Anomalies in the topology of the fluctuations in the Cosmic Microwave Background

Pratyush Pranav
CRAL, ENS de Lyon

Spontaneous Workshop XIV
IESC Cargese, France
May 8th - 14th, 2022

Outline

- Background Geometry and Topology
$>$ Minkowski functionals (Euler characteristic/genus)
$>$ Homology (co-homology)
$>$ Hierarchical homology (persistent homology)
- Topological characteristics of CMB fluctuations
$>$ Temperature
\Rightarrow Full sky
\triangleright Hemispheres
>Polarization (full sky)
- Conclusion

Minkowski Functionals

- Predominantly Geometric quantities : include the notion of Volume, surface area, contour length of a manifold M.
- $(D+1)$ quantifiers for D-dimensional sets
- Go by various names and orderings: quermassintegrals, Dehn and Steiner functionals, curvature integrals, intrinsic volumes, Minkowski functionals, and Lipschitz-Killing curvatures.
-We need only MFs and LKCs for our purpose, which when properly defined are related by

$$
\begin{gathered}
Q_{j}(M)=j!\omega_{j} \mathcal{L}_{D-j}(M), \quad j=0, \ldots, D \\
\omega_{k}=\pi^{k / 2} \Gamma\left(\frac{1+k}{2}\right): \text { volume of } \mathrm{k}-\operatorname{dim} . \text { unit ball }
\end{gathered}
$$

Minkowski Functionals

- A useful way of defining these quantities is via the Steiner formula or Weyl's tube formula :

$$
V_{D}\left(\left\{x \in R^{D}: \min \|x-y\|\right\} \leq \rho, y \in M\right)=\sum_{j=0}^{D} \frac{\rho^{j}}{j!} Q_{j}(M)=\sum_{j=0}^{D} \omega_{D-j} \rho^{D-j} \mathcal{L}_{j}(M)
$$

- The set in the LHS is known as the "tube around M ", and ρ is small.
- Trivial to check Q_{0} and \mathcal{L}_{D} measure D-dimensional volume (set $\rho=0$ above).
- Q_{1} and $2 \mathcal{L}_{2}$ measure surface area.
- Other functionals are harder to define, but always a true and deep result that:

$$
\chi(M)=\mathcal{L}_{0}(M)=\frac{1}{D!\omega_{D}} Q_{D}(M)
$$

- In 3D, this only leaves Q_{2} and \mathcal{L}_{1}. If the manifold M is convex, $\mathcal{L}_{1}(M)=Q_{2}(M) / 2 \pi$ is twice the caliper diameter of M.

Geometry and Topology

- Theorema Egrerium (latin for remarkable theorem) of Gauss states that the Gaussian curvature of a surface is an intrinsic invariant, meaning it is a constant irrespective of how the surface is bent (or twisted) in space
- Leads to the Gauss-Bonnet theorem

$$
\int_{M} K d A+\int_{\partial M} k_{g} d s=2 \pi \chi(M)
$$

- K : Gaussian curvature of $\mathrm{M}, \mathrm{k}_{\mathrm{g}}$: geodesic curvature of the boundary of M
- The theorem is remarkable because it links and proves that a topological invariant (EC) can be computed purely from geometrical properties.

Euler characteristic

-Originally defined for polyhedra

$$
\chi=V-E+F
$$

Tetrahedron $V=4, E=6, F=4$

Cube
$V=8, E=12, F=6$

octahedron

$$
V=6, E=12, F=8
$$

- Modern definition through algebraic topology, specifically Homology

Genus

- For a connected, orientable surface, the Genus has a linear relationship with the maximal number of independent simple closed curves that can be drawn on the surface without rendering it disconnected
- Number of handles attached to a surface

SIMPLICIAL TOPOLOGY

Simplices, complexes, cycles, numbers of simplices, Betti numbers
$\sum_{k}(-1)^{k} \#\{k$-dimensional simplices $\}$

$$
\sum_{k}(-1)^{k} \beta_{k}
$$

ALGEBRAIC TOPOLOGY

Homology, homotopy, dimensions of groups, Betti numbers, persistence

INTEGRAL GEOMETRY

Convexity, convex ring kinematic formulae
Minkowski functionals

$$
\mathcal{M}_{k}(M)=c_{d k} \int_{\operatorname{Graff}(d, d-k)} \chi(M \cap V) d \mu_{d-k}^{d}(V)
$$

$$
\begin{gathered}
\sum_{k}(-1)^{k} \#\{\text { critical points of index } k\} \\
\int_{M} \operatorname{Tr}\left(R^{m / 2}\right) \operatorname{Vol}_{g}
\end{gathered}
$$

DIFFERENTIAL TOPOLOGY

Curvature, forms, Betti numbers, Morse theory, integration, Lipschitz-Killing curvatures

Genus, Euler \& Betti

- Euler - Poincare formula

Relationship between Betti Numbers \& Euler Characteristic χ :

$$
\chi=\sum_{k=0}^{d}(-1)^{k} \beta_{k}
$$

Homology

Topology:
Study of connectivity and spatial relations that remain invariant under homeomorphisms (= continuous mapping between two topological objects)

Homology:

- Description of topology of a space in terms of cycles/boundaries.
- Fundamental lemma : Boundary of a boundary is necessarily empty.

Torus:	one 0 -cycle:	rank group $\mathrm{H}_{0}:$	1
	two 1 -cycles:	rank group $\mathrm{H}_{1}:$	2
one 2-cycle	rank group $\mathrm{H}_{2}:$	1	

p-chain:
p-cycle:
0-cycle:
:---
1-cycle:
closed loop of edges,
or finite union
closed surface,
or finite union

Mutually homologous
p-cycles \quad p-class

Topological cycles and holes

- intuitive interpretation

Critical points and filtration

birth and death of topological cycles

- Study the change in topology of a manifold w.r.t. the growing excursion sets of the function f
- Topology only changes at critical points of the function
- Addition of a critical point with index k , either creates a k -dimensional hole, or it destroys a (k-1)-dimensional hole

$$
\emptyset=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M
$$

Birth, death and life-time(persistence): hierarchical topology

- Representation of multi-scale topology
- Dots in the diagram record birth and death
- A diagram for each ambient dimension of the manifold
- 0-dimensional diagram: representation of merger of isolated objects (merger trees)
- 1-dimensional diagrams: formation and filling up of loops (percolation)
- 2-dimensional diagrams: formation and destruction of topological voids (voids)

Topology of the CMB

Planck Data

- Specified on S2, as the deviation from the background average (HEALPIX format)
- Measurement unreliable in some parts: foregrounds
- Unreliable parts masked
- Field converted to $\mathrm{N}(0,1)$ using unmasked pixels only

Temperature

 Full Sky
Masked degraded maps (multi-scale analysis)

- Maps degraded to N_side $=2048,1024,512,256,128,64,32$ and 16 (not shown), corresponding to FWHM $=5^{\prime}, 10^{\prime}, 20^{\prime}, 40^{\prime}, 80^{\prime}, 160^{\prime}, 320^{\prime}, 640^{\prime}$
- Binary Mask degraded similarly (converts it to non-binary) - reconverted to binary by setting the threshold 0.9 (as done by Planck coll.)

Isolated objects (betti 0)

Relative homology										
		χ^{2} (theoretical)			χ^{2} (empirical)			Tukey Depth		
Res	FWHM	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$
threshold $=0.90$										
2048	5	0.708	0.569	0.858	0.676	0.584	0.851	0.630	0.318	0.912
1024	10	0.649	0.475	0.383	0.628	0.476	0.363	0.672	0.352	0.000
512	20	0.156	0.417	0.203	0.161	0.408	0.183	0.332	0.308	0.000
256	40	0.398	0.596	0.772	0.403	0.600	0.756	0.362	0.560	0.642
128	80	0.356	0.204	0.563	0.383	0.186	0.555	0.000	0.312	0.730
64	160	0.398	0.494	0.768	0.401	0.468	0.746	0.465	0.718	0.755
32	320	0.020	0.002	0.001	0.028	0.013	0.001	0.000	0.000	0.000
16	640	0.974	0.001	0.203	0.981	0.030	0.222	0.983	0.000	0.440
summary	NA	0.478	0.023	0.045	0.290	0.076	0.052	0.803	0.000	0.000

Table 1: Table displaying the two-tailed p-values for relative homology obtained from parametric (Mahalanobis distance) and nonparametric (Tukey depth) tests, for different resolutions and smoothing scales for the NPIPE dataset. The last entry is the p-value for the summary statistic computed across all resolutions. Marked in boldface are p-values 0.05 or smaller.

CMB Loops

P.Pranav, A\&A 659, A115 (2022)

Polarization

Experimental set up

- Use full sky to generate alms from TQU maps (prevents E/B leakage)
- Use the grad and curl-like like elements to synthesize the E and B maps
- Mask : PR3 common mask (+b)

NPIPE : Planck 2018 common Mask

E-mode maps
Isolated objects (betti 0)

NPIPE : Planck 2018 common Mask

E-mode maps
Loops(betti 1)

NPIPE : Planck 2018 common Mask

B-mode maps
Isolated objects (betti 0)

NPIPE : Planck 2018 common Mask

NPIPE : Planck 2018 common Mask + galcut 60

B-mode maps
Isolated objects (betti 0)

NPIPE : Planck 2018 common Mask + galcut 60

B-mode maps
Loops(betti 1)

Relative homology - NPIPE E-mode

	χ^{2} (empirical)			χ^{2} (theoretical)			
	FWHM	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$

threshold $=0.90$

2048	5	0.600	0.665	0.457	0.601	0.671	0.470
1024	10	0.498	0.815	0.495	0.504	0.806	0.506
512	20	0.173	0.638	0.215	0.180	0.631	0.214
256	40	0.582	0.187	0.388	0.596	0.190	0.407
128	80	0.447	0.992	0.705	0.476	0.989	0.699
64	160	0.953	0.962	0.993	0.936	0.960	0.991
32	320	0.358	0.027	0.018	0.371	0.016	0.015
16	640	0.670	0.130	0.088	0.764	0.198	0.058

Relative homology - NPIPE B-mode

Res		χ^{2} (empirical)			χ^{2} (theoretical)		
	FWHM	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$

threshold $=0.90$

2048	5	0.140	0.708	0.473	0.154	0.708	0.470
1024	10	0.210	0.377	0.315	0.226	0.381	0.324
512	20	$\mathbf{0 . 0 0 0}$	0.100	$\mathbf{0 . 0 0 8}$	$\mathbf{0 . 0 0 0}$	0.097	$\mathbf{0 . 0 0 6}$
256	40	$\mathbf{0 . 0 0 0}$					
128	80	$\mathbf{0 . 0 0 5}$	0.062	$\mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 0 3}$	0.053	$\mathbf{0 . 0 0 0}$
64	160	0.817	0.172	0.777	0.839	0.183	0.775
32	320	0.587	0.475	0.753	0.594	0.487	0.760
16	640	0.423	0.565	0.540	0.453	0.683	0.569

Relative homology										
		χ^{2} (empirical)			χ^{2} (theoretical)			Tukey Depth		
Res	FWHM	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$
threshold $=0.90$										
2048	5	0.578	0.332	0.583	0.584	0.334	0.574	0.540	0.360	0.485
1024	10	0.517	0.957	0.838	0.503	0.950	0.830	0.513	0.948	0.870
512	20	0.480	0.363	0.812	0.468	0.376	0.799	0.487	0.338	0.795
256	40	0.038	0.102	0.090	0.048	0.097	0.088	0.000	0.000	0.000
128	80	0.178	0.168	0.430	0.201	0.169	0.427	0.000	0.000	0.462
64	160	0.103	0.503	0.707	0.102	0.494	0.698	0.000	0.505	0.750
32	320	0.802	0.587	0.825	0.781	0.617	0.828	0.780	0.558	0.798
16	640	0.178	0.103	0.228	0.177	0.061	0.217	0.000	0.000	0.000
summary	NA	0.582	0.017	0.057	0.569	0.011	0.060	0.000	0.000	0.000

Table 1: Table displaying the two-tailed p-values for relative homology obtained from parametric (Mahalanobis distance) and non-parametric (Tukey depth) tests, for different resolutions and smoothing scales for the NPIPE dataset Q component. The last entry is the p-value for the summary statistic computed across all resolutions. Marked in boldface are p-values 0.05 or smaller.

Relative homology										
Res	FWHM	χ^{2} (empirical)			χ^{2} (theoretical)			Tukey Depth		
		b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$	b_{0}	b_{1}	$\mathrm{EC}_{\text {rel }}$
threshold $=0.90$										
2048	5	0.045	0.768	0.295	0.049	0.767	0.309	0.000	0.785	0.000
1024	10	0.593	0.275	0.192	0.620	0.264	0.171	0.625	0.252	0.000
512	20	0.593	0.150	0.283	0.602	0.145	0.285	0.577	0.000	0.000
256	40	0.298	0.747	0.932	0.314	0.747	0.925	0.335	0.730	0.887
128	80	0.933	0.700	0.760	0.936	0.690	0.755	0.953	0.567	0.832
64	160	0.823	0.040	0.298	0.831	0.043	0.302	0.787	0.000	0.000
32	320	0.682	0.435	0.447	0.679	0.439	0.444	0.502	0.362	0.000
16	640	0.312	0.177	0.667	0.320	0.139	0.700	0.255	0.355	0.827
summary	NA	0.023	0.008	0.010	0.022	0.003	0.011	0.000	0.000	0.000

Table 2: Table displaying the two-tailed p-values for relative homology obtained from parametric (Mahalanobis distance) and non-parametric (Tukey depth) tests, for different resolutions and smoothing scales for the NPIPE dataset U component. The last entry is the p-value for the summary statistic computed across all resolutions. Marked in boldface are p-values 0.05 or smaller.

Signal-to-Noise

Fig. 5. Signal-to-noise ratio for the variance estimator in polarization for Commander (red), NILC (orange), SEVEM (green), and SMICA (blue), obtained by comparing the theoretical variance from the Planck FFP10 fiducial model with an MC noise estimate (right-hand term of Eq. (7)). Note that the same colour scheme for distinguishing the four component-separation maps is used throughout this paper.

Conclusions

- Topology and geometry powerful means of characterizing data.
- CMB data exhibits mild to significant anomaly in both temperature and polarization data.
- Temperature: full sky (large-scale); hemisphere (Degree-scale)
- Polarization: full-sky (degree-scale)
- Results are based on legitimate mathematical foundations, and not a case of over-exploitation of data through tailor-made statistics.
- Hints of violation of cosmological principal, or other late time mechanisms at play (including doppler boosting/dipolar modulation)?

