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Observable Sector Higgs-Sneutrino Inflation:

The observable sector of the B — L. MSSM heterotic theory has the exact N = 1 supersymmetric
particle content as the MSSM with the addition of three right-handed neutrino chiral multiplets—one
for each of the three families. The gauge group is that of the standard model, with an extra gauged
U(1)B-L factor. Although the B — L MSSM arises from compactification of heterotic M-theory on a

Calabi-Yau threefold with hl,l = 3 and, hence, has three Kihler moduli, Higgs-Sneutrino inflation is
developed by considering only the “universal” modulus. That is, the moduli of the cosmological
theory are the dilaton S and a single Kidhler modulus T . The Kéhler potential of the observable sector,

which arises by restricting the full hl,1 = 3 theory to the universal modulus, is given by
K = =1 (S + 8) = 3s°In(T + T — G 7CF, C))
C(IO) are the dimensionless scalars of the B — L MSSM observable sector. G 7 are generically

complex structure dependent hermitian matrices. That is, no-scale supergravity.

The inflaton is a linear combination of the up, neutral Higgs scalar H°
and the left-handed and right-handed sneutrinos v, 3, Vg 3 . Specifically,

1
¢1 = —=H] +vp3+vRs3
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To canonically normalize the kinetic energy, one defines a real scalar field { by
)
$1 =3 tanh(%)

The associated potential energy is given by

The relevant part of the Y potential energy is given by the soft supersymmetry breaking potential

Veote = 3m>tanh? (i)
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where
1
m? = —(qug +m?2 . +m2 )
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In order to satisfy the Planck 2015 cosmological data, the soft mass parameter m must take the value



Since Viott is a soft supersymmetry breaking term in the effective Lagrangian, it follows that

supersymmetry in this inflationary B — L MSSM must be broken at a high scale
msusy ~~ O(lOlSGeV)

Setting the reduced Planck mass Mp = 2.435 x 10'¥GeV  to unity, we find
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Inflation begin at ¢. and ends at t.na . The value of the potential at the beginning of inflation is

V= 7.97 x 10°GeV
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As shown in “Perturbative reheating in Sneutrino-Higgs cosmology,”
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at the end of inflation, the inflaton enters an oscillatory phase with
1
V() ~ §m2¢2
At the beginning of this phase at ¢,sc we find

V4~ 92332 x 101°GeV
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The Universe then undergoes a period of reheating (or inflaton domination) which ends when the
bath of produced supersymmetric standard model particles comes into thermal equilibrium—the

beginning of the matter dominated era. The reheating temperature at the end of the inflaton domi-
nated era was found to be

Try ~ 1.13 x 1013GeV

An important quantity during the reheating period is the so-called maximal temperature defined to be

1/4
Tm,aa? — Vos/c TRH
Using the above, we find that

Thuw ~ 1.623 x 10 GeV

The inflaton dominated period can be characterized by the temperature interval

Tmaaj >T > TRH



When N = 1 supersymmetry is spontaneously broken in the hidden sector, chiral matter
fermions—both in the observable and hidden sectors—do not acquire soft supersymmetry break-
ing mass terms. However, in the oscillatory regime, the inflaton field Y develops a time-dependent

VEV given by the square root of
5 t+d g - -
A4 o 1205
(¥°(t)) = % /., . o (t)dt
where § ~ 27 /m. It follows from the above that in this reheating phase v HY .

. . A . .
Hence, observable sector chiral fermions ¥ develop a time-dependent non-zero mass given by

M¢I — yzw <¢2>
where yww(fo)w(fo) is the Yukawa coupling parameter in the inflaton-two Weyl fermion interaction.
In contrast, the hidden sector chiral fermions cannot receive such contributions and remain massless.
Similarly, neither the observable nor hidden sector gauge bosons acquire soft supersym-
metry breaking masses. However, as with the observable chiral fermions, the observable sector
gauge bosons do have time-dependent masses generated by the inflaton VEV during the reheating

period. Just as in the case of fermions, the gauge bosons in the hidden sector do not receive such
contributions and, therefore, remain massless.



Finally, the case for the observable and hidden sector gauginos is more complicated. Bottom line:
They both get soft supersymmetry breaking masses and the observable sector gauginos also get
contributions to their masses generated by the VEV of the inflaton during the reheating period.

Anomalous U(1) Hidden Sector:

The Kahler potential is now extended to
K = —/4:;2171(5 +S) — Bmgzln(T +T — QIJC(IO)C_'EZ)—QLMC{;L)C_'(]\Z))

where C(Lh) are the dimensionless scalars of the B — L MSSM hidden sector and G, ;; are generically
complex structure dependent hermitian matrices. Here, we consider a specific example where
the hidden sector gauge group is the line bundle

L=0x(21,3)

with an anomalous U(1) structure group. This vacuum will satisfy all phenomenological and mathematical
constraints if the three real components ai, i =1,2,3 of the Kahler moduli lie within the so-called “ K
region.
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For specificity, we will assume this is the case.
For this particular line bundle, with L & L~ ' embedded in the Es so that
Es — E7 X U(l)

the low energy hidden sector spectrum is the one reproduced in the table

U(l) x E; Cohomology Index x

e e 133 ) HE(X, O ) 0 - Strong coupling Gluon-Gauginos condensation
Heavy anomalous mass @ 1) B2 (X Qe oo B
(1,56} HX L) P . |
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Due to the fact that all 58 chiral multiplets have identical -1 charge, the associated superpotential
vanishes. Therefore, the supersymmetric masses of all such scalars and fermions are zero. Furthermore,
the fermions cannot receive soft supersymmetry breaking masses. —> the fermions cannot be dark matter.
This leaves the 58 complex scalar component fields C(Lh) as dark matter candidates. These scalar can

indeed get soft supersymmetry breaking masses. To lowest order,

2 9 Kr/3 B
M7 — Msusy€ G

Since 55y ~ O(104GeV) then, if ¢*7/2G, ., ~ 1 for some diagonal components, it follows that

these particles have soft scalar masses of order 10'*GeV . However, if some diagonal components have

eKT/SQLM < 1, then their masses are < msu 5y . These light scalars do not contribute strongly to

dark matter. Denote the number of scalars with mass .55y ~ O(107GeV) by . Then

0 < Ny < 58



Moduli Portals:

Assume that the S and T moduli have been stabilized at real VEVs (s) and (1) respectively, and that

these VEVs satisfy the condition that the Fayet-lliopoulos (FI) term vanishes. Then the fluctuations

85 and &7 are related to the moduli mass eigenstates ¢! and £2 by the linear relation

45 , (€1
()=o)

for a known matrix U. Daiagonalizing, we find that the modulus eigenstate 51 gets a very heavy

N A

anomalous mass of order the unification scale and, therefore, can be integrated out. However, after

supersymmetry breaking &2 gets a lighter mass of O(m g gy ) . Writing

& =0’ +i¢”
we find that both components are mass eigenstates with

m¢2 ~ mnz ~ O(mSUsy)

Thus, ¢ and 772 are the moduli portals.



Moduli Interactions: The interaction vertices for both observable sector and hidden sector fields with

the gb2 and 772 portal moduli are the following. a) Couplings to ¢>

* matter scalars to moduli:
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* gauginos to moduli:
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b) Couplings to 172

* observable gauge fields/gauginos to axion:
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For the specific anomalous hidden sector discussed above, all gauge and gaugino fields are integrated

out. => No hidden sector gauge or gaugino couplings to 772.

As discussed previously, the only possible dark matter candidates are the 58 left-chiral supermultiplets

(Clys i), L=1,...,58



However, all w(Lh) fermions remain massless and, therefore, the amplitude to produce them vanishes.
On the other hand, all scalars C(Lh) get a non-zero soft-supersymmetry breaking mass of which

0 < Ny <58 have amass mgspysy ~ O(10""GeV). These are our dark matter candidates.

Using the above vertices, we find that the dark matter production mechanisms are

CE) 197y | 45 1 X (p2) Cliy 1 X5 pe)
Clgt
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In the above, the “alpha” parameters are

. , 2 1 1 (s)
C 00 C
Oy = Qgyy = Qpgy = and = =
SM SM DM \/§(_1 " %a_)l/2 3 Ry SM "~ YrdGur
where, for FI=0
_(s) 3
T
Assuming the VEVs of S and T lie on the “ ” region shown above, we find that
i o v o 2
}3 < [40.68] i Qgy — Qg — Opy — —%{W - [0 08 0. 46]
and ,
1 - 1
(Qu) = 5664 5%sm = = gy = T 4.2

Using these results, restricting temperature T to be in the reheating regime

Tma:n >1T > TRH
and using the results for all observable sector masses in that regime, we find that the dominant

production mode is
AA — CC



with o

IMaa-sco|? ~ agyapy Kis®

DM Kq$
and /s ~T.

Dark Matter Relic Density:

After inflation ends, there are two cosmological regimes

ID: Thar>T =>Try .
RD: Truy>T=>T,.
where

Tonar = 1.623 x 10¥GeV and Try = 1.13 x 103GeV
and Ty is the present temperature of the Universe. Note that
mpuy ~ Mg ~ m2 ~ O(10" GeV)

The formula for the dark matter relic density is given by Qh? = mpyMNDM/ P

Qh? ~ Qhf, + Qhén

T, : T,
- & R(T) RH R(T)
~~ 4 x 10 mpm (I.O'TXT‘ / JI’—+/ dl'——
RH Tan T3 TS



Rt is the dark matter production rate at temperature T. When the temperature of the Universe drops

below the dark matter particle mass, the production rate becomes exponentially suppressed by the

R(T) ~ e ™m/T

Since mpys ~ (’)(1013(}6\/) ~ T'r, it follows that for T in the RD regime 1(7') — 0. Therefore
the expression for the relic density simplifies to
Oh? ~ 4 x 10%* mpy (1m XTI, /T" c{r% )
Tan
and depends only on the reheating regime 7,... > 7 > Tru. Using the result IMaa—cc|® = adyaby kis?
one can derive R(T). The result is

3

) =Nt 600
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Inserting this into the above, we find that

2

Qh" ~ (87 x 1021 )x\l.(h) m [QgM]:',[QgM]- mpM KiTSRH



This will produce the measured relic density for

N(,,)[ag,,,]?[ag,,,]"' mpM =~ 3.4 x 10MGeV .

This can indeed be achieved for the a'g;, and OégM in the “magenta” region ranges given above and for
Nipy ~ O(1 — 14)

Small changes in the supersymmetry breaking scale, the magenta region and so on allows one to

satisfy the above constraint for any number of hidden sector scalars—including

Ny = 58
Conclusion:
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