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2 Resolving the tension requires lowering the sound horizon by ~ 8 Mpc.

2 This clearly suggests new physics pre recombination in redshift window:

Moc{&fsj Ms%mrj of universe when
highly constrained! 1000 < 2 < 25000

2 Challenge: The new physics should preserve good fit to CMB observables.




How to shorten sound horizon?



How to shorten sound horizon?

2 Energy injection before recombination (but not too early!).



How to shorten sound horizon?

2 Energy injection before recombination (but not too early!).

H(2) = Hov/Qp + Qi (1 + 2)3 + Q. (1 + 2)4 + Qx(2) hew component (~10%)
e 2)

H(z)

increases H(z) prior to recombination rs =

< x



How to shorten sound horizon?

2 Energy injection before recombination (but not too early!).

H(2) = Hov/Qp + Qi (1 + 2)3 + Q. (1 + 2)4 + Qx(2) hew component (~10%)
= cl2)

H(z)

increases H(z) prior to recombination rs =

< x

» Balanced by increasing H



How to shorten sound horizon?

2 Energy injection before recombination (but not too early!).

H(2) = Hov/Qp + Qi (1 + 2)3 + Q. (1 + 2)4 + Qx(2) hew component (~10%)
= cl2)

H(z)

increases H(z) prior to recombination rs =

< x

» Balanced by increasing H

2 Subsequently, the new component has to decay at least as fast as radiation.



How to shorten sound horizon?

2 Energy injection before recombination (but not too early!).

H(2) = Hov/Qp + Qi (1 + 2)3 + Q. (1 + 2)4 + Qx(2) hew component (~10%)
= cl2)

H(z)

increases H(z) prior to recombination rs =

< x

» Balanced by increasing H

Subsequently, the new component has to decay at least as fast as radiation.

2 Canonical example: Dark Radiation (DR)



How to shorten sound horizon?

2 Energy injection before recombination (but not too early!).

H(2) = Hov/Qp + Qi (1 + 2)3 + Q. (1 + 2)4 + Qx(2) hew component (~10%)

e 2)

increases H(z) prior to recombination s H(z)

< x

» Balanced by increasing H

2 Subsequently, the new component has to decay at least as fast as radiation.

2 Canonical example: Dark Radiation (DR)

Dark radiakion: () (t) — QDR a(t)_4

SLmPLesE &mgtemem&a&om: promo&a Neg to free pmama&er



How to shorten sound horizon?

2 Energy injection before recombination (but not too early!).

H(2) = Hov/Qp + Qi (1 + 2)3 + Q. (1 + 2)4 + Qx(2) hew component (~10%)

e 2)

increases H(z) prior to recombination s H(z)

< x

» Balanced by increasing H

Subsequently, the new component has to decay at least as fast as radiation.

2 Canonical example: Dark Radiation (DR)

Dark radiakion: () (t) — QDR a(t)_4

Simytes& Lmytemem&o\&ow promo&a Neg to free pmama&er

Result: Tension only reduced slightly, still ~4 sigma [Planck 2018 + BAO (+LSS)
+ Pantheon + BBN]



How to shorten sound horizon?

2 Energy injection before recombination (but not too early!).

H(z) = Ho/OA + Q0 (1 + 2)3 + Q. (1 + 2)* + Qx(2) new {:@Mpcmew& (~10%)

e 2)

increases H(z) prior to recombination fafs H(z)
2 %

2 Balanced by increasing H|,
Subsequently, the new component has to decay at least as fast as radiation.

Canonical example: Dark Radiation (DR)

Dark radiakion: () (t) — QDR a(t)_4

Simytes% ngtemem&a&om: promo&a Neg to free pmama&er

2 Result: Tension only reduced slightly, still ~4 sigma [Planck 2018 + BAO (+LSS)

+ Pantheon + BBN]
2 Problem: Too much diffusion damping on small scales.

2 Generalisations where DR constituents becomes non-relativistic around eV

scale and annihilate are more promising (see Majoron and “step” proposal).

[Escudero,Witte,2004.01470] [Aloni++,2111.00014]
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2nd order

(L) frozen due to Hubble

Eransibion

friction until matter-rad. eq.
(it) coherenk oscillations

non-generic choice

2 Phenomenology requires:
e Flattening of potential at high field values. @jﬁtﬁ“ﬁ\/@-fﬁsﬁdf

@ Oscillations in anharmonic potential. 0 QEDE
X S e
e Ultralight effective mass : T ~ 107%7eV QepE |a(ts)/a(t)]

2 Brings tension down to ~2.5 sigma (1p-EDE).
[Planck 2018 + BAO (+LSS) + Pantheon + BBN]

where o =3 (

2z Challenges:
e How to justify choice gbG ?

@ Not resolving S8 tension (does not make it much worse though).
[Smith++,2009.10740] [Amico++,2006.12420]
[Murgia++,2009.10733] [Hill++,2003.07355]
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First order decay scenario

2 Question: Can we find a model more motivated from particle physics?

New idea: use 1sk order Eransition
V(y)

\ tunnelling

vacuum bubbles

EDE/NEDE provided by (decaying) false vacuum energy.
2This idea faces challenges:
1. Decay should happen around matter-radiation equality (lesson from EDE).
2. Bubble percolation has to be extremely efficient to avoid anisotropies.

(prevented from growing to cosmological size).
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Cold New Early Dark Energy

2 Introduce a trigger field to synchronise decay.

2 eV scale adaption of first-order inflationary model
[Linde, 1990 ][Adams,Freese, 1990]

Fileld stuck in false minimum

i suppressed tunnelling rate

(ii) ¢ skarts evolving
after orange dot: T/H* > 1
strong nucleation event

V(,6) = 5 0% + s M — aly® + pm? + o6y

hierarchy: M ~eV > m ~ 10 Aoy ultra-Light physics
radiative stabiliby: = = 10%m? alvi o wealk coupling: )\ < (.1

2 Central assumption: tav. durakion:
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2 NEDE as phenomenological model:

1016 - — Pm
o —— PNEDE
(i) @ Before transition: NEDE plays role of CC. _ 10 e
e Sudden triggered transition at time: £, <= 10" — P
— PA
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decaying dark fluid with e.o.s.p.: < pelTrigger
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2 Important result: Phase transition is an instantaneous process on cosmological scales.

D) T«

2 After PT: Mixture of radiation and small scale anisotropic stress

2 NEDE as phenomenological model: Lot — P
(i) @ Before transition: NEDE plays role of CC. — 108y - ZrNjDE
e Sudden triggered transition at time: T, c:;a 1010 _ — P

(ii) @ After transition: NEDE is described by < 107 o
decaying dark fluid with e.o.s.p.: < 104-M (LE,
10% A :
1/3<wNEDE(t) ] A

10—° 10~4 103 102 101 100
a

2 Perturbations in decaying NEDE fluid seeded by trigger field perturbations.
2 Description applies to other triggered decay scenarios too (e.g. hybrid NEDE).



Cosmological parameter extraction



Cosmological parameter extraction

2> Consider simplest implementation of NEDE:

€ parameters: trigger mass & fraction NEDE fNEDE
¢ fix WNEDE = c? = 2/3 (relaxed later)



Cosmological parameter extraction

2 Consider simplest implementation of NEDE:

€ parameters: trigger mass & fraction NEDE fNEDE
¢ fix WNEDE = c? = 2/3 (relaxed later)

w/0 SHoES § w/ SHoES

Parametbers JNEDE INEDE
m(fixed) 1 m

Ho [km/s/Mpc] 69.6717 | 71.4+1.0

Evidence fygpr #0 | ~ 20 ~ 4o
Hubble Ekension ~) 5o (2 1.5 (7)
S¥ bkension e Niio ~ 2.80

Ay 96 —15.6

[FN&Sloth:2006.06686 ]

[Planck 2018, BAO, Pantheon, SHOES 2019]

—— NEDE (m fixed; w/o SH(ES)
-~ NEDE (w/ SHoES)

—— ACDM (w/o SHoES)

—— SHES

Hy [kms™"Mpc ]
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BN NEDE (w/ SHoES) W ACDM - NEDE (w/o SHoES,me
| i € Energy injection reduces sound horizon.

T4 F

¢ Compensated by larger H

0.05 0.10 0.15 0.20 136 140 144 148

INEDE 7

€ Enhanced diffusion damping.

¢ Compensated by larger 7l ¢

0.96 0.98 1.00

€ Quicker decay of Weyl potential due to NEDE

perturbations and delayed matter

domination.

¢ Compensated by largetdcdm

€ Small residual effect on small scales.
O.I12 0.I13 0.I14 N 0.I80 0.I84 0.I88 . .
e Sq & Still: S8 tension comparable to LCDM

weak lensing (2.5 -> 2.8 sigma)







The Hjy Olympics: A fair ranking of
proposed models

Nils Schéneberg,” Guillermo Franco Abellan,’ Andrea Pérez
Sanchez,” Samuel J. Witte,® Vivian Poulin,” and Julien

deals with non-Craussian

/ Pos&eriors

Lesgourgues”
Model AN, M Gaussian— Gpuap Ax2  AAIC Finalist
PR B Tension Tension X

ACDM 0 —19.416 £ 0.012 4.40 4.50 X 0.00 0.00 X X
Majoron 3 —19.380 £+ 0.027 3.00 2.90 v | —13.74 -7 Vv v
primordial B 1 —19.390 £+ 0.018 3.90 3.50 X | -10.83 —-883 V v @
varying m 1 —19.391 £ 0.034 2.90 3.20 X —9.87 —7.87 V v @
varying me—+€2 2 —19.368 £+ 0.048 2.00 1.70 v | —-16.11 -12.11 v
EDE 3 —19.390 £+ 0.016 3.60 1.60 v | —20.80 —-14.80 V v
NEDE 3 —19.380 £ 0.021 3.20 2.00 v | =17.70 -11.70 Vv v

[Planck 2018 + BAO + Pantheon (+ SHOES)]
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Nils Schéneberg,” Guillermo Franco Abellan,’ Andrea Pérez POS&ET‘ E«OT‘S

Sanchez,” Samuel J. Witte,® Vivian Poulin,” and Julien /

Lesgourgues” .

Model AN M Gaussian — Gpuar Ax2  AAIC Finalist

- B Tension  Tension X

ACDM 0 —19.416 4+ 0.012 440 4.50 X 0.00 0.00 X X

Majoron 3 —19.380 £ 0.027 3.00 2.90 v | —13.74 —7.74 v

primordial B 1 —19.390 + 0.018 3.50 3.50 X | -10.83 —-883 V v @

varying me 1 —19.391 £+ 0.034 2.90 3.20 X | —-987 787 V v @

varying me—+€2 2 —19.368 £ 0.048 2.00 1.70 v | —16.11 -12.11 v

EDE 3 —19.390 £ 0.016 3.60 1.60 v | —20.80 —14.80 Vv v

NEDE 3 —19.380 £+ 0.021 3.20 2.00 v | =17.70 -11.70 Vv v
[Planck 2018 + BAO + Pantheon (+ SHOES)]

2 Comparison EDE and NEDE: —— ACDM  —— NEDE - DR --- cADE —-— EDE

[ L 0.02 [FN&Sloth:2006.06686]
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proposed models

Nils Schéneberg,” Guillermo Franco Abellan,’ Andrea Pérez
Sanchez,” Samuel J. Witte,® Vivian Poulin,” and Julien

deals with non-Craussian

/ Pos&arwrs

Lesgourgues”
Model AN, M Gaussian — Gomap Ax2  AAIC Finalist
0ae PR B Tension Tension X
ACDM 0 —19.416 + 0.012 440 450 X 0.00 0.00 X X
Majoron 3 —19.380 £0.027  3.00 290 v | -1374 774 V 7
primordial B 1 —19.390 £ 0.018 3.50 3.50 X | —10.83 —883 V v @
varying me 1 —19.391 4+ 0.034 2.90 320 X | —-987 —787 V v @
varying me-+y, 2 —19.368 + 0.048 2.00 1.70 v | -16.11 —12.11 7
EDE 3 —19.390 + 0.016 3.60 160 v | —20.80 —14.80 7
NEDE 3 —19.380 + 0.021 3.20 200 v | —=17.70 —11.70 7
[Planck 2018 + BAO + Pantheon (+ SHOES)]
Z Comparison EDE and NEDE: —— ACDM  —— NEDE - DR CADE  —-— EDE
B L 002 [FN&Sloth:2006.06686]
I
|
: - 0.01 , N .
X - At Ll R EDE glves more power

500

1000

1500

N

2000

" NEDE gives less power

—0.01

—0.02

2500

More precise high-| TT (and EE) data can help distinguish EDE and NEDE.

A special role will be played by LSS data.

Key message: perturbation sector matters



Gravitational Waves



Gravitational Waves

> First order phase transitions (PT) act as source of gravitational waves.



Gravitational Waves

2 First order phase transitions (PT) act as source of gravitational waves.




Gravitational Waves

2 First order phase transitions (PT) act as source of gravitational waves.

O g

single dial




Gravitational Waves

2 First order phase transitions (PT) act as source of gravitational waves.

O g

single dial

? Moderate prospects of detection with pulsar timing arrays.

Square Kilometer Array, sensitivity: h2Qcaw ~ 10715

window for detection: 0.1 < =




2 First order phase transitions (PT) act as source of gravitational waves.

10~
. — sk
---- Hp'=1

-

10724 | e H.371=0.01

10~13 4

—
—

h*Qaw

10-14 - /CMB sensitivity

1071
10~1°

10~

10—18

f [Hz]

2 Marginally compatible with Square Kilometre Array



Summary

? HO and S8 tension exciting opportunity to probe the dark sector.
2 EDE looks promising, although the potential appears fine-tuned

+ no solution to S8 tension =& look for new particle physics models!
2 NEDE brings HO tension down to 2.5 sigma. %\N7
2 Unique signature: gravitational waves. S — .
? Three phenomenological challenges remain: 7%

e 1. S8 tension: ~==4 Dark sector interactions
e 2. New coincidence problem el Martin’s talk

e 3. Unknown systematics ~etly  Stay open about new developments.

\'4

> Further theoretical work

‘\\f\

e Find new microscopic scenarios for NEDE (see Martin’s talk).
e Relate NEDE fluid to microscopic parameters.

e Multi-axion system: small masses protected by approximately broken shift symmetry.



