial” because 5',\\1,” e~ (W“ ‘5c ~ 0 implies
m
PH) PHE)

J phys phys v

— = — + A\,
Gt = @y a(soiaapf B G5ppspr T Ml

52 24 /(2)

> H s 8 s v
Bui = o) B — B B N B,

Y 55QIa5Q! ~ T* 9oPIasQ!

= For any (oui(to), Bui(to)) a unique solution t — (auui(t), Bui(t)) exists.
Hence, there is complete freedom in fixing 6C,u(to).

= Phase space picture: once §C, (o) is fixed at one time, it is determined at
all times.

= Spacetime picture: 6C,,(to) are needed in order to unambiguously move
from the Kucha¥ to the ADM parametrization of the (intrinsic and extrinsic)
geometry. Hence, once an arbitrary initial three-surface with space coordinates

is chosen, it is propagated uniquely through the four-dimensional spacetime if
the lapse and shifts are fixed everywhere.



Perturbed Bianchi | universe

The background metric of the Bianchi Type | model reads:
ds? = —N2dt? + Z 2(dx')?,  a=(araas)?,
1

where the coordinates (x1, x2, x3) € [0,1)* are assumed.

The canonical perturbation variables read
0qgij = qij — (5U, orl =7l —p'si, 6 =¢— o, 0My = Ty — T,
The Fourier transform of a perturbation variable 6 .X,
5X (k) = /Z SX(R)e M dx,
yields
{66(k), 552(K')} = 0w, {885(k), 0%™(K')} = 66,0k~

(X ~ T3, kj =27n;, n; € 7).



Perturbed Bianchi | universe

(Fix conformal metric: v; = a~2§;):

AA 1
3 1 L. AT 4 1 L. AT
AU = ﬁ(k,vj‘i’v,k_/), A’J = 72<k, J+W,' J),
5 1 o A~ 6 1 o0 P

0qn = 6&,-J-Af{, S = %V AN,
The Poisson bracket now reads
{0(k), 07 (K')} = i, {0qn(k), 07 (K')} = 6,70, -

Aj's and Al's are in general time-dependent as 7;; and (k;, 0;, W;) evolve.




The Fermi-Walker basis

What is the polarization mode?

The Fourier transform fixes a slicing of the spatial coordinate space

(x, x%, x3) with the wavefronts of plane waves. In the physical space, the
wavefronts are not fixed but being continuously tilted and anisotropically
contracted or expanded. The tangent basis (¥, W) can be Fermi-Walker
transported along the (future-oriented) null vector field g whose spatial

component is dual to the wavefront k of a gravitational wave,

ﬁ:PJFWmn ’

where V0= 0. Field p' may be identified with tangents to null geodesics
associated with rays of gravitational waves in the eikonal approximation
(i-e., for large wavenumbers):

dvs o oodwd

:7UVVVJ70.VWWJ7 :7O'WWW170-WVVJ7

dn dn

(unfortunately, not suitable for quantization).



Reduction of the ADM formalism

Set gauge-fixing functions (flat slicing gauge):
0Ci:=46q1, 0Cy:=0q2, 6C3:=09q3, 0C4 :=dqa.
A complete set of second-class constraints:
0®, = {6Cq,0C,,0C3,0C4,0Hg, 0H,, 6H,, H,, }, det{d®,,0d,} # 0.
Introduce Dirac’s bracket:
{do={:}—{00,}{o,, 50, } 7} {i®,, }.

Reduce the Hamiltonian:

Hphys = / (VM + 5N#5H,,)
T

= / NS
6C=0 z

By removing (dq;,d7;), i = 1,2,3,4, we obtain

6C=0

. 37‘[(()2) ‘6C aH(()2) ’5C
09 =N—5 0T =-N—5""

where (5q, 571') S {(5(]5, ((571'5)7 (5q6, (571'6), (5¢, (57T¢)}.



Physical Hamiltonian

After rescaling (dgs, 07s), (dge,076), (09, dmy):

N

H =
Bl 23

{5&5 + 07g + 075 + (K* + Us)ds + (K> + Us)ddz + (K* + Uy )56°
+ C16G5686 + C20G500 + cséaa&z].

Rename the dynamical variables:

Hg, :?’\; [5/312 +6P5 + 0P5 + (K> + Us)5 Q7 + (K* + Us)d Q5 + (k* + Uy)5 Q3
+ C10Q0Q2 + C6Q16Q3 + C35Q25Q3]7

where dQ; and 6P, are Dirac observables s.t.:

5Ql|6c = 0§s, 502!5(: = 0Ge, 5Q3’5C = 5(;2,

5P1|6C = 6ﬁ5’ 6P2|5C = 5ﬁ67 6P3’6C = 57'.1"(75



Dirac observables

5@ = 595 +——(6q1 — ~da2),
V2a
1 Py ww
5@y = —dqg (8q1 — —~da2)
V?2a
-
R P 1
503 = 286 + —2—(5q; — ~ o),
P 3

5(TP) — P, 2P, Py — P,

Kk ww w ww

5P = V2admg + © 3 5q57\/§3P ( . 5q5+PVW6q5>,
a a kk

1 Pyw
+ F(Puw s Py Prw)(da1 — —da2) —
3 ‘33Pkk

wl S
@l N

(3PS + 3 56) + ~ (P 543 + Pi, 54)

S5(TP) — P Py — P, Py — P
6Py = V3asmg + L K g — LW (T T T e Py Sas
V243 V2a3Pyy 2

2 2
Pw — Puw P P 1 Pw — Puw 2 V2
+F | ———, KW (g — —8qp) — ————— (3P 8q1 + 3 pydd) + — (Pry, 893 — PiySaa
< . . . 3 2P (3Pkk $59) = (Phd93 = Piydaa)

2TrP)Pyyp gy — 630PkV g — 3;7(31>

2

1 (TrP)Pyy + 3p° 3p,

5Py = —omy — —— P55 Tlsq 4 5 (5a1 — - 8a)
a 6Py 233 623P2, 3

pp ((Pov = Paw)? +4P2,)
3p2
2a Pkk

Py Py — Puw 1
—_— f&?e + Pywdqs | — (8q1 — géqz)-

V2a3 Pk



Dirac observables

The rotation of the Dirac observables in the (7, w)-plane:

R;(8)0Q1 = cos(260)6 Q1 — sin(20)d Q-

R:(0)0Q
R(6)5P:

N

(20) (26)
R;(0)0P1 = cos(20)0 Py — sin(260)6 P,
( = c0s(20)0 Q2 +sin(20)0 @y
) (20)

N

= co0s(20)0 P, + sin(20)5 Py
R:(0)0Q3 = Q3
R:(0)0Ps = 6P;

where R;(0) is the rotation around k = W by the angle 6.



Gravitational waves in anisotropic universe

Scalar gravity gauge:

6C1 =06qo, 6Cy:=0qs, 6C3:=dqs, 6C4:=dgs.

= iV/2k?
Det {6H,6C} = _M7

2P,

501’56 = apkk 6q17
1 Py — P
) L= —0 _w T wws

SN,

N

SN
- Tﬂ =A,6Q: + B,5P.
S5G FS




Conclusions

@ The reduced phase space for anisotropic CPT can be easily derived
with the Dirac method. Anisotropic CPT brings in some interesting
issues: the dynamical triad (IA<, ¥, W), ambiguous polarization modes,
new gauges including the representation of a gravitational wave by a
scalar metric perturbation, and richer dynamics of perturbations.

@ The structure of the theory is conveniently displayed in the Kucha¥
parametrization. The finite gauge transformations can be easily
deduced and the space of gauge-fixing conditions is given explicitly,
spacetime reconstruction is easier once a gauge frame is established.

@ Hamiltonian formalism for CPT can be a useful playground for
quantizations of gravity. Such issues as quantization prescription,
diffeomorphism invariance and time problem, semiclassical spacetime
reconstruction, ... can be studied within this framework.



