Anomalies in the topology of the fluctuations in the Cosmic Microwave Background

Pratyush Pranav CRAL, ENS de Lyon

SPONTANEOUS WORKSHOP XIV *IESC Cargese, France May 8th – 14th, 2022*

Outline

• Background Geometry and Topology

Minkowski functionals (Euler characteristic/genus)
 Homology (co-homology)
 Hierarchical homology (persistent homology)

- Topological characteristics of CMB fluctuations
 - ≻Temperature
 ≻Full sky
 ≻Hemispheres
 - ≻Polarization (full sky)
- Conclusion

Minkowski Functionals

• Predominantly Geometric quantities : include the notion of Volume, surface area, contour length of a manifold *M*.

• (D+1) quantifiers for *D*-dimensional sets

• Go by various names and orderings: quermassintegrals, Dehn and Steiner functionals, curvature integrals, intrinsic volumes, Minkowski functionals, and Lipschitz-Killing curvatures.

•We need only MFs and LKCs for our purpose, which when properly defined are related by

$$Q_j(M) = j! \,\omega_j \mathcal{L}_{D-j}(M), \qquad j = 0, \dots, D,$$

$$\omega_k = \pi^{k/2} \,\Gamma\left(\frac{1+k}{2}\right): \text{volume of } k - \text{dim. unit ball}$$

Pranav et al, MNRAS, 485 (3), 4167-4208

Minkowski Functionals

- A useful way of defining these quantities is via the *Steiner formula* or *Weyl's tube formula* : $V_D(\{x \in \mathbb{R}^D : \min \| x - y \|\} \le \rho, y \in M) = \sum_{j=0}^{D} \frac{\rho^j}{j!} Q_j(M) = \sum_{j=0}^{D} \omega_{D-j} \rho^{D-j} \mathcal{L}_j(M)$
- The set in the LHS is known as the "tube around M", and ρ is small.
- Trivial to check Q_0 and \mathcal{L}_D measure *D*-dimensional volume (set $\rho = 0$ above).
- Q_1 and $2\mathcal{L}_2$ measure surface area.
- Other functionals are harder to define, but always a true and deep result that:

$$\chi(M) = \mathcal{L}_0(M) = \frac{1}{D! \,\omega_D} Q_D(M).$$

• In 3D, this only leaves Q_2 and \mathcal{L}_1 . If the manifold *M* is convex, $\mathcal{L}_1(M) = Q_2(M)/2\pi$ is twice the *caliper diameter* of *M*.

Geometry and Topology

- Theorema Egrerium (latin for remarkable theorem) of Gauss states that the Gaussian curvature of a surface is an *intrinsic invariant*, meaning it is a constant irrespective of how the surface is bent (or twisted) in space
- Leads to the Gauss-Bonnet theorem

$$\int_M K \ dA + \int_{\partial M} k_g \ ds = 2\pi \chi(M)$$

- K : Gaussian curvature of M, k_g : geodesic curvature of the boundary of M
- The theorem is remarkable because it links and proves that a topological invariant (EC) can be computed purely from geometrical properties.

Euler characteristic

•Originally defined for polyhedra

$$\chi = V - E + F$$

Genus

- For a connected, orientable surface, the Genus has a linear relationship with the maximal number of independent simple closed curves that can be drawn on the surface without rendering it disconnected
- Number of handles attached to a surface

Why the Euler characteristic?

SIMPLICIAL TOPOLOGY

Simplices, complexes, cycles, numbers of simplices, Betti numbers

 $\sum_{k} (-1)^{k} \# \{k \text{-dimensional simplices}\}$

 $\sum_{k} (-1)^k \beta_k$

ALGEBRAIC TOPOLOGY Homology, homotopy, dimensions of groups, Betti numbers, persistence

INTEGRAL GEOMETRY

Convexity, convex ring kinematic formulae Minkowski functionals

 $\mathcal{M}_k(M) = c_{dk} \int_{\mathrm{Graff}(d,d-k)} \chi(M \cap V) \, d\mu_{d-k}^d(V)$

 $\sum_{k} (-1)^{k} \# \{ \text{critical points of index } k \}$

 $\int_M \operatorname{Tr}(R^{m/2}) \operatorname{Vol}_g$

DIFFERENTIAL TOPOLOGY Curvature, forms, Betti numbers, Morse theory, integration, Lipschitz-Killing curvatures

Genus, Euler & Betti

• Euler – Poincare formula

Relationship between Betti Numbers & Euler Characteristic χ :

Homology

Topology:

Study of connectivity and spatial relations that remain invariant under homeomorphisms (= continuous mapping between two topological objects)

Homology:

- Description of topology of a space in terms of cycles/boundaries.
- Fundamental lemma : Boundary of a boundary is necessarily empty.

Topological cycles and holes

• intuitive interpretation

0 dimensional holes : gaps between connected objects 1 dimensional holes : loops/tunnels

2 dimensional holes : voids

Critical points and filtration

birth and death of topological cycles

- Study the change in topology of a manifold w.r.t. the growing excursion sets of the function f
- Topology only changes at critical points of the function
- Addition of a critical point with index k, either creates a k-dimensional hole, or it destroys a (k-1)-dimensional hole

 $\emptyset = M_0 \subseteq M_1 \subseteq \dots \subseteq M$

Birth, death and life-time(persistence): hierarchical topology

- Representation of multi-scale topology
- Dots in the diagram record birth and death
- A diagram for each ambient dimension of the manifold
 - 0-dimensional diagram: representation of merger of isolated objects (merger trees)
 - 1-dimensional diagrams: formation and filling up of loops (percolation)
 - 2-dimensional diagrams: formation and destruction of topological voids (voids)

Pranav et al, MNRAS, 465 (4), 4281-4310, 2017

Topology of the CMB

Planck Data

- Specified on S2, as the deviation from the background average (HEALPIX format)
- Measurement unreliable in some parts: foregrounds
- Unreliable parts masked
- Field converted to N (0,1) using unmasked pixels only

Temperature Full Sky

Masked degraded maps (multi-scale analysis)

- Maps degraded to N_side = 2048, 1024, 512, 256, 128, 64, 32 and 16 (not shown), corresponding to FWHM = 5', 10', 20', 40', 80', 160', 320', 640'
- Binary Mask degraded similarly (converts it to non-binary) reconverted to binary by setting the threshold 0.9 (as done by Planck coll.)

Isolated objects (betti 0)

P.Pranav, A&A 659, A115 (2022)

2.0

3.0 0.0

Degrade = 256

Degrade = 16

1.0

2.0

3.0

Loops (betti 1)

P.Pranav, A&A 659, A115 (2022)

Degrade = 256

Degrade = 16

-2.0

-1.0

0.0

0.0 -3.0

A&A	proofs:	manuscript	no. npipe	CMB
	p-00-01			

Relative homology											
		χ^2 (theoret	ical)	χ^2	(empiri	cal)	Tukey Depth			
Res	FWHM	b_0	b_1	EC_{rel}	b_0	b_1	EC_{rel}	b_0	b_1	EC_{rel}	
	threshold = 0.90										
2048	5	0.708	0.569	0.858	0.676	0.584	0.851	0.630	0.318	0.912	
1024	10	0.649	0.475	0.383	0.628	0.476	0.363	0.672	0.352	0.000	
512	20	0.156	0.417	0.203	0.161	0.408	0.183	0.332	0.308	0.000	
256	40	0.398	0.596	0.772	0.403	0.600	0.756	0.362	0.560	0.642	
128	80	0.356	0.204	0.563	0.383	0.186	0.555	0.000	0.312	0.730	
64	160	0.398	0.494	0.768	0.401	0.468	0.746	0.465	0.718	0.755	
32	320	0.020	0.002	0.001	0.028	0.013	0.001	0.000	0.000	0.000	
16	640	0.974	0.001	0.203	0.981	0.030	0.222	0.983	0.000	0.440	
summary	NA	0.478	0.023	0.045	0.290	0.076	0.052	0.803	0.000	0.000	

Table 1: Table displaying the two-tailed *p*-values for relative homology obtained from parametric (Mahalanobis distance) and nonparametric (Tukey depth) tests, for different resolutions and smoothing scales for the NPIPE dataset. The last entry is the *p*-value for the summary statistic computed across all resolutions. Marked in boldface are *p*-values 0.05 or smaller.

CMB Loops

P.Pranav, A&A 659, A115 (2022)

Polarization

Experimental set up

- Use full sky to generate alms from TQU maps (prevents E/B leakage)
- Use the grad and curl-like like elements to synthesize the E and B maps
- Mask : PR3 common mask (+ b)

E-mode maps Isolated objects (betti 0)

NPIPE : Planck 2018 common Mask

B-mode maps Isolated objects (betti 0)

NPIPE : Planck 2018 common Mask

Loops(betti 1)

B-mode maps Isolated objects (betti 0)

B-mode maps Loops(betti 1)

Relative homology – NPIPE <i>E</i> -mode						Relative homology – NPIPE <i>B</i> -mode									
		χ^2 (empirical) χ^2 (theoretical)					χ^2 (empirical) χ			χ^2 (1	(theoretical)				
Res	FWHM	b_0	b_1	EC_{rel}	b_0	b_1	EC_{rel}	Res	FWHM	b_0	b_1	EC_{rel}	b_0	b_1	EC_{rel}
threshold = 0.90						threshold = 0.90									
2048	5	0.600	0.665	0.457	0.601	0.671	0.470	2048	5	0.140	0.708	0.473	0.154	0.708	0.470
1024	10	0.498	0.815	0.495	0.504	0.806	0.506	1024	10	0.210	0.377	0.315	0.226	0.381	0.324
512	20	0.173	0.638	0.215	0.180	0.631	0.214	512	20	0.000	0.100	0.008	0.000	0.097	0.006
256	40	0.582	0.187	0.388	0.596	0.190	0.407	256	40	0.000	0.000	0.000	0.000	0.000	0.000
128	80	0.447	0.992	0.705	0.476	0.989	0.699	128	80	0.005	0.062	0.002	0.003	0.053	0.000
64	160	0.953	0.962	0.993	0.936	0.960	0.991	64	160	0.817	0.172	0.777	0.839	0.183	0.775
32	320	0.358	0.027	0.018	0.371	0.016	0.015	32	320	0.587	0.475	0.753	0.594	0.487	0.760
16	640	0.670	0.130	0.088	0.764	0.198	0.058	16	640	0.423	0.565	0.540	0.453	0.683	0.569

Relative homology											
		χ^2 (empiri	cal)	χ^2 (theoret	ical)	Tukey Depth			
Res	FWHM	b_0	b_1	EC_{rel}	b_0	b_1	EC_{rel}	b_0	b_1	EC_{rel}	
threshold = 0.90											
2048	5	0.578	0.332	0.583	0.584	0.334	0.574	0.540	0.360	0.485	
1024	10	0.517	0.957	0.838	0.503	0.950	0.830	0.513	0.948	0.870	
512	20	0.480	0.363	0.812	0.468	0.376	0.799	0.487	0.338	0.795	
256	40	0.038	0.102	0.090	0.048	0.097	0.088	0.000	0.000	0.000	
128	80	0.178	0.168	0.430	0.201	0.169	0.427	0.000	0.000	0.462	
64	160	0.103	0.503	0.707	0.102	0.494	0.698	0.000	0.505	0.750	
32	320	0.802	0.587	0.825	0.781	0.617	0.828	0.780	0.558	0.798	
16	640	0.178	0.103	0.228	0.177	0.061	0.217	0.000	0.000	0.000	
summary	NA	0.582	0.017	0.057	0.569	0.011	0.060	0.000	0.000	0.000	

Table 1: Table displaying the two-tailed p-values for relative homology obtained from parametric (Mahalanobis distance) and non-parametric (Tukey depth) tests, for different resolutions and smoothing scales for the NPIPE dataset Q component. The last entry is the p-value for the summary statistic computed across all resolutions. Marked in boldface are p-values 0.05 or smaller.

Relative homology												
		χ^2 (empiri	cal)	χ^2 (theoret	ical)	Tukey Depth				
Res	FWHM	b_0 b_1		EC_{rel}	b_0	b_1	EC_{rel}	b_0	b_1	EC_{rel}		
	threshold = 0.90											
2048	5	0.045	0.768	0.295	0.049	0.767	0.309	0.000	0.785	0.000		
1024	10	0.593	0.275	0.192	0.620	0.264	0.171	0.625	0.252	0.000		
512	20	0.593	0.150	0.283	0.602	0.145	0.285	0.577	0.000	0.000		
256	40	0.298	0.747	0.932	0.314	0.747	0.925	0.335	0.730	0.887		
128	80	0.933	0.700	0.760	0.936	0.690	0.755	0.953	0.567	0.832		
64	160	0.823	0.040	0.298	0.831	0.043	0.302	0.787	0.000	0.000		
32	320	0.682	0.435	0.447	0.679	0.439	0.444	0.502	0.362	0.000		
16	640	0.312	0.177	0.667	0.320	0.139	0.700	0.255	0.355	0.827		
summary	NA	0.023	0.008	0.010	0.022	0.003	0.011	0.000	0.000	0.000		

Table 2: Table displaying the two-tailed p-values for relative homology obtained from parametric (Mahalanobis distance) and non-parametric (Tukey depth) tests, for different resolutions and smoothing scales for the NPIPE dataset U component. The last entry is the p-value for the summary statistic computed across all resolutions. Marked in boldface are p-values 0.05 or smaller.

Signal-to-Noise

Fig. 5. Signal-to-noise ratio for the variance estimator in polarization for Commander (red), NILC (orange), SEVEM (green), and SMICA (blue), obtained by comparing the theoretical variance from the *Planck* FFP10 fiducial model with an MC noise estimate (right-hand term of Eq. (7)). Note that the same colour scheme for distinguishing the four component-separation maps is used throughout this paper.

Conclusions

- Topology and geometry powerful means of characterizing data.
- CMB data exhibits mild to significant anomaly in both temperature and polarization data.
 - Temperature: full sky (large-scale); hemisphere (Degree-scale)
 - Polarization: full-sky (degree-scale)
- Results are based on legitimate mathematical foundations, and not a case of over-exploitation of data through tailor-made statistics.
- Hints of violation of cosmological principal, or other late time mechanisms at play (including doppler boosting/dipolar modulation)?