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Motivation

Observational-Theoretical data

Large-scale magnetic fields form an existing component of the universe’s
energy content, which potentially contributes to universal dynamics and
structure formation (via its effects on density inhomogeneities).

Although magnetic fields are widely present in the universe (interstellar
medium, our galaxy, galaxy clusters, intergalactic space), their origin, evolution
and role have not been adequately explained.

The unique vector nature of magnetic fields allows for their double coupling
with spacetime curvature, via not only Einstein’s equations but the Ricci
identities as well. This property points them out as the sole known energy
source with vector beingness.

In analogy with a spring under pressure, magnetic fieldlines tend to resist their
gravitational deformation by developing curvature related (elastic) tension
stresses. This tendency presents remarkable implications on the problem of
magnetised gravitational collapse.



Hot Topics in Modern Cosmology 3/13

Motivation

Theoretical models (shortcomings)

Lack of an exact model of magnetic field’s evolution. Conventionally, cosmic
magnetic fields are treated as linear perturbations on a FRW background and
their evolution is therefore derived to be B ∝ a−2 (flux conservation).

Most studies of magnetised stellar/protogalactic collapse are Newtonian and
as such, they do not take into account the special coupling of magnetic fields
with spacetime curvature.
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Method & Aim

Employ General Relativity and make use of a covariant approach.

Adopt the MHD approximation (magnetic field frozen into the fluid).

Consider two basic fields, a timelike 4-velocity ua (associated with a
fundamental observer) and a spacelike vector na along the magnetic
forcelines.

Split the kinematic/dynamic quantities (vectors and tensors) into their
components with respect to ua and na.
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Method & Aim

Decompose and solve Faraday’s equation to derive the exact evolution
formula for the magnetic field (allowing for anisotropy).

Study the magnetised gravitational collapse of an ideal fluid and
establish a non-collapse criterion.

Present the linearly perturbed Bianchi I geometry as a simple example
model of magnetised gravitational collapse.
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Kinematic variables and (1+3) spacetime splitting

4-D Gradient of the 4-velocity field

∇bua =
1
3
Θhab + σab + ωab−u̇aub ,

where
Θ ≡ Daua: is the volume scalar (Θ > 0 means expansion whilst Θ < 0 contraction),
σab ≡ D⟨bua⟩: is the shear (shape distortions), ωab ≡ D[bua]: is the vorticity

(rotation) and u̇a ≡ ub∇bua: is the 4-acceleration (non-gravitational forces).

Derivative and projection operators

Temporal and spatial derivative:
· = ua∇a and Da = ha

b∇b respectively .

Projection operators:

hab = gab + uaub and h̃ab = hab − nanb ,

projecting in the observer’s local 3-D space (habub = 0) and on the 2-D surface
normal to the magnetic forcelines (h̃abnb = 0) respectively.
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Kinematic variables and (1+2) space splitting

Decomposition of vectors and 2nd rank tensors

Our 3-D vectors split parallel and orthogonal to na ∥ Ba as:

u̇a = Ana +Aa , Ba = Bna and ωa = Ωna +Ωa .

Similarly, 2nd rank symmetric and trace-free tensors split according to:

σab = Σ(nanb − 1
2

h̃ab) + 2Σ(anb) +Σab ,

where

Σ ≡ σabnanb = −h̃abσab , Σa ≡ h̃a
bncσbc , Σab ≡ (h̃(a

c h̃b)
d − (1/2)h̃abh̃cd)σcd .

Auxiliary relations

Observing that (nbDbna)ua = 0 = (Daub)nb one arrives at the crucial relations:

Σ = −1
3
Θ and Σa = −ϵabΩ

b .
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Faraday’s equation and its solution

MHD limit and decomposition

At the MHD limit (practically zero electric component) Faraday’s equation reads:

Ḃ⟨a⟩ = ha
bḂb = (−2

3
Θhab + σab + ϵabcω

c)Bb .

Projecting the above along na ∥ Ba (Ba = Bna), leads to:

Ḃ = −ΘB .

Solution-The magnetic field’s law of variation

The above equation accepts the general solution:

B ∝ a−3 ,

where a is the average scale factor (Θ ≡ 3ȧ/a). It is worth noting that our solution:

Is exact (not approximate), in contrast to the conventional B ∝ a−2, and it takes
into account spatial anisotropy (i.e. σab ̸= 0).

Provides us with the keystone for studying magnetic fields in cosmological and
astrophysical problems.



Hot Topics in Modern Cosmology 9/13

Magnetised gravitational collapse

The Raychaudhuri equation I

Monitors the average volume expansion/contraction of a self-gravitating fluid

Θ̇ = −1
3
Θ2 − Rabuaub − 2

(
σ2 − ω2

)
+ Dau̇a + u̇au̇a ,

where Rabuaub = (1/2)(ρ+ 3P + B2) > 0. Negative terms favour
contraction-collapse (Θ < 0) whilst positive ones favour expansion (Θ > 0).
We put aside u̇au̇a > 0, which always resists the collapse.

Using Euler’s equation to calculate Dau̇a

The equation of the fluid’s motion reads:

(ρ+ P + B2)u̇a = −DaP−1
2

DaB2+BbDbBa + u̇bBbBa ,

where the Lorentz-force splits into its pressure (blue) and tension (red) component.
Assuming a nearly homogeneous fluid, i.e. Daρ ≃ 0 ≃ DaB2 but DaBb ̸= 0, and
taking the divergence of Euler’s equation we get:

Dau̇a = c2
ARabnanb + 2(σ2

B − ω2
B) ,

where c2
ARabnanb comes from the magneto-geometric coupling via the Ricci

identities: 2D[aDb]Bc = −2ωabḂ⟨c⟩ +RdcbaBd .
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Magnetised gravitational collapse

The Raychaudhuri equation II: Revealing the elastic magnetic (tension) stresses

Θ̇ +
1
3
Θ2 = −(Rabuaub − c2

ARabnanb)− 2(σ2 − σ2
B) + 2(ω2 − ω2

B) ,

where

σ2
B = D⟨bBa⟩D⟨bBa⟩/2(ρ+ P + B2) and ω2

B = D[bBa]D[bBa]/2(ρ+ P + B2):
magnetic (tension) stresses resisting to shear and rotational deformations of
the fluid (note opposite signs). They are due to kinematic (Newtonian) effects.
c2
ARabnanb (with c2

A = B2/(ρ+ P + B2) being the Alfvén speed):
magneto-curvature (tension) stress resisting to 3-D gravitational distortions
Rabnanb of the fluid along the magnetic forcelines. It has a purely relativistic
nature-origin and it is triggered by gravity Rabuaub > 0.

A non-collapse criterion I

i) Advanced stage of implosion→ ii) strong-gravity environment→ iii)
counterbalance of the two relativistic terms→ iv) implosion’s outcome
If at some time,

c2
ARabnanb > Rabuaub ,

the collapse will be prevented from reaching a singularity.
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Magnetised gravitational collapse

A non-collapse criterion II

Projecting the Gauss-Codacci formula:

Rab =
2
3

(
κρ− 1

3
Θ2 + σ2 − ω2

)
hab − Eab +

1
2
κπab − 1

3
Θ(σab + ωab)

+σc⟨aσ
c

b⟩ − ωc⟨aω
c

b⟩ + 2σc[aω
c

b]

twice along na, we find out that:

Rabnanb = (2/3)ρ+ E ,

where Rabnanb and E ≡ Eabnanb are the 3-D spatial deformation and the tidal tensor
(electric Weyl) along the magnetic forcelines.

Taking into account that B2 ∝ a−6 and ρ ∝ a−3(1+w), our criterion becomes:

E >
1
2
B2 ,

namely the collapse will be impeded if the tidal stress tensor along the fieldlines
prevails over the magnetic energy density.

When does this happen? It seems to depend on the geometric background in hand.
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Magnetised gravitational collapse

The linearly perturbed Bianchi I: A simple model of magnetised gravitational
implosion
We consider a linearly perturbed (collapsing) Bianchi I model under the
requirements of: 1) natural host of magnetic fields, 2) almost homogeneity and 3)
closed (perturbed) spatial sections Rabnanb > 0.

The evolution of E (I)

Ė⟨ab⟩ = −ΘEab − 1
2
(ρ+ P)σab − 1

2
π̇ab − 1

6
Θπab + 3σ⟨a

c
(

Eb⟩c −
1
6
πb⟩c

)
.

Projecting twice along na ∥ Ba we get:

Ė +
5
2
ΘE − 1

6
(1 + w)Θρ+

1
2
ΘB2 = 0 ,

which is solved (adopting a comoving frame where the connection vanishes) giving
(D1,D2,D3 are constants):

E = D1a−7.5+D2a−6 +

(
1 + w

9 − 6w

)
D3a−3(1+w) .
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Magnetised gravitational collapse

The evolution of E (II)
Hence, at an advanced stage of the collapse, the dominant mode is:

E ∝ a−7.5 (also, recall that B2 ∝ a−6 ) .

The above result generally satisfies our non-collapse criterion:

E >
1
2
B2 ,

which means that, given enough time, magnetic fields always prevent the collapse
from reaching a singularity in our example model.


	

